跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:費聿愷
研究生(外文):Fei,Yu-Kai
論文名稱:Sb2O3及硒空缺對Sb2Se3薄膜太陽電池影響
論文名稱(外文):Effect of Sb2O3 and selenium vacancy on Sb2Se3 thin films solar cells
指導教授:林義成林義成引用關係
指導教授(外文):Lin,Yi-Cheng
口試委員:林義成許瑞允黃俊杰
口試委員(外文):Lin, Yi-ChengXu, Rui-YunHuang, Jun-Jie
口試日期:2021-07-30
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:60
中文關鍵詞:Sb2Se3薄膜太陽電池H2硒化處理硒空缺Sb2O3濺鍍
外文關鍵詞:
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
Sb2Se3是近年來除了鈣鈦礦外熱門的薄膜太陽電池材料之一,但在Sb2Se3薄膜製備的過程中產生之Sb2O3或硒空缺(VSe)均可能會對薄膜特性造成不良影響,本研究目的在研究Sb2Se3薄膜製備的過程中之Sb2O3或VSe及其對Sb2Se3薄膜特性影響,並且利用H2硒化處理來減少Sb2O3形成或VSe以提升太陽電池的效能。實驗中我們使用DC及RF兩個不同濺鍍速率的製程及含H2硒化處理参數。實驗結果發現,RF試片較DC試片在硒化後Sb2Se3薄膜表層發現會有較多的氧含量及Sb2O3,霍爾分析發現在硒化後RF試片Sb2Se3吸收層半導體特性會由原先之p-type 轉為n-type。元件效率量測結果發現,n-type之RF試片相較於p-type之DC試片其JSC及元件效率均會明顯下降。含H2硒化處理可有效降低Sb2Se3薄膜中Sb2O3或VSe可提高其JSC及元件效率,在DC試片中可使Sb2Se3薄膜太陽電池效率從3.73 %(無H2)提升至4.53 %(含H2)。縮短製程時間或實施含H2硒化處理均可減少Sb2Se3吸收層中Sb2O3形成或VSe濃度,減少載子複合機率,進而提升太陽電池的效能。關鍵字:Sb2Se3薄膜太陽電池、H2硒化處理、硒空缺、Sb2O3、濺鍍
Sb2Se3 is one of the most popular material in thin film solar cell in addition to perovskites in recent years. However, Sb2O3 or selenium vacancies (VSe) generated during the preparation of Sb2Se3 films may have adverse effects on the film properties. The purpose of this research is studying Sb2O3 or VSe in the process of preparing the Sb2Se3 film. And the characteristics of the Sb2Se3 film,. Useing H2 on selenization treatment to reduce the formation of Sb2O3 or VSe, to improve the efficiency of the solar cell. In the experiment. We used two different power supply DC and RF on the sputtering, and selenization treatment parameters containing H2. The results found that the RF sample has more oxygen content and Sb2O3 than the DC sample on the Sb2Se3 film surface after selenization. Hall effect analysis found that RF sample semiconductor characteristics of the Sb2Se3 absorber layer will change to n-type after selenization. Component efficiency measurement results show that n-type RF sample has significantly lower JSC and efficiency than p-type DC sample. Selenization with H2 can effectively reduce Sb2O3 or VSe in the Sb2Se3 film to increase JSC and efficiency. In the DC sample, the efficiency of Sb2Se3 thin film solar cells can be increased 3.73 % (without H2) to 4.53 % (with H2). The process time reduction or containing selenization treatment with H2 can reduce the formation of Sb2O3 or VSe in the Sb2Se3 absorber layer that reduce the probability of carrier recombination, and thereby improve the efficiency of the solar cell.
目錄
摘要 I
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
第1章 緒論 1
1-1 研究目的 1
1-2 研究貢獻 2
第2章 理論分析與文獻回顧 3
2-1 Sb2Se3太陽電池材料結構與特性 3
2-1-1 薄膜太陽電池(Thin film solar cell) 3
2-1-2 Sb2Se3元件構造 5
2-1-3 Sb2Se3吸收層特性 6
2-2 Sb2Se3薄膜太陽電池及製備方法 10
2-3 Sb2Se3缺陷 14
2-4 H2處理應用於薄膜化合物太陽電池 16
第3章 研究方法 20
3-1 製備Sb2Se3元件 20
3-1-1 實驗材料與基板準備 23
3-1-2 Mo電極製備 24
3-1-3 Sb金屬前驅層製備 25
3-1-4 爐管硒化參數與步驟 26
3-1-5 硫化鎘(CdS)層製備 27
3-1-6 i-ZnO/ITO 窗口層製備 27
3-1-7 Al電極製備 28
3-2 Sb2Se3薄膜及元件特性之分析 29
3-2-1 熱場發射式掃描電子顯微鏡(FE-SEM、EDS) 29
3-2-2 X光繞射儀(XRD) 30
3-2-3 二次離子質譜儀 (SIMS) 31
3-2-4 感應耦合電漿質譜分析儀 (ICP-MS) 32
3-2-5 霍爾量測儀電性量測 (Hall effect analyzer) 33
3-2-6 表面化學分析(ESCA) 34
3-2-7 太陽光源模擬器 35
3-2-8 元件效率量測面積 36
第4章 結果與討論 37
4-1 Sb2Se3薄膜成分分析及形貌 37
4-2 Sb2Se3薄膜結構的分析 41
4-3 Sb2Se3薄膜光電性質影響 46
4-4 Sb2Se3元件效率比較 49
第5章 結論與未來研究 51
5-1 結論 51
5-2 未來研究 52
參考文獻 53
參考文獻
[1] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6 %, Status Solidi RRL, 10 (2016) 583-586.
[2] T.A.M. Fiducia, B.G. Mendis, K. Li, C.R.M. Grovenor, A.H. Munshi, K. Barth, W.S. Sampath, L.D. Wright, A. Abbas, J.W. Bowers, J.M. Walls, Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells, Nat. Energy, 4 (2019) 504–511.
[3] M. Jošt, E. Köhnen, A.B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, S. Albrecht, Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield, Energy Environ. Sci. 11 (2018) 3511-3523.
[4] A. Polizzotti, I. L. Repins, R. Noufi, S.H.Wei, D. B. Mitzi, The state and future prospects of kesterite photovoltaics, Energy Environ. Sci. 6 (2013) 3171.
[5] R. Tang, Z.H. Zheng, Z.H. Su, X.J. Li, Y.D. Wei, X.H. Zhang, Y.Q. Fu, J.T. Luo, P. Fan, G.X. Liang, Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film, Nano Energy, 64 (2019) 103929.
[6] A. Zakutayev, C.M. Caskey, A.N. Fioretti, D.S. Ginley, J. Vidal, V. Stevanovic, E. Tea, S. Lany, Defect tolerant semiconductors for solar energy conversion, J. Phys. Chem. Lett. 5 (2014) 1117-1125.
[7] T. Minami, Y. Nishi, T. Miyata, High-efficiency Cu2O-Based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer, Appl. Phys. Express, 6 (2013) 044101.
[8] V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R.E. Brandt, J.R. Poindexter, Y.S. Lee, L. Sun, A. Polizzotti, H.H. Park, R.G. Gordon, T. Buonassisi, 3.88% Efficient Tin sulfide solar cells using congruent thermal evaporation, Adv. Mater. 26 (2014) 7488-7492.
[9] A. Sánchez-Juárez, A. Tiburcio-Silver, A. Ortiz, Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition, Thin Solid Films, 452 (2005) 452-456.
[10] L. Lahourcade, N.C. Coronel, K.T. Delaney, S.K. Shukla, N.A. Spaldin, H.A. Atwater, Structural and optoelectronic characterization of rf sputtered ZnSnN2, Adv. Mater. 25 (2013) 2562-2566.
[11] F.W.D.S. Lucas, A. Zakutayev, Research Update: Emerging chalcostibite absorbers for thin-film solar cells, APL Materials, 6 (2018) 084501.
[12] Z.Q Li, X.Y. Liang, G. Li, H.X. Liu, H.X. Zhang, J.X. Guo, J.W. Chen, K. Shen, X.Y. San, W. Yu, R.E.I. Schropp, Y.H. Mai, 9.2 %-Efficient core-shell structured antimony selenide nanorod array solar cells, Nature Commun. 10 (2019) 125.
[13] C.N. Savory, D.O. Scanlon, The complex defect chemistry of antimony selenide, J. Mater. Chem A. 7 (2019) 10739-10744.
[14] M.Y. Leng , M. Luo , C. Chen , S.K. Qin , J. Chen , J. Zhong , J. Tang, Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells, Appl. Phys. Lett. 105 (2014), 083905.
[15] A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao, A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells, Solar Energy, 201 (2020) 227-246.
[16] G.X. Liang, X.H. Zhang, H.L. Ma, J.G. Hu, B. Fan, Z.K. Luo, Z.H. Zheng, J.T. Luo, P. Fan, Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition, Sol. Energy Mater. Sol. Cells, 160 (2017) 257-262.
[17] W.Y. Wu, Y. Xu, X.W. Ong, S. Bhatnagar, Y. Chan, Thermochromism from ultrathin colloidal Sb2Se3 nanowires undergoing reversible growth and dissolution in an amine-thiol mixture, Adv. Mater. 31 (2019) 1806164.
[18] K. Rajpure, C.H. Bhosale, Preparation and characterization of spray deposited photoactive Sb2S3 and Sb2Se3 thin films using aqueous and non-aqueous media, Mater. Chem. Phys. 73 (2002) 6-12.
[19] S. Messina, M.T.S. Nair, P.K.Nair, Antimony selenide absorber thin films in all-chemically deposited solar cells, J. Electrochem. Soc. 156 (2009) 327-332.
[20] Y. Zhou, M.Y. Leng, Z. Xia, J. Zhong, H.B. Song, X.S. Liu, B. Yang, J.P. Zhang, J. Chen, K.H. Zhou, J.B. Han, Y.B. Cheng, J.Tang, Solution-processed antimony selenide heterojunction solar cells, Adv. Energy Mater. 4 (2014) 1301846.
[21] M. Luo, M.Y. Leng, X.S. Liu, J. Chen, C. Chen, S.K. Qin, J. Tang, Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells, Appl. Phys. Lett. 104 (2014) 173904.
[22] X.X. Wen, C. Chen, S.C. Lu, K.H. Li, R. Kondrotas, Y. Zhao, W.H. Chen, L. Gao, C. Wang, J. Zhang, G.D. Niu, J.Tang, Vapor transport deposition of antimony selenide thin film solar cells with 7.6 % efficiency, Nature Commun. 9 (2018) 2179.
[23] Y.C. Choi, Y.H. Lee, S.H. Im, J.H. Noh, T.N. Mandal, W.S. Yang, S.I. Seok, Efficient inorganic-organic heterojunction solar cells employing Sb2(Sx/Se1-x)3 graded-composition sensitizers, Adv. Energy Mater. 4 (2014) 1301680.
[24] Y.C. Choi, D.U. Lee, J.H. Noh, E.K. Kim, S.I. Seok, Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy, Adv. Funct. Mater. 24 (2014) 3587-3592.
[25] X.S. Liu, Y.J. Qiao, Y. Liu, J.L. Liu, E.G. Jia, S.F. Chang, X.F. Shen, S. Li, K. Cheng, Enhanced open circuit voltage of Sb2Se3/CdS solar cells by annealing Se-rich amorphous Sb2Se3 films prepared via sputtering process, Sol. Energy, 195 (2020) 697-702.
[26] X.M. Wang, R.F. Tang, Y.W. Yin, H.X. Ju, S. Li, C.F. Zhu, T. Chen, Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells, Sol. Energy Mater. Sol. Cells, 189 (2019) 5-10.
[27] R. Caracas, X. Gonze, First-principles study of the electronic properties of A2B3 minerals, with A=Bi,Sb and B=S,Se, Phys. Chem. Minerals, 32 (2005) 295-300.
[28] N.W. Tideswell, F.H. Kruse, J.D. McCullough, The crystal structure of antimony selenide, Sb2Se3, Acta Crystallogr A 10 (1957) 99-102.
[29] M.R. Filip, C.E. Patrick, F. Giustino, GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite, Phys. Rev. B, 87 (2013) 205125.
[30] Y.Q. Lai, Z.W. Chen, C. Han, L.X. Jiang, F.Y. Liu, J. Li, Y.X. Liu, Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment, Appl. Surf. Sci. 261 (2012) 510-514.
[31] Y.Q. Lai, C. Han, X.J. Lv, J. Yang, F.Y. Liu, J. Li, Y.X. Liu, Electrodeposition of antimony selenide thin films from aqueous acid solutions, J. Electroanal. Chem. 671 (2012) 73-79.
[32] H.J. Wu, P.C. Lee, F.Y. Chiu, S.W. Chen, Y.Y. Chen, Self-assisted nucleation and growth of [010]-oriented Sb2Se3 whiskers: the crystal structure and thermoelectric properties, J. Mater. Chem. C, 3 (2015) 10488-10493.
[33] J. Li, B. Wang, F.Y. Liu, J. Yang, J.Y. Li, J. Liu, M. Jia, Y.Q. Lai, Y.X. Liu, Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition, Electrochim. Acta, 56 (2011) 8597-8602.
[34] F.I. Mustafa, S.K. Gupta, N. Goyal, S.K.Tripathi, Non‐Ideal p‐n junction Diode of SbxSe1−x (x = 0.4, 0.5, 0.6, 0.7) Thin Films, AIP Conference Proceeding, 75–76.
[35] X.S. Liu, J. Chen, M. Luo, M.Y. Leng, Z. Xia, Y. Zhou, S.K. Qin, D.J. Xue, L. Lv, H. Huang, D.M. Niu, J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells, ACS Appl. Mater. Interfaces, 6 (2014) 10687–10695.
[36] H.L. Caswell, G. Hass, Physics of thin films, Academic Press, 1 (1963) 343.
[37] G. Ghosh, The Sb-Se (antimony-selenium) system, Journal of Phase Equilibria, 14 (1993) 753–763.
[38] G. Ghosh, H.L. Lukas, L. Delaey, A Thermodynamic assessment of the Sb-Se system, J. Mater. Res. 80 (1989) 663-668.
[39] Z.Q. Li, X. Chen, H.B. Zhu, J.W. Chen, Y.T. Guo, C. Zhang, W. Zhang, X.N. Niu, Y.H. Mai, Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization, Sol. Energy Mater. Sol. Cells, 161 (2017) 190-196.
[40] X.S. Liu, J. Chen, M. Luo, M.Y. Leng, Z. Xia, Y. Zhou, S.K. Qin, D.J. Xue, L. Lv, H. Huang, D.M. Niu, J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS Solar Cells, ACS Appl. Mater. Interfaces, 6 (2014) 10687–10695.
[41] D.B. Li, X.X. Yin, C.R. Grice, L. Guan, Z.N. Song, C.L. Wang, C. Chen, K.H. Li, A.J. Cimaroli, R.A. Awni, D.W. Zhao, H.S. Song, W.H. Tang, Y.F. Yan, J. Tang, Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation, Nano Energy, 49 (2018) 346-353.
[42] G.X. Liang, Z.H. Zheng, P. Fan, J.T. Luo, J.G. Hu, X.H. Zhang, H.L. Ma, B. Fan, Z.K. Luo, D.P. Zhang, Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method, Sol. Energy Mater. Sol. Cells, 174 (2018) 263-270.
[43] J.M. Kim, W.S. Yang, Y.J. Oh, H.S. Lee, S.H. Lee, H.J. Shin, J.S. Kim, J.H. Moon, Self-oriented Sb2Se3 nanoneedle photocathodes for water splitting obtained by a simple spin-coating method, J. Mater. Chem. A, 5 (2017) 2180.
[44] C.C. Yuan, L.J. Zhang, W.F. Liu, C.F. Zhu, Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application, Sol. Energy, 137 (2016) 256-260.
[45] X.M. Wang, R.F. Tang, Y.W. Yin, H.X. Ju, S. Li, C.F. Zhu, T. Chen, Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells, Sol. Energy Mater. Sol. Cells, 189 (2019) 5-10.
[46] N.N. Syrbu, V.V. Zalamai, I.G. Stamov, S.I. Beril, Excitonic and electronic transitions in Me–Sb2Se3 structures, Beilstein J. Nanotechnol. 11 (2020) 1045–1053.
[47] G.X. Liang, Y.D. Luo, S. Chen, R. Tang, Z.H. Zheng, X.J. Li, X.S. Liu, Y.K. Li, X.Y. Chen, Z.H. Su, X.H. Zhang, H.L. Ma, P.Fan, Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV, Nano Energy, 73 (2020) 104806.
[48] Z.Q. Li, H.B. Zhu, Y.T. Guo, X.N. Niu, X. Chen, C. Zhang, W. Zhang, X.Y. Liang, D. Zhou, J.W. Chen, Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3, Appl. Phys. Express, 9 (2016) 052302.
[49] M.L. Huang, P. Xu, D. Han, J. Tang, S.Y. Chen, Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3, ACS Appl. Mater. Interfaces, 11 (2019) 15564-15572.
[50] L. Zhang, K.P. Wu, J. Yu, Y.Y. Yu, Y.W. Wei, Sb2Se3 films fabricated by thermal evaporation and post annealing, Vacuum, 183 (2021)109840.
[51] S. Yao, J.S. Wang, J. Cheng, L.J Fu, F. Xie, Y.S. Zhang, L. Li, Improved performance of thermally evaporated Sb2Se3 thin-film solar cells via substrate-cooling-speed control and hydrogen-sulfide treatment, ACS Appl. Mater. Interfaces, 12 (2020) 24112–24124.
[52] T.T. Wu, F. Hu, J.H. Huang, C.H. Chang, C.C. Lai, Y.T. Yen, H.Y. Huang, H.F. Hong, Z.M. Wang, C.H. Shen, J.M. Shieh, Y.L. Chueh, Improved efficiency of a large-area Cu(In,Ga)Se2 solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process, ACS Appl. Mater. Interfaces, 6 (2014) 4842–4849.
[53] A. Shongalova, M.R. Correia, B. Vermang, J.M.V. Cunha, P.M.P. Salomé, P.A. Fernandes, On the identification of Sb2Se3 using Raman scattering, MRS Communications, 8 (2018) 865–870.
[54] H. Shiel, O.S. Hutter, L.J. Phillips, M.A. Turkestani, V.R. Dhanak, T.D. Veal1, K.Durose, J.D. Major, Chemical etching of Sb2Se3 solar cells: surface chemistry and back contact behavior, J. Phys. Energy, 1 (2019) 045001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top