跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:瞿生強
研究生(外文):Chu,Sheng-Chiang
論文名稱:尤金真蚓體內兩種寄生性線蟲生態棲位差異
論文名稱(外文):Different Niche Distribution of Parasitic Nematodes in Eudrilus eugeniae
指導教授:周睿鈺周睿鈺引用關係
指導教授(外文):Chou,Jui-Yu
口試委員:林宗岐賴亦德周睿鈺
口試日期:2021-07-21
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:45
中文關鍵詞:棲位分化(niche partitioning)腸道寄生性線蟲尤金真蚓(Eudrilus eugeniae)Thelastoma endoscolicumMesidionema praecomasculatis
外文關鍵詞:niche partitioningparasitic nematodesAfrican night crawler (Eudrilus eugeniae)Thelastoma endoscolicumMesidionema praecomasculatis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
棲位相近的生物之間免不了資源利用的衝突,因此許多生物會藉由生態棲位的分化來避免競爭。生態棲位的分化主要分為營養型分化和空間分化,分別能降低兩種共域的生物對食物或是棲息空間的競爭。寄生蟲是生態棲位分化的重要研究對象之一,因為其豐富物種多樣性和將宿主作為資源來源的特性使得分化的過程更容易被觀察和研究。尤金真蚓 (Eudrilus eugeniae) 原生於非洲,在原生地曾被記錄受到兩種腸道寄生性線蟲 (Thelastoma endoscolicum 和 Mesidionema praecomasculatis) 的感染。在我們的採集與檢查中也發現近年被引入臺灣用來處理堆肥的尤金真蚓普遍帶有這兩種線蟲。以往的研究中對兩種線蟲在腸道中的棲位並沒有詳細的描述,然而在我們的研究中,M. praecomasculatis 的棲息位置偏向在蚯蚓的中腸前段,而 T. endoscolicum 則偏向棲息在後腸。共同感染與否不會改變棲息位置的偏好,顯示兩種線蟲的棲位差異並非競爭排擠所造成。過往的研究中認為,M. praecomasculatis 的主要食物來源為寄主細胞受傷後的分泌物;T. endoscolicum 則為腸道內的共生菌。即時定量聚合酶連鎖反應(qPCR)和總DNA凝膠電泳的結果也發現,蚯蚓腸道共生菌的平均數量在 T. endoscolicum 棲息的位置大約是 M. praecomasculatis 的 800 倍且含有較多 DNA 片段完整的活菌。此外我們藉由對蚯蚓進行不同處理,配合即時定量聚合酶連鎖反應 (q-PCR) 觀察到兩種線蟲感染率及其棲位細菌豐富度的變化。經過飢餓及抗生素處裡的蚯蚓體內 M. praecomasculatis 感染率維持不變卻幾乎沒有發現 T. endoscolicum 的寄生;qPCR結果也顯示蚯蚓腸道細菌豐富度的下降。經過美鞭達挫驅蟲藥 (mebendazole) 處裡的蚯蚓體內則清除了所有線蟲;但對腸道細菌豐富度沒有太大的影響。(4)氮、磷化肥的結果則顯示尿素可能對 T. endoscolicum 具有毒性而導致感染率的下降。我們的研究結果表明經過不同處理的蚯蚓可能直接或間接透過腸道菌豐富度的變化影響了線蟲的感染情形。這個發現也能夠解釋兩種線蟲於線蟲腸道的不同棲位分布。在未來我們會進一步分析蚯蚓腸道的菌相進而了解細菌相對線蟲-宿主交互作用所扮演的角色。

關鍵字:棲位分化(niche partitioning), 腸道寄生性線蟲, 尤金真蚓 (Eudrilus eugeniae), Thelastoma endoscolicum, Mesidionema praecomasculatis。
To avoid competition, sympatric species divided their resource acquisition mode which process call niche partitioning. Trophic and spatial partitioning are two main partitioning types base on the division of food and habitats resource, respectively. Parasites are considered to be a great model for niche partitioning studies due to its rich diversity and limitation of resource on host. In this research, microhabitat distributions of two parasitic nematodes, Mesidionema praecomasculatis and Thelastoma endoscolicum, were studied with the earthworm host, Eudrilus eugeniae which was commercially introduced to Taiwan from West African. We found M. praecomasculatis tend to distribute in the anterior part of the host's mid gut, while most of T. endoscolicum individuals were found in the hindgut. This niche distribution did not much vary with the appearance of the other nematodes, showing that the niche difference of two nematodes is not likely to be cause by competitive exclusion. The niche distribution was also coincident with the nematode biological properties while T. endoscolicum is more closed associated with the gut bacteria in hosts. In this study, we found about 800 times bacterial abundance in the T. endoscolicum intestinal tract compared to M. praecomasculatis intestinal tract by using q-PCR analyze. We also found the changes in the infection rate and the bacterial abundance of two nematodes in their microhabitats through different treatment of earthworm. Our results indicate that variation of earthworm intestinal bacteria abundance after different treatment is associated with the nematodes infection. M. praecomasculatis remained high infection rate, while T. endoscolicum were hard to be found. The bacterial abundance decline after (1) starvation and (2) antibiotics treatment of earthworm. Both of nematodes were remove but cause less influence on bacterial abundance of intestine tract after (3) anthelmintic treatment. Fertilizer treatment suggested the decrease of T. endoscolicum may due to the toxicity of urea. Our results indicate that earthworms in different treatments may direct or indirectly affect the infection of nematodes through changes in the abundance of intestinal bacteria, which can also explain the different distribution of two nematodes. In the future, we will further analyze the composition of microbiota in intestinal tract of earthworms to understand the host-parasite interaction.

Key words: niche partitioning, parasitic nematodes, African night crawler (Eudrilus eugeniae), Thelastoma endoscolicum, Mesidionema praecomasculatis
摘要 I
Abstract II
致謝 III
Contents IV
List of Tables V
List of Figures VI
Chapter 1. Introduction 1
Chapter 2. Materials and methods 6
2.1 Experiment material and setup 7
2.2 Identification of nematodes 7
2.3 Dissection method and niche distribution of nematodes 8
2.4 Gel electrophoresis of genome DNA 8
2.5 Exogenous additives experiments 8
2.6 Real-time quantitative PCR and sample preparation 9
Chapter 3. Result 11
3.1. Identification of nematode species 12
3.1.1 DNA information of nematodes collected from E. eugeniae 12
3.1.2 Morphology of two nematodes collect from E. eugeniae 14
3.2 Niche distribution of intestinal nematodes 21
3.2.1 Microhabitats of nematodes in earthworm intestinal tract 21
3.2.2 Microhabitats conditions of two nematodes 23
3.3 Exogenous additives experiments 25
3.3.1 Nematodes prevalence in host ANC after malnutrition treatment 25
3.3.2 Nematodes prevalence and host weight after antibiotics and anthelmintics treatment 27
3.3.3 Nematodes prevalence of host earthworm after fertilizer treatment 31
3.4 Bacterial abundance in nematodes hotspot gut regions 33
3.4.1 Relative bacterial abundance of nematodes hotspot gut regions after starvation of earthworm 33
3.4.2 Relative bacterial abundance of nematodes hotspot gut regions after antibiotics and anthelmintics treatment 35
Chapter 4. Discussion 37
References 41
References
[1] G. Hardin, "The competitive exclusion principle," science, vol. 131, no. 3409, pp. 1292-1297, 1960.
[2] P. Chesson, "Mechanisms of maintenance of species diversity," Annual review of Ecology and Systematics, vol. 31, no. 1, pp. 343-366, 2000.
[3] D. L. Finke and W. E. Snyder, "Niche partitioning increases resource exploitation by diverse communities," Science, vol. 321, no. 5895, pp. 1488-1490, 2008.
[4] G. Walter, "What is resource partitioning?," Journal of Theoretical Biology, vol. 150, no. 2, pp. 137-143, 1991.
[5] A. Hector and R. Hooper, "Darwin and the first ecological experiment," Science, vol. 295, no. 5555, pp. 639-640, 2002.
[6] R. H. MacArthur, "Population ecology of some warblers of northeastern coniferous forests," Ecology, vol. 39, no. 4, pp. 599-619, 1958.
[7] T. Sipe and F. Bazzaz, "Gap partitioning among maples (Acer) in central New England: shoot architecture and photosynthesis," Ecology, vol. 75, no. 8, pp. 2318-2332, 1994.
[8] T. Sipe and F. Bazzaz, "Gap partitioning among maples (Acer) in central New England: survival and growth," Ecology, vol. 76, no. 5, pp. 1587-1602, 1995.
[9] C. C. Kern, R. A. Montgomery, P. B. Reich, and T. F. Strong, "Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest," Journal of Plant Ecology, vol. 6, no. 1, pp. 101-112, 2013.
[10] S. Boyer and C. Rivault, "Habitat selection and coexistence of invasive cockroach species (Dictyoptera) in sugar-cane fields on Réunion island," Acta Oecologica, vol. 29, no. 1, pp. 16-26, 2006.
[11] G. A. Villanueva-Bonilla, S. Safuan-Naide, M. M. Pires, and J. Vasconcellos-Neto, "Niche partitioning and coexistence of two spiders of the genus Peucetia (Araneae, Oxyopidae) inhabiting Trichogoniopsis adenantha plants (Asterales, Asteraceae)," PloS one, vol. 14, no. 10, p. e0213887, 2019.
[12] G. H. Pyke, "Local geographic distributions of bumblebees near Crested Butte, Colorado: competition and community structure," Ecology, vol. 63, no. 2, pp. 555-573, 1982.
[13] D. C. Knickle and G. A. Rose, "Dietary niche partitioning in sympatric gadid species in coastal Newfoundland: evidence from stomachs and CN isotopes," Environmental biology of fishes, vol. 97, no. 4, pp. 343-355, 2014.
[14] T. W. Schoener, "Resource partitioning in ecological communities," Science, vol. 185, no. 4145, pp. 27-39, 1974.
[15] C. A. Toft, "Resource partitioning in amphibians and reptiles," Copeia, pp. 1-21, 1985.
[16] S. T. Ross, "Resource partitioning in fish assemblages: a review of field studies," Copeia, pp. 352-388, 1986.
[17] M. S. Di Bitetti, C. D. De Angelo, Y. E. Di Blanco, and A. Paviolo, "Niche partitioning and species coexistence in a Neotropical felid assemblage," Acta Oecologica, vol. 36, no. 4, pp. 403-412, 2010.
[18] C. S. Cloyed, "Forest structure affects resource partitioning between pygmy and white-breasted nuthatches," Coevolution, vol. 2, no. 1, pp. 26-30, 2014.
[19] I. Novcic, "Niche dynamics of shorebirds in Delaware Bay: Foraging behavior, habitat choice and migration timing," Acta Oecologica, vol. 75, pp. 68-76, 2016.
[20] C. S. Cloyed and P. K. Eason, "Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans," Royal Society open science, vol. 4, no. 3, p. 170060, 2017.
[21] P. R. Grant, Ecology and evolution of Darwin's finches. Princeton University Press, 1999.
[22] C. A. Lanciani, "Resource partitioning in species of the water mite genus Eylais," Ecology, vol. 51, no. 2, pp. 338-342, 1970.
[23] D. Mouillot, M. George‐Nascimento, and R. Poulin, "How parasites divide resources: a test of the niche apportionment hypothesis," Journal of Animal Ecology, vol. 72, no. 5, pp. 757-764, 2003.
[24] R. Poulin and S. Morand, "The diversity of parasites," The quarterly review of biology, vol. 75, no. 3, pp. 277-293, 2000.
[25] J. M. Falkenberg, A. C. F. Lacerda, and G. H. C. Vieira, "Co-occurrence and niche overlap among gill parasites of the white mullet (Mugil curema Valenciennes, 1836)(Osteichthyes: Mugilidae) from the western Atlantic, Brazil," Parasitology Research, vol. 120, no. 3, pp. 849-859, 2021.
[26] L. M. Stefan, E. Gómez-Díaz, E. Elguero, H. C. Proctor, K. D. McCoy, and J. González-Solís, "Niche partitioning of feather mites within a seabird host, Calonectris borealis," PloS one, vol. 10, no. 12, p. e0144728, 2015.
[27] F. Fleury, R. Allemand, F. Vavre, P. Fouillet, and M. Bouletreau, "Adaptive significance of a circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids," Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 267, no. 1447, pp. 1005-1010, 2000.
[28] S. Connor and M. Adamson, "Niche overlap among three species of pinworm parasitic in the hindgut of the American cockroach, Periplaneta americana," The Journal of parasitology, pp. 245-247, 1998.
[29] D. W. Thieltges et al., "Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission," Oikos, vol. 122, no. 10, pp. 1473-1482, 2013.
[30] R. Poulin and T. Leung, "Body size, trophic level, and the use of fish as transmission routes by parasites," Oecologia, vol. 166, no. 3, pp. 731-738, 2011.
[31] R. Poulin, "Decay of similarity with host phylogenetic distance in parasite faunas," Parasitology, vol. 137, no. 4, pp. 733-741, 2010.
[32] R. Poulin, B. R. Krasnov, D. Mouillot, and D. W. Thieltges, "The comparative ecology and biogeography of parasites," Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 366, no. 1576, pp. 2379-2390, 2011.
[33] R. Poulin, B. R. Krasnov, S. Pilosof, and D. W. Thieltges, "Phylogeny determines the role of helminth parasites in intertidal food webs," Journal of Animal Ecology, pp. 1265-1275, 2013.
[34] L. Lima, S. Bellay, H. Giacomini, A. Isaac, and D. Lima-Junior, "Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain," Parasitology, vol. 143, no. 3, pp. 343-349, 2016.
[35] T. K. Rasmussen and H. S. Randhawa, "Host diet influences parasite diversity: a case study looking at tapeworm diversity among sharks," Marine Ecology Progress Series, vol. 605, pp. 1-16, 2018.
[36] L. L. Richardson et al., "Secondary metabolites in floral nectar reduce parasite infections in bumblebees," Proceedings of the Royal Society B: Biological Sciences, vol. 282, no. 1803, p. 20142471, 2015.
[37] A. Billiet, I. Meeus, F. Van Nieuwerburgh, D. Deforce, F. Wäckers, and G. Smagghe, "Impact of sugar syrup and pollen diet on the bacterial diversity in the gut of indoor-reared bumblebees (Bombus terrestris)," Apidologie, vol. 47, no. 4, pp. 548-560, 2016.
[38] H. Koch and P. Schmid-Hempel, "Socially transmitted gut microbiota protect bumble bees against an intestinal parasite," Proceedings of the National Academy of Sciences, vol. 108, no. 48, pp. 19288-19292, 2011.
[39] E. V. Harris, J. C. de Roode, and N. M. Gerardo, "Diet–microbiome–disease: Investigating diet’s influence on infectious disease resistance through alteration of the gut microbiome," PLoS pathogens, vol. 15, no. 10, p. e1007891, 2019.
[40] R. Balachandar et al., "Enriched pressmud vermicompost production with green manure plants using Eudrilus eugeniae," Bioresource technology, vol. 299, p. 122578, 2020.
[41] P. N. Lim, T. Y. Wu, C. Clarke, and N. N. Daud, "A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae," International Journal of Environmental Science and Technology, vol. 12, no. 8, pp. 2533-2544, 2015.
[42] M. A. McNeill and R. Anderson, "Development of Porrocaecum ensicaudatum (Nematoda: Ascaridoidea) in terrestrial oligochaetes," Canadian journal of zoology, vol. 68, no. 7, pp. 1476-1483, 1990.
[43] S. Spiridonov, "Mbanema nigeriense n. gen., n. sp.(Drilonematidae: Nematoda) from Eudrilus eugenia (Eudrilidae: Oligochaeta) in Nigeria," Fundamental and applied nematology, vol. 15, no. 5, pp. 443-447, 1992.
[44] G. Poinar, "THELASTOMA ENDOSCOLICUM SP. N.(OXYURIDA: NEMATODA) A PARASITE OF EARTHWORMS (OLIGOCHAETA: ANNELIDA)," 1978.
[45] G. Poinar, "Mesidionema praecomasculatis gen. et sp. n.; Mesidionematidae fam. n.(Drilonematoidea: Rhabditida), a nematode parasite of earthworms," Proceedings of the Helminthological Society of Washington, vol. 45, pp. 97-102, 1978.
[46] P. De Ley et al., "An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding," Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 360, no. 1462, pp. 1945-1958, 2005.
[47] K. Rudi, K. Ødegård, T. T. Løkken, and R. Wilson, "A feeding induced switch from a variable to a homogenous state of the earthworm gut microbiota within a host population," PLoS One, vol. 4, no. 10, p. e7528, 2009.
[48] J. H. Connell, "Diversity and the coevolution of competitors, or the ghost of competition past," Oikos, pp. 131-138, 1980.
[49] N. Khomyakov et al., "Reaction of microorganisms to the digestive fluid of earthworms," Microbiology, vol. 76, no. 1, pp. 45-54, 2007.
[50] H. L. Drake and M. A. Horn, "As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes," Annu. Rev. Microbiol., vol. 61, pp. 169-189, 2007.
[51] B. Knapp, J. Seeber, S. Podmirseg, E. Meyer, and H. Insam, "Application of denaturing gradient gel electrophoresis for analysing the gut microflora of Lumbricus rubellus Hoffmeister under different feeding conditions," Bulletin of entomological research, vol. 98, no. 3, pp. 271-279, 2008.
[52] Y. Wang, Z. Yin, H. Zhao, J. Hu, and Y. Kang, "The effects of tetracycline concentrations on tetracycline resistance genes and their bacterial hosts in the gut passages of earthworms (Eisenia fetida) feeding on domestic sludge," Environmental Science and Pollution Research, vol. 26, no. 33, pp. 34412-34420, 2019.
[53] K. Murugan, G. Shiji, and H. S. S. Umamaheswari, "Toxicity studies of antibiotics in earthworm, Eudrilus eugeniae," Int J Pure App Biosci, vol. 3, pp. 241-255, 2015.
[54] A. Bennett and H. Guyatt, "Reducing intestinal nematode infection: efficacy of albendazole and mebendazole," Parasitology Today, vol. 16, no. 2, pp. 71-77, 2000.
[55] J.-Y. Chai, B.-K. Jung, and S.-J. Hong, "Albendazole and Mebendazole as Anti-Parasitic and Anti-Cancer Agents: an Update," The Korean Journal of Parasitology, vol. 59, no. 3, pp. 189-225, 2021.
[56] R. Canete, A. Escobedo, P. Almirall, M. Gonzalez, K. Brito, and S. Cimerman, "Mebendazole in parasitic infections other than those caused by soil-transmitted helminths," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 103, no. 5, pp. 437-442, 2009.
[57] C.-A. Yang et al., "Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response," PLoS neglected tropical diseases, vol. 11, no. 9, p. e0005963, 2017.
[58] R. J. Blakemore, "Eco-taxonomic profile of an iconic vermicomposter-the'African Nightcrawler'earthworm, Eudrilus eugeniae (Kinberg, 1867)," African Invertebrates, vol. 56, no. 3, pp. 527-548, 2015.
[59] S. Tiwari, "Effects of organic manure and NPK fertilization on earthworm activity in an Oxisol," Biology and fertility of soils, vol. 16, no. 4, pp. 293-295, 1993.
[60] C. Edwards and J. Lofty, "Nitrogenous fertilizers and earthworm populations in agricultural soils," Soil Biology and Biochemistry, vol. 14, no. 5, pp. 515-521, 1982.
[61] H. Lalthanzara and S. Ramanujam, "Effect of fertilizer (NPK) on earthworm population in the agro-forestry system of Mizoram India," Science vision, vol. 10, no. 4, pp. 159-167, 2010.
[62] N. Shruthi, A. Biradar, and S. Muzammil, "Toxic effect of inorganic fertilizers to earthworms (Eudrilus eugeniae)," J. Entomol. Zool. Stud, vol. 5, pp. 1135-1137, 2017.
[63] J. Howell, J. Luginbuhl, M. Grice, K. Anderson, P. Arasu, and J. Flowers, "Control of gastrointestinal parasite larvae of ruminant using nitrogen fertilizer, limestone and sodium hypochlorite solutions," Small Ruminant Research, vol. 32, no. 3, pp. 197-204, 1999.
[64] J. L. Round and S. K. Mazmanian, "The gut microbiota shapes intestinal immune responses during health and disease," Nature reviews immunology, vol. 9, no. 5, pp. 313-323, 2009.
[65] C. M. Theriot et al., "Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection," Nature communications, vol. 5, no. 1, pp. 1-10, 2014.
[66] O. Pabst and E. Slack, "IgA and the intestinal microbiota: the importance of being specific," Mucosal immunology, vol. 13, no. 1, pp. 12-21, 2020.
[67] S. A. Knutie, C. L. Wilkinson, Q. C. Wu, C. N. Ortega, and J. R. Rohr, "Host resistance and tolerance of parasitic gut worms depend on resource availability," Oecologia, vol. 183, no. 4, pp. 1031-1040, 2017.
電子全文 電子全文(網際網路公開日期:20260819)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top