跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭楷錚
研究生(外文):Cheng,Kai-Cheng
論文名稱:利用液相沉積法及水熱法製備Co3O4-NiO/TiO2複合薄膜碳布電極於電容去離子元件之研究
論文名稱(外文):Study on Co3O4-NiO/TiO2 composite film on carbon cloth electrode by liquid phase deposition and hydrothermal process for capacitive deionization device
指導教授:王右武黃俊杰黃俊杰引用關係
指導教授(外文):Wang,Yu-WuHuang,Jung-Jie
口試委員:林義成楊素華陳兆南黃俊杰王右武
口試委員(外文):Lin,Yi-ChengYang,Su-HuaChen,Chao-nanHuang,Jung-JieWang,Yu-Wu
口試日期:2021-07-27
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:71
中文關鍵詞:液相沉積法水熱法碳布電容去離子
外文關鍵詞:LPDHydrothermal processCarbon ClothCDI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以碳布(Carbon cloth)作為電極,並以石墨片做為集電器。先以液相沉積法(LPD)升溫60℃利用0.2 M六氟鈦酸銨((NH4)2TiF6)以及不同濃度硼酸(H3BO3)覆蓋在碳布上製備TiO2/CC電極,再以不同濃度的六水硝酸鈷(Co(NO3)·6H2O)、六水硝酸鎳(Co(NO3)·6H2O)以及尿素(CON2H4)利用高壓反應釜升溫95℃持續時間6 hr合成出Co3O4/TiO2/CC薄膜電極,最後經由不同退火溫度評估結晶相以及電化學分析。
實驗結果顯示表示,使用0.3 M硼酸,搭配25 mM(Co(NO3)·6H2O)、50mM (Co(NO3)·6H2O)形成1:2/TiO2/CC結構碳布電極,比電容值可以到280.89 F/g。再以1:2/TiO2/CC結構碳布電極350℃在大氣中退火,比電容值可達到690.89 F/g,提升了59.3%具有優異的電化學性能。後續做脫鹽測試,實驗結果量測條件以間距5 mm、電壓1.2 V以及電解液濃度5 mM NaCl。利用最佳參數1:2/TiO2/CC退火溫度350℃脫鹽測試,電導度由639 µS下降至493 µS脫鹽效率為22.8%。最後做30次反覆吸脫附測試,實驗結果以純碳布以及最佳參數1:2/TiO2/CC退火350℃做對照組,脫鹽效率由5.1%提升至14.6%,提升了65.0%。
In this study, carbon cloth was used as the film electrode, and graphite sheet was used as the current collector. Firstly, the TiO2/CC electrode was prepared by covering the carbon cloth with 0.2 M Ammonium hexafluorotitanate ((NH4)2TiF6) and different concentrations of Boric acid (H3BO3) at a temperature of 60℃ by liquid phase deposition (LPD). Second, different concentrations of Cobalt nitrate hexahydrate (Co(NO3)·6H2O), Nickel nitrate hexahydrate (Co(NO3)·6H2O), and Diaminomethanal (CON2H4) were synthesized in an high pressure reactor at 95°C for 6 hr. The Co3O4/TiO2/CC thin film electrode was produced. Finally, the crystalline phase and electrochemical analysis were evaluated through different annealing temperatures.
The experimental results show that using 0.3 M boric acid and 25 mM (Co(NO3)·6H2O) 50 mM (Co(NO3)·6H2O) to form a 1:2/TiO2/CC structure carbon cloth electrode, the specific capacitance is as high as 280.89 F /g. Then with 1:2/TiO2/CC structure carbon cloth electrode annealing in the atmosphere at 350 ℃, the specific capacitance value can reach 690.89 F/g, which is an increase of 59.3% and has excellent electrochemical performance. The subsequent desalination test was performed, and the experimental results were measured under 5 mm spacing, 1.2 V voltage, and 5 mM NaCl electrolyte concentration. Using the best parameter 1:2/TiO2/CC annealing temperature of 350℃, the conductivity of desalination test decreased from 639µS to 493µS, and the desalination efficiency was 22.8%. Finally, we did 30 repeated adsorption and desorption tests. The experiment results used pure carbon cloth and the best parameter 1:2/TiO2/CC annealing at 350℃ as the control group. The desalination efficiency increased from 5.1% to 14.6%, an increase of 65.0%.
摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 諸論 1
第一節 研究背景 ….1
壹、傳統脫鹽淡化處理技術 2
貳、電容去離子技術原理 3
參、電容去離子流動方式 4
肆、電容去離子多孔碳材料介紹 5
第二節 研究動機 7
第二章 文獻回顧 9
第一節 不同孔徑微孔碳球應用於CDI影響 9
第二節 不同流動方向之CDI脫鹽影響 11
第三節 不同碳材料特性對於CDI性能影響 12
第三章 研究方法及實驗步驟 14
第一節 實驗步驟-合成方法 14
壹、LPD-TiO2製備TiO2/CC 14
貳、水熱法合成Co3O4-NiO製備Co3O4-NiO/TiO2/CC 15
參、電容去離子Flow-by治具設計 17
第二節 材料分析檢測 18
壹、表面形貌分析 18
貳、X-ray光電子能譜分析 19
參、拉曼光譜儀 19
肆、傅立葉轉換顯微紅外線光譜儀 20
第一節 薄膜特性分析 21
壹、四點碳針量測 21
貳、水接觸角測試 22
第四節 電化學分析 23
壹、循環伏安法 23
貳、定電流充放電 23
參、電化學阻抗譜 24
肆、Co3O4-NiO/TiO2/CC電化學分析檢測 25
第四章 結果與討論 26
第一節 LPD-TiO2反應過程 26
壹、不同濃度H3BO4製備TiO2薄膜之沉積速率 26
貳、不同濃度硼酸製備TiO2/CC電極電化學測試 29
參、0.3 M硼酸製備不同厚度TiO2/CC電極水接觸角測試 31
肆、0.3 M 硼酸製備不同厚度TiO2/CC電極電化學測試 33
第二節 TiO2/CC利用水熱製備成Co3O4-NiO 35
壹、利用不同比例合成Co3O4-NiO 36
貳、不同比例Co3O4-NiO電化學測試 36
參、不同比例Co3O4-NiO之SEM表面形貌 38
肆、不同比例Co3O4-NiO/TiO2/CC之拉曼光譜測試 40
伍、不同比例Co3O4-NiO之EDS元素分析 41
陸、不同比例Co3O4-NiO粉末之XRD晶相分析 42
柒、不同比例Co3O4-NiO/TiO2/CC之GCD測試 43
捌、不同電極結構電化學性能測試 45
玖、最佳參數RNi/Co=2.67/TiO2/CC不同掃描速率CV測試 47
第三節 Co3O4-NiO/TiO2/CC經由退火後變化 48
壹、最佳參數(RNi/Co=2.67/TiO2/CC)經過退火後電化學量測 48
貳、不同比例Co3O4-NiO經過退火後SEM表面形貌 50
參、RNi/Co=2.67之Co3O4-NiO不同比例Co3O4-NiO經過退火後EDS元素分析 51
肆、不同比例Co3O4-NiO經過不同退火溫度後拉曼光譜分析 52
伍、最佳參數Co3O4-NiO粉末經過不同退火溫度FTIR分析 53
陸、RNi/Co=2.67/TiO2/CC經過不同退火溫度GCD衰退測試 54
柒、RNi/Co=2.17/TiO2/CC退火溫度350℃不同掃描速率CV測試 55
第四節 脫鹽效率 57
壹、RNi/Co=2.17/TiO2/CC退火350℃不同間距脫鹽效率 57
貳、RNi/Co=2.17/TiO2/CC退火350℃不同濃度NaCl脫鹽效率 58
參、RNi/Co=2.17/TiO2/CC退火350℃不同電壓脫鹽效率 59
肆、不同結構電極反覆吸脫附試驗 60
第五章 結論 67
參考文獻 69
[1] E. Liu, L. Y. Lee, S. L. Ong, H. Y. Ng, “Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge – challenges and optimization”, Water Research, 183(2020)116059.
[2] D. Zhao, L. Y. Lee, S. L. Ong, P. Chowdhury, K. B. Siah, H. Y. Ng, “Electrodialysis Reversal for Industrial Reverse Osmosis Brine Treatment,” Separation and Purification Technology, Vol. 23 (2018).
[3] G. L. Andres, T. Mizugami, Y. Yoshihara, “Simulation of an electric behavior of the CDI system,” Desalination, 419 (2018) 211-218.
[4] P. Catrini, A. Cipollina, F. Giacalone, G. Micale, A. Piacentino, A. Tamburini, “Chapter 12 - Thermodynamic, Exergy, and Thermoeconomic analysis of Multiple Effect Distillation Processes,” Renewable Energy Powered Desalination Handbook, (2018) 445-489.
[5] S. H. Choi, “On the brine re-utilization of a multi-stage flashing (MSF) desalination plant,” Desalination, 398 (2016) 64-76.
[6] Y. Zou, C. Cai, C. Xiang, P. Huang, H. Chu, Z. She, F. Xu, L. Sun, H. B. Kraatz, “Simple synthesis of core-shell structure of Co–Co3O4 @ carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor” Ele. Acta, 261(2018)537-547.
[7] M.E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, V. Presser“Water desalination via capacitive deionization: what is it and what can we expect from it? ” Energy Environ. Sci., 8 (2015), pp. 2296-2319
[8] K. Elsaid, A. Elkamel, E. T. Sayed, T. Wilberforce, M.A. Abdelkareem, A. G. Olabi, “Bio-Based Carbon Materials for Capacitive Deionization CDI Desalination Processes,” Ref. Module in Materials Sci. and Materials Engineering”.,(2021)
[9] Y. J. Kim, J. H. Choi, “Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane,” Separation and Purification Technology, 71 (2010) 70-75.
[10] H. Li, T. Lu, L. Pan, Y. Zhanga, Z. Suna, “Electrosorption behavior of graphene in NaCl solutions,” Journal of Materials Chemistry, 37 (2009)6773-6779.
[11] H. H. Kyaw, M. T. Z. Myint, S. Al-Harthi, M. Al-Abri, “Removal of heavy metal ions by capacitive deionization: Effect of surface modification on ions adsorption”,Journal of Hazardous Materials , 385(2020)121565.
[12]H. Yin, S. Zhao, J. Wan, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao, Z. Tang, ” Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High-Performance Capacitive Deionization of Saline Water”Adv.Mater., 25 (2013), 6270-6276
[13] O. Parlak, Y. K. Mishra, A. Grigoriev, M. Mecklenburg, W. Luo, S. Keene, A. Salleo, K. Schulte, R. Ahuja, R. Adelung, A. P. F. Turner, A. Tiwari, “Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor”, NaNo Energy, 34(2017)570-577
[14] R. Kumar, S. S. Gupta, S. Katiyar, V. K. Raman, S. K. Varigala, T. Pradeep, A. Sharma, “Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization, ” Carbon, 99 (2016) 375-383.
[15] D. H. Kim, Y. E. Choi, J. S. Park, M.S. Kang, “Capacitive deionization employing pore-filled cation-exchange membranes for energy-efficient removal of multivalent cations”, Electrochimica Acta, 295(2019)164-172
[16] O. U. Haq, J. H. Choi, Y. S. Lee, “Anion-exchange membrane for membrane capacitive deionization prepared via pore-filling polymerization in a porous polyethylene supporting membrane,” Reactive and Functional Polymers, 132 (2018) 36-42.
[17] A. Tayel, A. R. Ramadan, O. A. E. Seoud, “ Titanium Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination, ”Journals Catalysts 8(2018)491.
[18]S. G. J. Liu, Q. Zhang, H. Wang, “3D porous ZnCo2O4/Co3O4 composite grown on carbon cloth as high-performance anode material for lithium-ion battery” Materials Letters, 267(2020)127549.
[19] X. Xu, Y. Liu, M. Wang, C. Zhu, T. Lu, R. Zhao, L. Pan, “Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization” , Electrochimica Acta 193 (2016) 88-95.
[20] K. Laxman, A. Husain, A. Nasser, M. A. Abri, J. Dutta, “Tailoring the pressure drop and fluid distribution of a capacitive deionization device” Desalination 449 (2019) 111-117.
[21] Z. Chen, H. Zhang, C. Wu, L. Luo, C. Wang, S. Huang, H. Xu, “A study of the effect of carbon characteristics on capacitive deionization (CDI) performance” , Desalination, 433(2018)68-74.
[22] K. M. N. Jha, “Hierarchically hybrid nanostructure of carbon nanoparticles decorated graphene sheets as an efficient electrode material for supercapacitors, aqueous Al-ion battery and capacitive deionization” ,Electrochimica Acta, 324(2019)34870.
[23] W. H. Tao, W. Xuan, Z. HuiMin, Q. Xie, “Enhanced photocatalytic degradation of tetracycline hydrochloride by molecular imprinted film modified TiO2 nanotubes”, Environmental Chemistry 57(2012)601-605.
[24] N. K. Yetim, N. Aslan, Akin Sarioglu, N. Sari, M. M. Koc, “Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers”, Journal of Materials Science 31(2020)12238-12248.
[25] Y. J. Zou, C. L. Cai, C. L. Huang, H. L. Chu, Z. She, F. Xu, L. X. Sun, H. B. Kraatz, “Simple synthesis of core-shell structure of Co-Co3O4 @ carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor”, Electrochimica Acta,261(2018)537-547.
[26] H. Xu, Z. Hai, J. Diwu, Q. Zhang, L. Gao, D. Cui, J. Zang, J. Liu, C. Xue, “Synthesis and Microwave Absorption Properties of Core-Shell Structured Co3O4-PANI Nanocomposites”, Eng. Nanoparticles and Their Applications2015(2015)9.
[27] Y. Liu, G. Zhu, B. Ge, H. Zhou, A. Yuan, and X. Shen, “Concave Co3O4 octahedral mesocrystal: polymer-mediated synthesis and sensing properties,” Cryst, Eng. Comm, 14(2012) 6264-6270.
[28] M. A. Ahmed, S. Tewari, “Capacitive deionization: Processes, materials and state of the technology” Journal of Electroanalytical Chemistry 813(2018)178-192.
[29] H. Yin, S. Zhao, J. Wan, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao,Z. Tang, “Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water”, Adv. Mat. 2013. 25(43) 6270-6276.
[30]T. Hussain, Y. Wang, Z. Xiong, J. Yang, Z. Xie, J. Liu, “Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization”Jou. of Colloid and Interface Science. 532 (2018)343-351
[31] G. Divyapriya, K. Vijayakumar, I. Nambi, “Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system” Desalination. 451(2019)102-110
[32] L. Guo, J. Zhang, M. Ding, C. Gu, S. Vafakhah, W. Zhang, D. S. Li, P. V. Y. Alvarado, H. Y. Yang, “Hierarchical Co3O4/CNT decorated electrospun hollow nanofiber for efficient hybrid capacitive deionization”Separation and Purification Technology 266(2021)118593
電子全文 電子全文(網際網路公開日期:20250916)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top