|
參考文獻 [1] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6 %, Status Solidi RRL, 10 (2016) 583-586. [2] T.A.M. Fiducia, B.G. Mendis, K. Li, C.R.M. Grovenor, A.H. Munshi, K. Barth, W.S. Sampath, L.D. Wright, A. Abbas, J.W. Bowers, J.M. Walls, Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells, Nat. Energy, 4 (2019) 504–511. [3] M. Jošt, E. Köhnen, A.B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, S. Albrecht, Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield, Energy Environ. Sci. 11 (2018) 3511-3523. [4] A. Polizzotti, I. L. Repins, R. Noufi, S.H.Wei, D. B. Mitzi, The state and future prospects of kesterite photovoltaics, Energy Environ. Sci. 6 (2013) 3171. [5] R. Tang, Z.H. Zheng, Z.H. Su, X.J. Li, Y.D. Wei, X.H. Zhang, Y.Q. Fu, J.T. Luo, P. Fan, G.X. Liang, Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film, Nano Energy, 64 (2019) 103929. [6] A. Zakutayev, C.M. Caskey, A.N. Fioretti, D.S. Ginley, J. Vidal, V. Stevanovic, E. Tea, S. Lany, Defect tolerant semiconductors for solar energy conversion, J. Phys. Chem. Lett. 5 (2014) 1117-1125. [7] T. Minami, Y. Nishi, T. Miyata, High-efficiency Cu2O-Based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer, Appl. Phys. Express, 6 (2013) 044101. [8] V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R.E. Brandt, J.R. Poindexter, Y.S. Lee, L. Sun, A. Polizzotti, H.H. Park, R.G. Gordon, T. Buonassisi, 3.88% Efficient Tin sulfide solar cells using congruent thermal evaporation, Adv. Mater. 26 (2014) 7488-7492. [9] A. Sánchez-Juárez, A. Tiburcio-Silver, A. Ortiz, Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition, Thin Solid Films, 452 (2005) 452-456. [10] L. Lahourcade, N.C. Coronel, K.T. Delaney, S.K. Shukla, N.A. Spaldin, H.A. Atwater, Structural and optoelectronic characterization of rf sputtered ZnSnN2, Adv. Mater. 25 (2013) 2562-2566. [11] F.W.D.S. Lucas, A. Zakutayev, Research Update: Emerging chalcostibite absorbers for thin-film solar cells, APL Materials, 6 (2018) 084501. [12] Z.Q Li, X.Y. Liang, G. Li, H.X. Liu, H.X. Zhang, J.X. Guo, J.W. Chen, K. Shen, X.Y. San, W. Yu, R.E.I. Schropp, Y.H. Mai, 9.2 %-Efficient core-shell structured antimony selenide nanorod array solar cells, Nature Commun. 10 (2019) 125. [13] C.N. Savory, D.O. Scanlon, The complex defect chemistry of antimony selenide, J. Mater. Chem A. 7 (2019) 10739-10744. [14] M.Y. Leng , M. Luo , C. Chen , S.K. Qin , J. Chen , J. Zhong , J. Tang, Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells, Appl. Phys. Lett. 105 (2014), 083905. [15] A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao, A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells, Solar Energy, 201 (2020) 227-246. [16] G.X. Liang, X.H. Zhang, H.L. Ma, J.G. Hu, B. Fan, Z.K. Luo, Z.H. Zheng, J.T. Luo, P. Fan, Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition, Sol. Energy Mater. Sol. Cells, 160 (2017) 257-262. [17] W.Y. Wu, Y. Xu, X.W. Ong, S. Bhatnagar, Y. Chan, Thermochromism from ultrathin colloidal Sb2Se3 nanowires undergoing reversible growth and dissolution in an amine-thiol mixture, Adv. Mater. 31 (2019) 1806164. [18] K. Rajpure, C.H. Bhosale, Preparation and characterization of spray deposited photoactive Sb2S3 and Sb2Se3 thin films using aqueous and non-aqueous media, Mater. Chem. Phys. 73 (2002) 6-12. [19] S. Messina, M.T.S. Nair, P.K.Nair, Antimony selenide absorber thin films in all-chemically deposited solar cells, J. Electrochem. Soc. 156 (2009) 327-332. [20] Y. Zhou, M.Y. Leng, Z. Xia, J. Zhong, H.B. Song, X.S. Liu, B. Yang, J.P. Zhang, J. Chen, K.H. Zhou, J.B. Han, Y.B. Cheng, J.Tang, Solution-processed antimony selenide heterojunction solar cells, Adv. Energy Mater. 4 (2014) 1301846. [21] M. Luo, M.Y. Leng, X.S. Liu, J. Chen, C. Chen, S.K. Qin, J. Tang, Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells, Appl. Phys. Lett. 104 (2014) 173904. [22] X.X. Wen, C. Chen, S.C. Lu, K.H. Li, R. Kondrotas, Y. Zhao, W.H. Chen, L. Gao, C. Wang, J. Zhang, G.D. Niu, J.Tang, Vapor transport deposition of antimony selenide thin film solar cells with 7.6 % efficiency, Nature Commun. 9 (2018) 2179. [23] Y.C. Choi, Y.H. Lee, S.H. Im, J.H. Noh, T.N. Mandal, W.S. Yang, S.I. Seok, Efficient inorganic-organic heterojunction solar cells employing Sb2(Sx/Se1-x)3 graded-composition sensitizers, Adv. Energy Mater. 4 (2014) 1301680. [24] Y.C. Choi, D.U. Lee, J.H. Noh, E.K. Kim, S.I. Seok, Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy, Adv. Funct. Mater. 24 (2014) 3587-3592. [25] X.S. Liu, Y.J. Qiao, Y. Liu, J.L. Liu, E.G. Jia, S.F. Chang, X.F. Shen, S. Li, K. Cheng, Enhanced open circuit voltage of Sb2Se3/CdS solar cells by annealing Se-rich amorphous Sb2Se3 films prepared via sputtering process, Sol. Energy, 195 (2020) 697-702. [26] X.M. Wang, R.F. Tang, Y.W. Yin, H.X. Ju, S. Li, C.F. Zhu, T. Chen, Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells, Sol. Energy Mater. Sol. Cells, 189 (2019) 5-10. [27] R. Caracas, X. Gonze, First-principles study of the electronic properties of A2B3 minerals, with A=Bi,Sb and B=S,Se, Phys. Chem. Minerals, 32 (2005) 295-300. [28] N.W. Tideswell, F.H. Kruse, J.D. McCullough, The crystal structure of antimony selenide, Sb2Se3, Acta Crystallogr A 10 (1957) 99-102. [29] M.R. Filip, C.E. Patrick, F. Giustino, GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite, Phys. Rev. B, 87 (2013) 205125. [30] Y.Q. Lai, Z.W. Chen, C. Han, L.X. Jiang, F.Y. Liu, J. Li, Y.X. Liu, Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment, Appl. Surf. Sci. 261 (2012) 510-514. [31] Y.Q. Lai, C. Han, X.J. Lv, J. Yang, F.Y. Liu, J. Li, Y.X. Liu, Electrodeposition of antimony selenide thin films from aqueous acid solutions, J. Electroanal. Chem. 671 (2012) 73-79. [32] H.J. Wu, P.C. Lee, F.Y. Chiu, S.W. Chen, Y.Y. Chen, Self-assisted nucleation and growth of [010]-oriented Sb2Se3 whiskers: the crystal structure and thermoelectric properties, J. Mater. Chem. C, 3 (2015) 10488-10493. [33] J. Li, B. Wang, F.Y. Liu, J. Yang, J.Y. Li, J. Liu, M. Jia, Y.Q. Lai, Y.X. Liu, Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition, Electrochim. Acta, 56 (2011) 8597-8602. [34] F.I. Mustafa, S.K. Gupta, N. Goyal, S.K.Tripathi, Non‐Ideal p‐n junction Diode of SbxSe1−x (x = 0.4, 0.5, 0.6, 0.7) Thin Films, AIP Conference Proceeding, 75–76. [35] X.S. Liu, J. Chen, M. Luo, M.Y. Leng, Z. Xia, Y. Zhou, S.K. Qin, D.J. Xue, L. Lv, H. Huang, D.M. Niu, J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells, ACS Appl. Mater. Interfaces, 6 (2014) 10687–10695. [36] H.L. Caswell, G. Hass, Physics of thin films, Academic Press, 1 (1963) 343. [37] G. Ghosh, The Sb-Se (antimony-selenium) system, Journal of Phase Equilibria, 14 (1993) 753–763. [38] G. Ghosh, H.L. Lukas, L. Delaey, A Thermodynamic assessment of the Sb-Se system, J. Mater. Res. 80 (1989) 663-668. [39] Z.Q. Li, X. Chen, H.B. Zhu, J.W. Chen, Y.T. Guo, C. Zhang, W. Zhang, X.N. Niu, Y.H. Mai, Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization, Sol. Energy Mater. Sol. Cells, 161 (2017) 190-196. [40] X.S. Liu, J. Chen, M. Luo, M.Y. Leng, Z. Xia, Y. Zhou, S.K. Qin, D.J. Xue, L. Lv, H. Huang, D.M. Niu, J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS Solar Cells, ACS Appl. Mater. Interfaces, 6 (2014) 10687–10695. [41] D.B. Li, X.X. Yin, C.R. Grice, L. Guan, Z.N. Song, C.L. Wang, C. Chen, K.H. Li, A.J. Cimaroli, R.A. Awni, D.W. Zhao, H.S. Song, W.H. Tang, Y.F. Yan, J. Tang, Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation, Nano Energy, 49 (2018) 346-353. [42] G.X. Liang, Z.H. Zheng, P. Fan, J.T. Luo, J.G. Hu, X.H. Zhang, H.L. Ma, B. Fan, Z.K. Luo, D.P. Zhang, Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method, Sol. Energy Mater. Sol. Cells, 174 (2018) 263-270. [43] J.M. Kim, W.S. Yang, Y.J. Oh, H.S. Lee, S.H. Lee, H.J. Shin, J.S. Kim, J.H. Moon, Self-oriented Sb2Se3 nanoneedle photocathodes for water splitting obtained by a simple spin-coating method, J. Mater. Chem. A, 5 (2017) 2180. [44] C.C. Yuan, L.J. Zhang, W.F. Liu, C.F. Zhu, Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application, Sol. Energy, 137 (2016) 256-260. [45] X.M. Wang, R.F. Tang, Y.W. Yin, H.X. Ju, S. Li, C.F. Zhu, T. Chen, Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells, Sol. Energy Mater. Sol. Cells, 189 (2019) 5-10. [46] N.N. Syrbu, V.V. Zalamai, I.G. Stamov, S.I. Beril, Excitonic and electronic transitions in Me–Sb2Se3 structures, Beilstein J. Nanotechnol. 11 (2020) 1045–1053. [47] G.X. Liang, Y.D. Luo, S. Chen, R. Tang, Z.H. Zheng, X.J. Li, X.S. Liu, Y.K. Li, X.Y. Chen, Z.H. Su, X.H. Zhang, H.L. Ma, P.Fan, Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV, Nano Energy, 73 (2020) 104806. [48] Z.Q. Li, H.B. Zhu, Y.T. Guo, X.N. Niu, X. Chen, C. Zhang, W. Zhang, X.Y. Liang, D. Zhou, J.W. Chen, Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3, Appl. Phys. Express, 9 (2016) 052302. [49] M.L. Huang, P. Xu, D. Han, J. Tang, S.Y. Chen, Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3, ACS Appl. Mater. Interfaces, 11 (2019) 15564-15572. [50] L. Zhang, K.P. Wu, J. Yu, Y.Y. Yu, Y.W. Wei, Sb2Se3 films fabricated by thermal evaporation and post annealing, Vacuum, 183 (2021)109840. [51] S. Yao, J.S. Wang, J. Cheng, L.J Fu, F. Xie, Y.S. Zhang, L. Li, Improved performance of thermally evaporated Sb2Se3 thin-film solar cells via substrate-cooling-speed control and hydrogen-sulfide treatment, ACS Appl. Mater. Interfaces, 12 (2020) 24112–24124. [52] T.T. Wu, F. Hu, J.H. Huang, C.H. Chang, C.C. Lai, Y.T. Yen, H.Y. Huang, H.F. Hong, Z.M. Wang, C.H. Shen, J.M. Shieh, Y.L. Chueh, Improved efficiency of a large-area Cu(In,Ga)Se2 solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process, ACS Appl. Mater. Interfaces, 6 (2014) 4842–4849. [53] A. Shongalova, M.R. Correia, B. Vermang, J.M.V. Cunha, P.M.P. Salomé, P.A. Fernandes, On the identification of Sb2Se3 using Raman scattering, MRS Communications, 8 (2018) 865–870. [54] H. Shiel, O.S. Hutter, L.J. Phillips, M.A. Turkestani, V.R. Dhanak, T.D. Veal1, K.Durose, J.D. Major, Chemical etching of Sb2Se3 solar cells: surface chemistry and back contact behavior, J. Phys. Energy, 1 (2019) 045001.
|