# 臺灣博碩士論文加值系統

(44.211.31.134) 您好！臺灣時間：2024/07/22 19:25

:::

### 詳目顯示

:

• 被引用:0
• 點閱:280
• 評分:
• 下載:11
• 書目收藏:0
 本論文將PB-phase之超穎介面簡化為波板模型，入射光受超穎介面轉為正交偏振態帶有幾何相位，剩餘通過的光帶有動態相位。吾人利用等效介質理論計算超穎介面Unit cell之非等向性之折射率，透過設計Unit cell厚度達到半波板來消除動態相位之影響，讓超穎介面的整體相位為幾何相位效應。將設計完之Unit cell排列為梯度表面超穎介面之相位分布組成Meta-device，透過粒子群最佳化來對Meta-device之相位分布均勻性做優化，使其繞射效率提升。
 We simplify the PB-phase supernatural interface into a waveplate model where the incident light is polarized orthogonally by the supernatural interface into a geometric phase and the remaining passing light band has a dynamic phase. We calculate the non-isotropic refractive index of the unit cell of the supernatural interface by using the effective medium approximation theory and design the unit cell to be half-wave plate to eliminate the dynamic phase effect. The phase distribution of the designed unit cell is arranged as a gradient surface to form a Meta-device, and the phase distribution uniformity of the Meta-device is optimized by particle cluster optimization to improve the diffraction efficiency.
 摘要 iAbstract ii致謝 iii目錄 iv表目錄 xi第1章 緒論 11-1 研究背景 11-2相位調製之文獻回顧 31-3 研究動機 91-4 研究目標及規劃 10第2章 基本理論 122-1 前言 122-2 羅倫茲振盪模型(The Lorenzt Oscillator Model) 122-3 等效介質近似理論(Effective medium approximations theory) 172-5光波的偏振(Polarization of Light Wave) 232-6 繞射式光柵(Diffractive Grating) 332-7 時域有限差分法(Finite Difference Time Domain Method) 412-8 粒子群最佳化(Particle Swarm Optimization) 47第3章 高效率介電超穎表面的厚度分析 523-1 圓極化的相位分析方法 523-2 FDTD模擬分析 533-3 EMT近似分析 553-4 動態相位對幾何相位之擾動 61第4章 Meta-device之設計 714-1 梯度表面超穎介面之Meta-device 714-2 Meta-device之波前優化 74第5章 Meta-device繞射效率分析 785-1 Meta-device之厚度與偏振轉換率關係 785-2 x線偏振入射對Meta-device之RCP與LCP之相位影響 825-3 Meta-device之波板特性 86第6章 結論 89參考文獻 90
 [1] N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces," Nano Letters, vol. 12, no. 12, pp. 6328-6333 (2012)[2] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, vol. 352, no. 6290, pp. 1190-1194 (2016)[3] W. T. Chen et al., "High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images," Nano Letters, vol. 14, no. 1, pp. 225-230. (2014)[4] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668-677. (2003)[5] D. Chanda et al., "Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing," Nature Nanotechnology, vol. 6, no. 7, pp. 402-407. (2011)[6] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photonics, vol. 2, no. 6, pp. 351-354. (2008)[7] S. L. Sun et al., "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces," Nano Letters, vol. 12, no. 12, pp. 6223-6229. (2012)[8] H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and Applications of Metasurfaces," Small Methods, vol. 1, no. 4, Art. no. 1600064. (2017)[9] M. A. Kats, N. F. Yu, P. Genevet, Z. Gaburro, and F. Capasso, "Effect of radiation damping on the spectral response of plasmonic components," Optics Express, vol. 19, no. 22, pp. 21748-21753, (2011)[10] N. F. Yu et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, vol. 334, no. 6054, pp. 333-337, (2011)[11] X. Q. Zhang et al., "Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities," Advanced Materials, vol. 25, no. 33, pp. 4567-4572. (2013)[12] B. H. Chen et al., "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light," Nano Letters, vol. 17, no. 10, pp. 6345-6352. (2017)[13] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392(1802), pp. 45-57. (1984)[14] M. Khorasaninejad et al., "Polarization-Insensitive Metalenses at Visible Wavelengths," Nano Letters, vol. 16, no. 11, pp. 7229-7234. (2016)[15] A. F. J. Levi, Essential Classical Mechanics for Device Physics (Morgan & Claypool, San Rafael, CA, 2016), p. 6–1.[16] I.F. Almog, M.S. Bradley, and V. Bulovic, The Lorentz Oscillator and its Applications.[17] P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851. (1998)[18] E. B. Grann, M. G. Moharam, and D. A. Pommet, " Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," J. Opt. Soc. Am. A, vol. 11, no. 10, pp. 2695-2703, Oct 1994.[19] R. C. Jones, J. Opt. Soc. Am. 31, 488 ; 31, 500. (1941)[20] J. W. Goodman, Introduction to Fourier Optics, 2nd ED.[21] K. Yee, "Numerical Solution of Initial Boundary Value Problem Involving Maxwell's Equations in Isotropic Media," IEEE Trans. Antennas and Propagation, 14, 302-307. (1966)[22] J. Berenger, "A Perfect Matched Layer for the Absorption of Electromagnetic Waves," Journal of Computational Physics, 114, 185-200. (1994)[23] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Neural Networks, 1995. Proceedings., IEEE International Conference on (IEEE), 4, p.1942–1948. (1995)[24] K. E. Parsopoulo and M N. Vrahatis, “Particle swarm optimization and intelligence : advances and applications,” Information Science Reference. (2010)[25] J. Pond and M. Kawano, “Virtual prototyping and optimization of novel solar cell designs”, Proc. SPIE 7750, 775028. (2010)[26] J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg and D. W. Prather, "Thin film silicon solar cell design based on photonic crystal and diffractive grating structures", Opt. Express 16, 5238. (2008)[27] R. Magnusson, M. Shokooh-Saremi,and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35, 2472. (2010)[28] Y. Li and M. Hong, “Diffractive Efficiency Optimization in Metasurface Design via Electromagnetic Coupling Compensation,” Materials, 12, 1005. (2019)[29] I. H. Malitson and M. J. Dodge. “Refractive Index and Birefringence of Synthetic Sapphire”, J. Opt. Soc. Am. 62, p. 1405. (1972)[30] T. Kawashima, H. Yoshikawa, S. Adachi. “Optical properties of hexagonal GaN,” J. Appl. Phys. 82, p. 3528–3535. (1997)
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 太赫茲超穎透鏡的表徵與分析系統 2 設計與製造光學微影之超穎表面用於光束整形和消色差聚焦 3 快速變焦的超穎透鏡製程技術 4 奈米壓印技術製作全介電幾何相位超穎表面 5 多波長超穎波前感測器 6 應用於可見光波長成像系統的超穎透鏡 7 應用奈米結構設計薄型化長焦距鏡頭 8 具幾何相位結構之毫米波波段波導與超穎表面天線之特性研究

 無相關期刊

 1 金屬鹵化鈣鈦礦塊材之光致發光及光致變色特性研究 2 基於音頻訊號隱藏技術之聲波數位傳輸 3 奈米壓印技術製作全介電幾何相位超穎表面 4 鹵化物鈣鈦礦之光誘導光學特性：拉曼及光致變色 5 藉由散射強化輻射冷卻發電之研究 6 單晶異質接面有機無機鹵化鉛鈣鈦礦之光電特性研究 7 全介電幾何相位超穎表面的 抗反射設計 8 具幾何相位結構之毫米波波段波導與超穎表面天線之特性研究 9 高效率低深寬比幾何相位超穎介面 10 混合式超穎介面於感光元件之應用 11 藉由光電輔助輻射冷卻增強熱電效應之研究 12 以超穎校正器提升三片式庫克鏡組光學品質之研究 13 以自製灰階曝光機製作各式微光學元件 14 像素級超穎介面色彩路由器之設計與製作 15 用於屏下螢幕顯示的相位共軛超穎表面設計

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室