跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹宗昊
研究生(外文):Tsung-Hao Chan
論文名稱:銅/氧化鋅網格透明電極之雷射直寫製作及其特性分析
論文名稱(外文):Fabrication and Characteristization of Laser-direct-written Copper/Zinc Oxide Mesh Transparent Electrode
指導教授:何正榮
指導教授(外文):Jeng-Rong Ho
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:90
中文關鍵詞:雷射直寫技術抗氧化金屬網格可撓性透明電極
外文關鍵詞:laser direct writinganti-oxidation metal meshflexible transparent electrode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
銦錫氧化物(ITO)擁有很好的導電性和透光度,因材料稀有與缺乏機械性質無法用於柔性基板等缺點,最近幾年來,許多研究積極尋找銦錫氧化物(ITO)的替代材料,金屬材料金、銀和銅可以用於製作可撓性透明電極其透光度與導電性表現非常優異,但由於金與銀稀少而成本昂貴;銅表面易氧化形成氧化銅而失去電性,目標為尋找一種成本降低且抗氧化的電極。
本研究首要目標是使用雷射直寫製作可撓性且可抗氧化金屬網格透明電極,將基板從玻璃基板換成PI基板以檢測可撓性,並於高溫的環境下以不同銅與氧化鋅比例的電極檢測其導電性。甲酸銅與乙酸鋅透過加熱可分別還原形成銅與氧化鋅,本研究以不同比例的甲酸銅與乙酸鋅溶於溶劑中,置備出有機金屬墨水旋塗於玻璃基板與可撓性基板上形成均勻薄膜並於加熱板上去除多餘溶劑,以波長532 nm連續式雷射進行50倍的聚焦將甲酸銅與乙酸鋅進行熱分解與燒結,並配合移動平台製成金屬網格達成圖案化,最後製作的金屬網格其線寬為12μm,平均厚度為650nm,透光度達88 %其電阻率最好可以達到 21×〖10〗^(-8) Ωm為銅材的13倍。由於在高溫的環境下銅更容易氧化而失去電性。
本研究將純銅金屬網格與不同比例的銅與氧化鋅於160°C加熱板上,放置24小時檢測電阻值變化,經過12小時純銅金屬網格增加106倍,而銅與氧化鋅比例為4:1時放置24小時僅增加25倍。接著檢測機械性,將金屬網格燒結於PI柔性基板上,以曲率半徑為5mm彎曲5000次,其電阻率為30×〖10〗^(-8) Ωm電阻變化為43%。
Indiμm tin oxide (ITO) has good conductivity and transmittance, but it is brittle that cannot be used for flexible substrates.In recent years, many studies have searched for alternative materials for indium tin oxide (ITO). The metallic materials,such as gold, silver, and copper can be used to make flexible transparent electrodes. Their transparency and electrical conductivity are excellent, due to gold and silver are more expensive, but copper is easy to get oxidized form copper oxide on the surface and lose electrical properties. Therefore,this research is to find an electrode with reduced cost and oxidation resistance.
This research’s primary goal is to use laser direct writing to make flexible and oxidation-resistant metal mesh transparent electrodes. Changing the substrate from a glass substrate to a PI substrate to detect flexibility, at the environment of high temperature, electrodes with different ratios of copper and zinc oxide to detect their conductivity.
Copper formate and zinc acetate can be respectively reduced to copper and zinc oxide by heating. In this study, different ratios of copper formate and zinc acetate were dissolved in the solvent, and organometallic ink was prepared by spin coating on the glass substrate to form a uniform film and on the heating plate remove the excess solvent, focus 50 times with a continuous laser at a wavelength of 532 nm, thermally decompose and sinter copper formate and zinc acetate, and make a metal mesh with a mobile platform to achieve patterning, Finally, makeing the metal grid with its lines the width is 15μm, the average thickness is 650nm, the transmittance is 88%, and the resistivity can best reach 21×〖10〗^(-8) Ωm which is copper’s 13 times.
In the literature, copper is more likely to oxidize and lose electricity in high-temperature environments. In this study, pure copper metal grids and different proportions of copper and zinc oxide were placed on a 160°C heating plate and placed for 24 hours to detect resistance changes. The pure copper metal grid increases 106 times after 12 hours, the ratio of copper to zinc oxide is 4:1, and it only increases 25 times when placed for 24 hours.
After that mechanical were detected, the metal grid was sintered on the PI flexible substrate, and the bending radius was 5 mm. The bending was 5000 times, and the resistivity was 30×〖10〗^(-8) Ωm. The resistance change was 43%.
目錄
Chapter 1 緒論________________________________________ 1
1-1 前言_____________________________________________1
1-2 研究背景__________________________________________2
Chapter 2 文獻回顧 ____________________________________4
2-1 金屬電極__________________________________________4
2-1-1 金屬奈米線____________________________________4
2-1-2 噴墨製程_______________________________________7
2-1-3 化學鍍金屬沉積______________________________8
2-1-4 氙燈燒結_______________________________________9
2-1-5 光刻__________________________________________11
2-1-6 雷射直寫______________________________________12
2-1-7 金屬電極不同製程之比較____________________14
2-2 金屬墨水_________________________________________15
2-3 高抗氧化銅電極 ________________________________17
2-3-1 金屬核殼結構 ________________________________17
2-3-2 二元合金______________________________________19
2-3-3 石墨烯包覆 ___________________________________20
2-3-4 氧化物包覆 ___________________________________22
2-4 溶膠凝膠法 製成 氧 化鋅 薄 膜應 用 ______________25
2-5 傳承與創新______________________________________29
Chapter 3 實 驗方 法 ___________________________________30
3-1 實 驗流 程_________________________________________30
3-2 實 驗步 驟_________________________________________30
3-2-1 基板處理_______________________________________30
3-2-2 甲 酸 銅 與乙 酸 鋅配 置 有機 金屬 墨 水 __________30
3-2-3 薄膜製備_______________________________________30
3-2-4 雷 射 直 寫誘 發 熱分 解_________________________32
3-2-5 PI 基 板 利於 撓 曲實 驗 ________________________32
3-3 實 驗用 品_________________________________________32
3-3-1 實驗藥品_______________________________________ 32
3-3-2 實 驗 儀 器設 備 ________________________________33
3-3-3 波 長 532 nm 連 續式 雷 射規 格 _________________34
3-4 材 料分 析 儀 器 __________________________________34
3-4-1 熱 重 分 析儀 (Thermogravimetric analysis,TGA___34
3-4-2 單 晶 X 光繞 射 儀(Single-Crystal X-ray Diffraction,XRD)____________________________________ 34
3-4-3 場 發 掃 描式 電 子顯 微 鏡 (Field-emmision Scanning
Electronic Microscopy, FESEM)________________________35
Chapter 4 結 果與 討 論________________________________36
4-1 材 料分 析________________________________________36
4-1-1 乙酸鋅/異丙 醇/異丙醇 胺 有機 金 屬墨 水__________37
4-1-2 甲酸銅/乙酸鋅/異丙醇/異丙醇胺有機金屬墨水 _________38
4-1-3 熱 重 分 析判 斷 雷射 直 寫結 果 _________________39
4-2 表 面形 貌 與 成份 分 析 __________________________40
4-2-1 甲酸 銅 與乙 酸鋅 的 比例 為 1:1 之表 面 形貌 與 EDS 分析______________________________________________40
4-2-2 甲酸 銅 與乙 酸鋅 的 比例 為 2:1 之表 面 形貌 與 EDS 分析_________________________________________42
4-2-2 甲酸 銅 與乙 酸鋅的 比例 為 4:1 之表 面 形貌 與 EDS 分析______________________________________________43
4-2-4 甲酸 銅 之表 面形 貌 與 EDS 分析 ______________________________________46
4-2-5 不同 雷 射功 率與 平 台走 速 下網 格表 面 形貌 及 EDS 分析
_____________________________________________________47
4-2-6 小結 ___________________________________________50
4-3 XRD 分 析________________________________________52
4-4 導 電性 _________________________________55
4-5 透 光度 測 試_________________________________56
4-6 可 撓性 測 試___________________________57
4-7 抗 氧化 測 試_____________________________________59
Chapter 5 結 論與 未 來研 究 方向_______________________61
5-1 結 論_____________________________________________61
5-2 未 來研 究 方 向 __________________________________61
參考 文 獻____________________________________________ 62
參考文獻
[1] Dr. J. Colegrove (2017) “ITO-replacement Technologies and Market
Forecast 2017 Report”,ITO-REPLACEMENT
[2] L. Yang,T. Zhang,H. Zhou,S. C. Price,B. J. Wiley and W. You (2011)
“Solution-Processed Flexible Polymer Solar Cells with Silver
Nanowire Electrodes”,ACS Publications,vol.3,iss.10,4075 -4084
[3] J. Chung,Seunghwan K.,Nicole R. B,Costas P. Grigoropoulos,D.
Poulikakos (2004) “Conductor microstructures by laser curing of
printed gold nanoparticle ink”,Applid Physics
Letters,vol.84,iss.5,801-803
[4] D. Lee,D. Paeng,H. K. Park and C. P. Grigoropoulos
(2014) ”Vacuum-Free, Maskless Patterning of Ni Electrodes by
Laser Reductive Sintering of NiO Nanoparticle Ink and Its
Application to Transparent Conductors”,ACS Nano,vol.8,iss.10,
9807-9814
[5] G. Gruner (2006) “Carbon nanotube films for transparent and plastic
electronics”,Journal of Materials Chemistry,
vol.16,iss.35,3533-3539
[6] J. H. Kim,E.Ko,J. Hwang,X. Pham,J. H. Lee,S. H. Lee,V. Tran,J.
Kim,J. Park,J. Choo,K. N. Han and G. H. Seong (2015)
“Large-Scale Plasma Patterning of Transparent Graphene Electrode
on Flexible Substrates”,ACS Publications,vol.31,iss.9,2914 -2921
[7] A. Elschner and W. Lövenich (2011) “Solution -deposited PEDOT for
transparent conductive
applications“,MRSBulletin,vol.36,iss.10,794-798
6 9
[8] A. Kamyshny,J. Steinke and S. Magdassi (2011) “Metal-based Inkjet
Inks for Printed Electronics”,The Open Applied Physics
Journal,vol.4,19-36
[9] Y. Farraj,M. Grouchkoa and S. Magdassi (2015) “Self-reduction of a
copper complex MOD ink for inkj et printing conductive patterns on
plastics”,Chemical Communications,vol.51,iss.9,1587 -1590
[10] B. Bari,J. Lee,T. Jang,P. Won,S. H. Ko,K. Alamgir,M. Arshad and L.
J. Guo (2016) “Simple hydrothermal synthesis of very-long and
thin silver nanowires and their application in high quality
transparent electrodes”,Journal of Materials Chemistry A,
vol.4,iss.29,11365-11371
[11] H. Lu,D. Zhang,X. Ren,J. Liu and C. H. Choy (2014) “Selective
Growth and Integration of Silver Nanoparticles on Silver
Nanowires at Room Conditions for Transparent Nano-Network
Electrode”.ACS NANO,vol.8,iss.10,10980-10987
[12] Y. Liu,J. Zhang,H. Gao,Y. Wang,Q. Liu,S. Huang,C. F. Guo and Z.
Ren (2017) “Capillary-Force-Induced Cold Welding in
Silver-Nanowire-Based Flexible Transparent Electrodes” ,ACS
Publications,vol.17,iss.2,1090-1096
[13] Y. Hu,C. Liang,X. Sun,J. Zheng,J. Duan and X. Zhuang (2019)
“Enhancement of the Conductivity and Uniformity of Silver
Nanowire Flexible Transparent Conductive Films by Femtosecond
Laser-Induced Nanowelding”,Nanomaterials,vol.9,p673
[14] Y. Jang,J. Kim and D. Byun (2013) “Invisible metal-grid
transparent electrode prepared by electrohydrodynamic (EHD) jet
7 0
printing”,IOP Publishing,vol.46,iss.15,155103,1 -5
[15] D. J.Finn,M. Lotya and J. N. Coleman (2015 ) “Inkjet Printing of
Silver Nanowire Networks”,ACS
Publications,vol.7,iss.17,9254-9261
[16] G. H. Kim,J. H. Shin,T. An and G. Lim (2018) “Junction -free Flat
Copper Nanofiber Network-based Transparent Heater with High
Transparency, High Conductivity, and High
Temperature”,Scientific Reports,vol.8,13581
[17] P. Hsu,D. Kong,S. Wang,H. Wang,A. J. Welch,H. Wu and Y. Cui
(2014) “Electrolessly Deposited Electrospun Metal Nanowire
Transparent Electrodes”,ACS
Publications,vol.136,iss.30,10593-10596
[18] W. Li,H. Zhang,Y. Gao,J. Jiu,C. Li,C. Chen,D. Hu,Y. Goya,Y.
Wang,H. Koga,S. Nagaob and K. Suganuma (2017) “Highly reliable
and highly conductive submicron Cu particle patterns fabricated by
low temperature heat-welding and subsequent flash light
sinter-reinforcement”,Journal of Materials Chemistry C,
vol.5,iss.5,1155-1164
[19] Y. Hwang,W. Chung,Y. Jang and H. Kim (2016) “Intensive
Plasmonic Flash Light Sintering of Copper Nanoinks Using a
Band-Pass Light Filter for Highly Electrically Conductive
Electrodes in Printed Electronics”,ACS
Publications,vol.8,iss.13,8591-8599
[20] L. Qi,J. Li,C. Zhu,Y. Yang,S. Zhaob and W. Song (2016)
“Realization of a flexible and mechanically robust Ag mesh
7 1
transparent electrode and its application in a PDLC device”,RSC
Advances,vol.6,iss.16,13531-13536
[21] L. Li,B. Zhang,B. Zou,R. Xie,T. Zhan,S. Li,B. Zheng,J.Wu,J.
Weng,W. Zhang,W. Huang and F. Huo (2017) “Fabrication of
Flexible Transparent Electrode with Enhanced Conductivity from
Hierarchical Metal Grids”,ACS
Publications,vol.9,iss.45,39110-39115
[22] J. Kwon,H. Cho,H. Eom,H. Lee,Y. D. Suh,H. Moon,J. Shin,S. Hong
and S. H. Ko (2016) “Low-Temperature Oxidation-Free Selective
Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate
for the Flexible Touch Panel Applications”,ACS
Publications,vol.8,iss.18,11575-11582
[23] B. Kang,S. Han,J. Kim,S. Ko and M. Yang (2011) “One -Step
Fabrication of Copper Electrode by Laser-Induced Direct Local
Reduction and Agglomeration of Copper Oxide Nanoparticle”,ACS
Publications,vol.115,iss.48,23664-23670
[24] S. Hong,J. Yeo,G. Kim,D. Kim,H. Lee,J. Kwon,H. Lee,P. Lee and S.
H. Ko (2013) “Nonvacuum, Maskless Fabrication of a Flexible
Metal Grid Transparent Conductor by Low-Temperature Selective
Laser Sintering of Nanoparticle Ink”,ACS
NANO,vol.7,iss.6,5024-5031
[25] K. Liang,Y. Wang,W. Lin and J. Lin (2014) “Polymer-assisted
self-assembly of silver nanoparticles into interconnected
morphology and enhanced surface electric conductivity”,RSC
Advances,vol.4,iss.29,15098-15103
7 2
[26] Y. Dong,Z. Lin,X. Li,Q. Zhu,Ji. Li and X. Sun (2018) “A low
temperature and air-sinterable copper–diamine complex-based
metal organic decomposition ink for printed electronics”,Journal of
Materials Chemistry C,vol.6,iss.24,6406-6415
[27] I. E. Stewart,A. R. Rathmell,L. Yan,S. Ye,P. F. Flowers,W. You and
B. J. Wiley (2014) “Solution-processed copper–nickel nanowire
anodes for organic solar cells”,Nanoscale,vol.6,iss.11,5980 -5988
[28] C. Yim,A. Sandwell and S. S. Park (2016) “Hybrid Copper−Silver
Conductive Tracks for Enhanced Oxidation Resistance under Flash
Light Sintering”,ACS Publications,vol.8,iss.34,22369 -22373
[29] D. Jiang,P. Tsai,C. Kuo,F. Jhuang,H. Guo,S. Chen,Y. Liao,T. Satoh
and S. Tung (2019) “Facile Preparation of Cu/Ag Core/Shell
Electrospun Nanofibers as Highly Stable an d Flexible Transparent
Conductive Electrodes for Optoelectronic Devices”,ACS
Publications,vol.11,iss.10,10118-10127
[30] H. Jin Park,Y. Jo,M. K. Cho,J. Y. Woo,D.Kim,S. Y. Lee,Y. Choi and
S. Jeong (2018) “Highly durable Cu -based electrodes from a
printable nanoparticle mixture ink: flash-lightsintered,
kinetically-controlled
microstructure”,Nanoscale,vol.10,iss.11,5047 -5053
[31] W. Li,D. Hu,L. Li,C. Li,J. Jiu,C. Chen,T. Ishina,T. Sugahara and K.
Suganuma (2017) “Printable and Flexible Copper−Silver Alloy
Electrodes with High Conductivity and Ultrahigh Oxidation
Resistance”, ACS Publications,vol.9,iss.29,24711−24721
[32] A. Manikandan,L. Lee,Yi-Chung Wang,C. Chen,Y. Chen,H.
7 3
Medina,J. Tseng,Z. M. Wang and Y. Chueh (2017)
“Graphene-coated copper nanowire networks as a highly stable
transparent electrode in harsh environments toward efficient
electrocatalytic hydrogen evolution reactions”,Journal of Materials
Chemistry A,vol.5,iss.26,13320-13328
[33] I. N. Kholmanov,Sergio H. Domingues,Harry Chou,Xiaohan
Wang,Cheng Tan,Jin-Young Kim,Huifeng Li,Richard Piner,Aldo J.
G. Zarbin and Rodney S. Ruoff (2013) “Reduced Graphene
Oxide/Copper Nanowire Hybrid Films as High -Performance
Transparent Electrodes”,ACS NANO,vol.7,iss.2,1811 -1816
[34] P. Hsu,H.Wu,T. J. Carney,M. T. McDowell, Y. Yang,E. C.
Garnett,M. Li,L. Hu and Y. Cui (2012) “Passivation Coating on
Electrospun Copper Nanofibers for Stable Transparent
Electrodes”,ACS NANO,vol.6,iss.6,5150 -5156
[35] Y. Won,A. Kim,D. Lee,Wooseok Yang,K. Woo1,S. Jeong and J.
Moon (2014) “Annealing-free fabrication of highly
oxidation-resistive copper nanowire composite conductors for
Photovoltaics”,Original Article,vol.6,e105
[36] Z. Zhu,T. Mankowski,K. Balakrishnan,A. S. Shikoh,F. Touati,M1
Mansuripur and C. M. Falco (2016) “Hybrid transp arent
conductive electrodes with copper nanowires embedded in a zinc
oxide matrix and protected by reduced graphene oxide
platelets”,Journal of Applied Physics,vol.119,085303
[37] R. Bekkari,B. Jaber,H. Labrim,M. Ouafi,N. Zayyoun and L. Laânab
(2019) “Effect of Solvents and Stabilizer Molar Ratio on the
7 4
Growth Orientation of Sol-Gel-Derived ZnO Thin Films”,Research
Article,vol.2019,3164043
[38] B. Jaber,H. Labrim , M. Ouafi ,N. Zayyoun,and L.Laânab (2018)
“Effect of Solvents and Stabilizer Molar Ratio on the Growth
Orientation of Sol-Gel-Derived ZnO Thin Films”,Applied Physics
A,vol.124,223
[39] J. An,T. D. Le,C. Huat Joel Lim,V. Thai Tran,Z. Zhan,Y. Gao,L.
Zheng,G. Sun and Y. Kim (2018) “Single-Step Selective Laser
Writing of Flexible Photodetectors for Wearable
Optoelectronics”,FULL PAPER,vol.5,iss.8,1800496
[40] D. Ko,B. Gu,J. Cheon,J. Roh,C. S. Kim,S.Jo,D. C. Hyun and J. Kim
(2018) “Decoupling the contributions to the enhancement of
electrical conductivity in transparent silver nanowire/zinc oxide
composite electrodes”,Accepted Manuscript,vol.223,634 -640
[41] W. Shin,W.Cho and S. J. Baik (2018) “Silver nanowires network
encapsulated by low temperature sol –gel ZnO for transparent
flexible electrodes with ambient stability”,IOP
Publishing,vol.5,iss.1,015050
[42] 物 競 數據 庫_乙酸 鋅 (557-34-6)红 外圖 譜 (IR1)
https://www.chemicalbook.com/Spectrum_557 -34-6_IR1.htm
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top