跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏光宏
研究生(外文):Wei,Kuang-Hung
論文名稱:雙面開口圓盤共振器串聯陣列在水下異常聲波穿透現象之探討
論文名稱(外文):Manipulation of underwater extraordinary acoustic transmission using series connection of both-sides open disk resonator array
指導教授:蕭輔力李義隆李義隆引用關係
指導教授(外文):Hsiao, Fu-LiLee,Yi-Lung
口試委員:蘇威佳黃家逸林慶煌李義隆吳憲昌蕭輔力
口試委員(外文):Su,Wei-ChiaHuang ,Chia-YiLin,Ching-HuangLee,Yi-LungWu,Cen-ShawnHsiao, Fu-Li
口試日期:2020-12-28
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:52
中文關鍵詞:亥姆霍茲共振器聲音超穎材料異常聲波穿透彈簧質量模型
外文關鍵詞:Helmholtz resonatoracoustic metamaterialextraordinary acoustic transmissionspring-mass model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討雙面開口圓盤共振器串聯陣列在水下異常聲波穿透現象;利用具有相同晶格常數但孔洞直徑大小不同的鋼板堆疊形成BSODR結構,利用多個鋼板堆疊形成多個BSODR的串聯結構。使用有限元素分析法模擬每種結構在水以及溶液中的聲波穿透現象。透過串聯多個BSODR結構可以增加最高階的EAT現象的品質因子。在
研究中可以發現到真實邊界條件與理想邊界條件所模擬結果可以觀察到EAT頻譜的線形具有明顯的差異。同時使用耦合彈簧質量模型驗證也得到相同的結論。
本研究中進行水中的單層,兩層,三層和四層BSODR的聲波穿透量測。結果顯示每種結構最高階的EAT頻率都與數值模擬值一致,同時數值模擬和實驗結果均可以觀察到隨著BSODR層數的增加,最高階EAT的FWHM大幅降低。同時利用數值模擬證明單層,兩層,三層和四層BSODR結構中最高階EAT頻率對1-丙醇溶液莫耳濃度變化的靈敏度。結果顯示由於FWHM的降低,可以讓FoM顯著提高了八倍。
本論文證實,利用串聯的BSODR結構可以提高EAT現象的高質量因子,同時也證明了鋼板的振動在EAT現象中占有重要的作用,考慮鋼板的振動和能量耗散對彈簧質量模型進行修正,可以用來精準的預測EAT現象發生的頻率。BSODR結構未來可以應用於聲學濾波器和液體偵測器。
This thesis demonstrated the phenomenon of extraordinary acoustic transmission we use in the double-sided open disk resonator series array in underwater; the use of steel plates with the same lattice constant but different hole diameters to form a BSODR structure. and series of multiple BSODRs structure, The finite element analysis method is used to simulate the sound wave transmission of each structure in water and solution. The quality factor of the highest-order EAT peak can be increased by connecting multiple BSODR structures in series.
In the research, the simulation results shows that the real-solid boundary conditions and the hard-solid boundary conditions exhibit the obvious difference in the line shape of the EAT spectrum. The physic insight was obtained by the coupled spring mass model verification.
In this study, single-layer, two-layer, three-layer and four-layer BSODR acoustic transmission measurements were carried out in water. The results show that the highest-order EAT frequency of each structure is consistent with the numerical simulation. Both numerical simulation and experimental results show that as the number of BSODR layers increases, the FWHM of the highest-order EAT decreases significantly. Numerical simulations show that the highest-order EAT frequency in the single-layer, two-layer, three-layer and four-layer BSODR structure are sensitive to the change of the molar concentration of 1-propanol solution. The results show that the FoM can be significantly increased by eight times, thanks for the reduction of FWHM.
This study confirms that the use of a series-connected BSODR structure can improve the high quality factor of the EAT phenomenon. It also proves that the vibration of the steel plate plays an important role in the EAT phenomenon. The spring-mass model can be corrected by considering the vibration and energy dissipation of the steel plate. It is used to accurately predict the frequency of EAT phenomenon. The BSODR structure can be applied to acoustic filters and liquid detectors, in the future.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
第一節 聲波超穎材料 1
第二節 聲波異常穿透現象以及應用 2
第三節 研究動機 6
第二章 數值模擬 7
第一節 有限元素分析法 7
第二節 彈簧質量模型 8
第三節 實驗量測 10
第四節 元件靈敏度 12
第三章 研究結果 13
第一節 元件設計 13
第二節 模擬設定 14
第三節 單層BSODR 15
第四節 多層BSODR 25
第五節 實驗量測和偵測特性模擬 39
第四章 結論與未來展望 47
參考文獻 49

參考文獻
[1] ○ N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “Ultrasonic metamaterials with negative modulus,” Nat. Mater. 5, 452–456 (2006).
[2] V. M. Garcia-Chocano, R. Gracia-Salgado, D. Torrent, F. Cervera, and J. Sanchez-Dehesa, “Quasi-two-dimensional acoustic metamaterial with negative bulk modulus,” Phys. Rev. B 85, 184102 (2012).
[3] N. Sui, X. Yan, T.-Y. Huang, J. Xu, F.-G. Yuan, and Y. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106, 171905 (2015).
[4] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289, 1734–1736 (2000).
[5] Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101, 204301 (2008).
[6] Y. Li, B. Liang, Z.-m. Gu, X.-y. Zou, and J.-c. Cheng, “Unidirectional acoustic transmission through a prism with near-zero refractive index,” Appl. Phys. Lett. 103, 053505 (2013).
[7] C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4, 041033 (2014).
[8] G. Ma, M. Yang, S. Xiao, Z. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13, 873–878 (2014).
[9] U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866 (1961).
[10] N. Jiménez, W. Huang, V. Romero-García, V. Pagneux, and J.-P. Groby, “Ultrathin metamaterial for perfect and quasi-omnidirectional sound absorption,” Appl. Phys. Lett. 109, 121902 (2016).
[11] F. Langfeldt, H. Kemsies, W. Gleine, and O. von Estorff, “Perforated membranetype acoustic metamaterials,” Phys. Lett. A 381, 1457–1462 (2017).
[12] T. Yamamoto, “Acoustic metamaterial plate embedded with Helmholtz resonators for extraordinary sound transmission loss,” J. Appl. Phys. 123, 215110 (2018).
[13] J. Zhang, Y. Cheng, and X. Liu, “Extraordinary acoustic transmission at low frequency by a tunable acoustic impedance metasurface based on coupled Mie resonators,” Appl. Phys. Lett. 110, 233502 (2017).
[14] S. Tong, C. Ren, and W. Tang, “Broadband extraordinary acoustic transmission via hornlike metamaterials,” Appl. Phys. Express 11, 107302 (2018).
[15] B. Y. Liu, B. Ren, J. J. Zhao, X. D. Xu, Y. X. Feng, W. Y. Zhao, and Y. Y. Jiang,“Experimental realization of all-angle negative refraction in acoustic gradient metasurface,” Appl. Phys. Lett. 111, 221602 (2017).
[16] M. Molerón, M. Serra-Garcia, and C. Daraio, “Acoustic Fresnel lenses with extraordinary transmission,” Appl. Phys. Lett. 105, 114109 (2014).
[17] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[18] J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[19] A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: Broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[20] G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107, 163902 (2011).
[21] B. Hou, J. Mei, M. Z. Ke, W. Wen, Z. Y. Liu, J. Shi, and P. Sheng, “Tuning Fabry-Pérot resonances via diffraction evanescent waves,” Phys. Rev. B 76, 054303 (2007).
[22] M. H. Lu, X. K. Liu, L. Feng, J. Li, C. P. Huang, and Y. F. Chen, “Extraordinary acoustic transmission through a 1D grating with very narrow apertures,” Phys. Rev. Lett. 99, 174301 (2007).
[23] J. Christensen, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of resonant acoustic transmission through subwavelength apertures,” Phys. Rev. Lett. 101, 014301 (2008).
[24] B. Hou, J. Mei, M. Ke, Z. Liu, J. Shi, and W. J. Wen, “Experimental determination for resonance-induced transmission of acoustic waves through subwavelength hole arrays,” J. Appl. Phys. 104, 014909 (2008).
[25] H. Estrada, P. Candelas, A. Uris, F. Belmar, F. J. G. de Abajo, and F. Meseguer, “Extraordinary sound screening in perforated plates,” Phys. Rev. Lett. 101, 084302 (2008).
[26] H. Estrada, F. J. G. de Abajo, P. Candelas, A. Uris, F. Belmar, and F. Meseguer, “Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays,” Phys. Rev. Lett. 102, 144301 (2009).
[27] R. Hao, C. Y. Qiu, Y. T. Ye, C. H. Li, H. Jia, M. Z. Ke, and Z. Y. Liu, “Transmission enhancement of acoustic waves through a thin hard plate embedded with elastic inclusions,” Appl. Phys. Lett. 101, 021910 (2012).
[28] Z. He, H. Jia, C. Qiu, S. Peng, X. Mei, F. Cai, P. Peng, M. Ke, and Z. Liu, “Acoustic transmission enhancement through a periodically structured stiff plate without any opening,” Phys. Rev. Lett. 105, 074301 (2010).
[29] L. Qi, G. Yu, X. Wang, G. Wang, and N. Wang, “Interference-induced angle independent acoustical transparency,” J. Appl. Phys. 116, 234506 (2014).
[30] Y. Li, B. Liang, X.-y. Zou, and J.-c. Cheng, “Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space,” Appl. Phys. Lett. 103, 063509 (2013).
[31] Z. Tao, T. Liu, and C. Zhang, “Acoustic extraordinary transmission manipulation based on proximity effects of heterojunctions,” Sci. Rep. 9, 1080 (2019).
[32] R. Lucklum, M. Zubtsov, and M. Ke, “Liquid sensor utilizing a regular phononic crystal with normal incidence of sound,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control 59, 463 (2012).
[33] M. Ke, M. Zubtsov, and R. Lucklum, “Sub-wavelength phononic crystal liquid sensor,” J. Appl. Phys. 110, 026101 (2011).
[34] S. Amoudache, R. Moiseyenko, Y. Pennec, B. D. Rouhani, A. Khater, R. Lucklum, and R. Tigrine, “Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate,” J. Appl. Phys. 119, 114502 (2016).
[35] Y.-L. Lee, M.-S. Chang, K.-H. Wei, T.-K. Li, C.-Y. Ni, C.-C. Chiu, Y.-P. Tsai, Y.-M. Weng, and F.-L. Hsiao, “Extraordinary acoustic transmission based on a both-sides-open disk resonator array,” AIP Adv. 9, 125102 (2019).
[36] R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations", (1943).
[37] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, "Fundamentals of Acoustics, John Wiley & Sons", Inc, New York (2000).
[38] J.-H. Lu, C.-C. Kuo, F.-L. Hsiao, and C.-C. Chen, "Acoustic filter based on Helmholtz resonator array", Applied Physics Letters 101, 051907 (2012).
[39] S. Wang, S. L. Huang, A. Velichko, P. Wilcox, and W. Zhao, “A multiobjective structural optimization of an omnidirectional electromagnetic acoustic transducer,” Ultrasonics 81, 23–31 (2017).
[40] M. Oudich, Y. Li, B. M. Assouar, and Z. Hou, “A sonic band gap based on the locally resonant phononic plates with stubs,” New J. Phys. 12, 083049 (2010).
[41] J.-C. Hsu, “Local resonances-induced low-frequency band gaps in twodimensional phononic crystal slabs with periodic stepped resonators,” J. Phys. D: Appl. Phys. 44, 055401 (2011).
[42] X. Wu, L. Sun, S. Zuo, P. Liu, and H. Huang, “Vibration reduction of car body based on 2D dual-base locally resonant phononic crystal,” Appl. Acoust. 151, 1–9 (2019).
[43] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[44] R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928 (1935).
[45] J.-H. Lu, D.-P. Cai, C.-Y. Hsieh, F.-L. Hsiao, and C.-C. Chen, “Liquid sensor composed of one-dimensional sonic Helmholtz resonator array,” Appl. Phys. A 120, 509–517 (2015).
[46] Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[47] R. Lucklum and J. Li, “Phononic crystals for liquid sensor applications,” Meas. Sci. Technol. 20, 124014 (2009).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top