|
1. European Envinronment Agency, European Union emission inventory report 1990–2014 under the UNECE convention on long-range transboundary air pollution. 2016. 2. Llobet, J.M., Marti-Cid, R., Castell, V., and Domingo, J.L., Significant decreasing trend in human dietary exposure to PCDD/PCDFs and PCBs in Catalonia, Spain. Toxicol. Lett., 2008. 178(2): p. 117-26. 3. McKay, G., Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem. Eng. J., 2002. 86(3): p. 343-368. 4. Hu, S.H., Stabilization of heavy metals in municipal solid waste incineration ash using mixed ferrous/ferric sulfate solution. J. Hazard. Mater., 2005. 123(1): p. 158-164. 5. Taiwan-EPA, Solid Waste Statistics. https://www.epa.gov.tw/ct.asp?xItem=61195&CtNode=35638&mp=epaen, 2020. 6. Dou, X.M., Ren, F., Nguyen, M.Q., Ahamed, A., Yin, K., Chan, W.P., and Chang, V.W.C., Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew. Sustain. Energy Rev., 2017. 79: p. 24-38. 7. Mangialardi, T., Sintering of MSW fly ash for reuse as a concrete aggregate. J. Hazard. Mater., 2001. 87(1): p. 225-239. 8. Park, Y.J. and Heo, J., Vitrification of fly ash from municipal solid waste incinerator. J. Hazard. Mater., 2002. 91(1): p. 83-93. 9. Wang, L., Chen, Q., Jamro, I.A., Li, R.D., and Baloch, H.A., Accelerated co-precipitation of lead, zinc and copper by carbon dioxide bubbling in alkaline municipal solid waste incinerator (MSWI) fly ash wash water. RSC Advances, 2016. 6(24): p. 20173-20186. 76 10. Colangelo, F., Messina, F., and Cioffi, R., Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. J. Hazard. Mater., 2015. 299: p. 181-191. 11. Chen, C.G., Sun, C.J., Gau, S.H., Wu, C.W., and Chen, Y.L., The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste. Waste Manage., 2013. 33(4): p. 858-865. 12. Sukandar, Padmi, T., Tanaka, M., and Aoyama, I., Chemical stabilization of medical waste fly ash using chelating agent and phosphates: Heavy metals and ecotoxicity evaluation. Waste Manage., 2009. 29(7): p. 2065-2070. 13. Environmental Agency, Quality protocol poultry litter. End of waste criteria for the production and use of treated ash from the incineration of poultry litter, feathers and straw. Waste & Resources Action Programme. 2012. 14. Liu, G.R., Liu, W.B., Cai, Z.W., and Zheng, M.H., Concentrations, profiles, and emission factors of unintentionally produced persistent organic pollutants in fly ash from coking processes. J. Hazard. Mater., 2013. 261: p. 421-426. 15. Wikström, E. and Marklund, S., Secondary formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes, and phenols during msw combustion Environ. Sci. Technol., 2000. 34(4): p. 604-609. 16. Li, Y.C., Yang, Y., Yu, G., Huang, J., Wang, B., Deng, S.B., and Wang, Y.J., Emission of unintentionally produced persistent organic pollutants (UPOPs) from municipal waste incinerators in China. Chemosphere, 2016. 158: p. 17-23. 77 17. Weber, R., Sakurai, T., and Hagenmaier, H., Formation and destruction of PCDD/PCDF during heat treatment of fly ash samples from fluidized bed incinerators. Chemosphere, 1999. 38(11): p. 2633-2642. 18. Altarawneh, M., Dlugogorski, B.Z., Kennedy, E.M., and Mackie, J.C., Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog. Energy Combust. Sci., 2009. 35(3): p. 245-274. 19. Li, B.Y., Ou, L.W., Dang, Q., Meyer, P., Jones, S., Brown, R., and Wright, M., Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production. Bioresour. Technol., 2015. 196: p. 49-56. 20. Hoornweg, D. and Bhada-Tata, P., What a waste: a global review of solid waste management. Urban Dev. Ser. Knowl. Pap., 2012. 15: p. 87-88. 21. Quina, M.J., Bordado, J.C., and Quinta-Ferreira, R.M., Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manage., 2008. 28(11): p. 2097-2121. 22. Quann, R.J., Neville, M., and Sarofim, A.F., A Laboratory Study of the Effect of Coal Selection on the Amount and Composition of Combustion Generated Submicron Particles. Combustion Sci. Technol., 1990. 74(1-6): p. 245-265. 23. McElroy, M.W., Carr, R.C., Ensor, D.S., and Markowski, G.R., Size Distribution of Fine Particles from Coal Combustion. Science, 1982. 215(4528): p. 13-19. 24. Lind, T., Vaimari, T., Kauppinen, E., Nilsson, K., Sfiris, G., and Maenhaut, W., ASH formation mechanisms during combustion of wood in circulating fluidized beds. Proc. Combust. Inst., 2000. 28(2): p. 2287-2295. 78 25. Quina, M.J., Bontempi, E., Bogush, A., Schlumberger, S., Weibel, G., Braga, R., Funari, V., Hyks, J., Rasmussen, E., and Lederer, J., Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Sci. Total Environ., 2018. 635: p. 526-542. 26. Mackay, D., Shiu, W.Y., Ma, K.C., and Lee, S.C., Handbook of physical-chemical properties and environmental fate for organic chemicals, second edition, ed. 2. 2006: CRC Press. 27. Wang, Y.H. and Wong, P.K., Mathematical relationships between vapor pressure, water solubility, Henry's law constant, n-octanol/water partition coefficent and gas chromatographic retention index of polychlorinated-dibenzo-dioxins. Water Res., 2002. 36(1): p. 350-355. 28. Wang, Y.H. and Wong, P.K., Correlation relationships between physico-chemical properties and gas chromatographic retention index of polychlorinated-dibenzofurans. Chemosphere, 2003. 50(4): p. 499-505. 29. Harner, T., Green, N.J.L., and Jones, K.C., Measurements of octanol−air partition coefficients for pcdd/fs: A tool in assessing air−soil equilibrium status. Environ. Sci. Technol., 2000. 34(15): p. 3109-3114. 30. Program, U.N.D., What are POPs? 2020. 31. Schecter, A., Birnbaum, L., Ryan, J.J., and Constable, J.D., Dioxins: An overview. Environ. Res., 2006. 101(3): p. 419-428. 32. Wang, P., Hu, Y.A., and Cheng, H.F., Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut., 2019. 252: p. 461-475. 79 33. Zhang, J.J., Zhang, S.G., and Liu, B., Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review. J. Clean. Prod., 2020. 250. 34. Fabricius, A.-L., Renner, M., Voss, M., Funk, M., Perfoll, A., Gehring, F., Graf, R., Fromm, S., and Duester, L., Municipal waste incineration fly ashes: from a multi-element approach to market potential evaluation. Environ. Sci. Eur., 2020. 32(1): p. 88. 35. Clavier, K.A., Paris, J.M., Ferraro, C.C., and Townsend, T.G., Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production – a review. Resour. Conserv. Recycl., 2020. 160: p. 104888. 36. Zou, D., Chi, Y., Fu, C., Dong, J., Wang, F., and Ni, M., Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant. J. Hazard. Mater., 2013. 248-249: p. 177-184. 37. Cagnetta, G., Hassan, M.M., Huang, J., Yu, G., and Weber, R., Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling. Sci. Rep., 2016. 6(1): p. 22925. 38. Nam, I.H., Kim, Y.M., Murugesan, K., Jeon, J.R., Chang, Y.Y., and Chang, Y.S., Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. J. Hazard. Mater., 2008. 157(1): p. 114-121. 39. Hagenmaier, H., Kraft, M., Brunner, H., and Haag, R., Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ. Sci. Technol., 1987. 21(11): p. 1080-1084. 80 40. Ishida, M., Shiji, R., Nie, P., Nakamura, N., and Sakai, S.-i., Full-scale plant study on low temperature thermal dechlorination of PCDDs/PCDFs in fly ash. Chemosphere, 1998. 37(9): p. 2299-2308. 41. Behnisch, P.A., Hosoe, K., Shiozaki, K., Ozaki, H., Nakamura, K., and Sakai, S., Low-temperature thermal decomposition of dioxin-like compounds in fly ash: Combination of chemical analysis with in vitro bioassays (EROD and DR-CALUX). Environ. Sci. Technol., 2002. 36(23): p. 5211-5217. 42. Lundin, L. and Marklund, S., Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules. Environ. Sci. Technol., 2005. 39(10): p. 3872-3877. 43. Lundin, L. and Marklund, S., Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash. Chemosphere, 2007. 67(3): p. 474-481. 44. Deng, D., Qiao, J., Liu, M., Kołodyńska, D., Zhang, M., Dionysiou, D.D., Ju, Y., Ma, J., and Chang, M.B., Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: Addition of urea on the degradation of dioxin and mechanism. J. Hazard. Mater., 2019. 369: p. 279-289. 45. Ju, Y., Zhang, K., Yang, T., Deng, D., Qiao, J., Wang, P., You, Y., Du, L., Chen, G., Kołodyńska, D., and Dionysiou, D.D., The influence of a washing pretreatment containing phosphate anions on single-mode microwave-based detoxification of fly ash from municipal solid waste incinerators. Chem. Eng. J., 2020. 387: p. 124053. 46. Hung, P.C., Chen, Q.H., and Chang, M.B., Pyrolysis of MWI fly ash - Effect on dioxin-like congeners. Chemosphere, 2013. 92(7): p. 857-863. 81 47. Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., and Jensen, A.D., A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal., A, 2011. 407(1): p. 1-19. 48. Zhao, H.Y., Li, D., Bui, P., and Oyama, S.T., Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl. Catal., A, 2011. 391(1): p. 305-310. 49. Chiang, H. and Bhan, A., Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal., 2010. 271(2): p. 251-261. 50. Yang, Z., Tian, S., Ji, R., Liu, L., Wang, X., and Zhang, Z., Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration. Waste Manage., 2017. 68: p. 221-231. 51. Chen, W.S., Chang, F.C., Shen, Y.H., Tsai, M.S., and Ko, C.H., Removal of chloride from MSWI fly ash. J. Hazard. Mater., 2012. 237: p. 116-120. 52. Chen, C.K., Lin, C., Wang, L.C., and Chang Chien, G.P., The size distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the bottom ash of municipal solid waste incinerators. Chemosphere, 2006. 65(3): p. 514-520. 53. Nakano, T. and Weber, R., Analysis of low chlorinated PCDD/F - Isomer specific analysis of MCDF to T3CDF on DB-5MS-column and some aspects regarding air sampling. Organohalogen Compounds, 2001. 54. Fishman, V.N., Martin, G.D., and Wilken, M., Retention time profiling of all 136 tetra- through octa- chlorinated dibenzo-p-dioxins and dibenzofurans on a variety of Si-Arylene gas chromatographic stationary phases. Chemosphere, 2011. 84(7): p. 913-922. 82 55. Bacher, R., Swerev, M., and Ballschmiter, K., Profile and pattern of monochloro- through octachlorodibenzodioxins and dibenzofurans in chimney deposits from wood burning. Environ. Sci. Technol., 1992. 26(8): p. 1649-1655. 56. Jansson, S. and Andersson, P.L., Relationships between congener distribution patterns of PCDDs, PCDFs, PCNs, PCBs, PCBzs and PCPhs formed during flue gas cooling. Sci. Total Environ., 2012. 416: p. 269-275. 57. Weidemann, E. and Lundin, L., Behavior of PCDF, PCDD, PCN and PCB during low temperature thermal treatment of MSW incineration fly ash. Chem. Eng. J., 2015. 279: p. 180-187. 58. Trinh, M.M. and Chang, M.B., Catalytic pyrolysis: New approach for destruction of POPs in MWIs fly ash. Chem. Eng. J., 2021. 405: p. 126718. 59. Pedersen, A.J., Ottosen, L.M., and Villumsen, A., Electrodialytic removal of heavy metals from different fly ashes - Influence of heavy metal speciation in the ashes. J. Hazard. Mater., 2003. 100(1-3): p. 65-78. 60. Kang, D., Son, J., Yoo, Y., Park, S., Huh, I.-S., and Park, J., Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure. Chem. Eng. J., 2020. 380: p. 122534. 61. Wei, G.X., Liu, H.Q., Zhang, R., Zhu, Y.W., and Xu, X., Mass concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals in different size fractions of hospital solid waste incinerator fly ash particles. Aerosol Air Qual. Res., 2016. 16(7): p. 1569-1578. 83 62. Kida, A., Noma, Y., and Imada, T., Chemical speciation and leaching properties of elements in municipal incinerator ashes. Waste Manage., 1996. 16(5): p. 527-536. 63. McCafferty, E. and Wightman, J.P., Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal., 1998. 26(8): p. 549-564. 64. Kutz, F.W., Barnes, D.G., Bottimore, D.P., Greim, H., and Bretthauer, E.W., The international toxicity equivalency factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Chemosphere, 1990. 20(7): p. 751-757. 65. Chen, Z., Mao, Q., Lu, S., Buekens, A., Xu, S., Wang, X., and Yan, J., Dioxins degradation and reformation during mechanochemical treatment. Chemosphere, 2017. 180: p. 130-140. 66. Thuan, N.T. and Chang, M.B., Investigation of the degradation of pentachlorophenol in sandy soil via low-temperature pyrolysis. J. Hazard. Mater., 2012. 229: p. 411-418. 67. Uzgiris, E.E., Edelstein, W.A., Philipp, H.R., and Timothy Iben, I.E., Complex thermal desorption of PCBs from soil. Chemosphere, 1995. 30(2): p. 377-387. 68. Bond, G., Heterogeneous catalysis principles and applications. 1982: Oxford, Clarendon Press. 69. Martin-Martinez, M., Álvarez-Montero, A., Gómez-Sainero, L.M., R.T.Baker, Palomar, J., Omar, S., Eser, S., and Rodriguez, J.J., Deactivation behavior of Pd/C and Pt/C catalysts in the gas-phase hydrodechlorination of chloromethanes: Structure–reactivity relationship. Appl. Catal., B, 2015. 162: p. 532-543. 70. Liu, Y.H., Yang, F.L., Chen, J.W., Gao, L.N., and Chen, G.H., Linear free energy relationships for dechlorination of aromatic chlorides by Pd/Fe. Chemosphere, 2003. 50(10): p. 1275-1279. 84 71. Kim, J.H., Tratnyek, P.G., Kim, J.H., and Chang, Y.S., Modeling the reductive dechlorination of polychlorinated dibenzo-p-dioxins: Kinetics, pathway, and equivalent toxicity. Environ. Sci. Technol., 2009. 43(14): p. 5327-5332. 72. Liu, M.C., Chang, S.H., and Chang, M.B., Catalytic hydrodechlorination of PCDD/Fs from condensed water with Pd/gamma-Al2O3. Chemosphere, 2016. 154: p. 583-589. 73. Chang, M.B., Fu, C.W., and Tsai, C.L., Effect of reducing agent on catalytic hydrodechlorination of aqueous-phase OCDD/F. Chemosphere, 2018. 202: p. 322-329. 74. Lomnicki, S. and Dellinger, B., Formation of PCDD/F from the pyrolysis of 2-chlorophenol on the surface of dispersed copper oxide particles. Proc. Combust. Inst., 2002. 29(2): p. 2463-2468. 75. Hung, P.C., Chang, S.H., and Chang, M.B., Removal of chlorinated aromatic organic compounds from MWI with catalytic filtration. Aerosol Air Qual. Res., 2014. 14(4): p. 1215-1222. 76. Ukisu, Y. and Miyadera, T., Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts. Appl. Catal., B, 2003. 40(2): p. 141-149. 77. Martin-Martinez, M., Gómez-Sainero, L.M., Bedia, J., Arevalo-Bastante, A., and Rodriguez, J.J., Enhanced activity of carbon-supported Pd–Pt catalysts in the hydrodechlorination of dichloromethane. Appl. Catal., B, 2016. 184: p. 55-63. 78. Ordóñez, S., Díaz, E., Bueres, R.F., Asedegbega-Nieto, E., and Sastre, H., Carbon nanofibre-supported palladium catalysts as model hydrodechlorination catalysts. J. Catal., 2010. 272(1): p. 158-168. 85 79. Zhao, Z., Fang, Y.L., Alvarez, P.J.J., and Wong, M.S., Degrading perchloroethene at ambient conditions using Pd and Pd-on-Au reduction catalysts. Appl. Catal., B, 2013. 140: p. 468-477. 80. Zhou, H., Meng, A., Long, Y., Li, Q., and Zhang, Y., A review of dioxin-related substances during municipal solid waste incineration. Waste Manage., 2015. 36: p. 106-118. 81. Peng, Y.Q., Chen, J.H., Lu, S.Y., Huang, J.X., Zhang, M.M., Buekens, A., Li, X.D., and Yan, J.H., Chlorophenols in municipal solid waste incineration: A review. Chem. Eng. J., 2016. 292: p. 398-414. 82. Thuan, N.T., Dien, N.T., and Chang, M.B., PCDD/PCDF behavior in low-temperature pyrolysis of PCP-contaminated sandy soil. Sci. Total Environ., 2013. 443: p. 590-596.
|