跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃清玲
研究生(外文):Huang Cing-Ling
論文名稱:添加阿魏酸之香蕉澱粉與豌豆蛋白可食性複合膜的研發及特性分析
論文名稱(外文):Development and characterization of antioxidant banana starch and pea protein edible composite films by incorporating ferulic acid
指導教授:翁義銘翁義銘引用關係
指導教授(外文):Weng, Yih-Ming
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:140
中文關鍵詞:可食性複合膜香蕉澱粉豌豆蛋白阿魏酸抗氧化劑活性包裝
外文關鍵詞:Edible composite filmsBanana starchPea proteinFerulic acidAntioxidantActive packaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
香蕉澱粉 (banana starch, BS) 製成的薄膜具有無色、無味、無毒性之性質,因此可作為可食用膜的基質 。然而澱粉的親水性質會使機械特性及耐水性較差,導致在實際應用上受到限制,透過與蛋白質進行混和來改善澱粉膜的各種限制。豌豆蛋白 (pea protein, PP) 具有良好的乳化能力及不致過敏等特性,將其製成薄膜後具有與乳清蛋白及大豆蛋白製備的薄膜相似的物理及機械特性,還能有助於增加基質成分與甘油之間的相互作用。本研究將香蕉澱粉與豌豆蛋白以不同比例進行混合後製備成可食性複合膜,再測定其物化特性後選取最適條件並添加阿魏酸 (ferulic acid, FA) 賦予薄膜抗氧化性能。
實驗共分為三部分,第一部分是香蕉澱粉及豌豆蛋白一般成分及理化
性質分析,根據結果可以得知香蕉澱粉之直鏈澱粉含量為 26.77%,經由
X-ray 繞射分析確定香蕉澱粉之結晶型態為 C 型,而豌豆蛋白的蛋白質
含量為 81.75%。
第二部分之試驗是製備不同比例之香蕉澱粉與豌豆蛋白可食性複合膜
(每片薄膜中香蕉澱粉與豌豆蛋白總重為 1 g),且成膜溶液中含有甘油 (4 % 香蕉澱粉與豌豆蛋白 ),再以澆鑄法 (casting) 進行製備。經由物化特性分析後得知以 0.5:0.5 g 之比例所製得的可食性複合膜具有較佳的機械特性,其拉伸強度為 2.82±0.23 MPa,楊氏模量為 441.44±36.43 MPa,因此,在後續研究中皆以此複合膜進行製備。
第三部分為添加不同濃度阿魏酸之香蕉澱粉與豌豆蛋白可食性複合膜的製備,並測定其物化特性及抗氧化能力分析。得知水分含量及氧氣穿透率隨著阿魏酸的增加有降低的趨勢,而抗氧化能力隨著阿魏酸的增加有上升的趨勢, DPPH 自由基清除率為 6.65~78.75% 之間, ABTS 清除活性為 2.94~11.26% 之間,之間,FRAP 還原能力之吸光值介於還原能力之吸光值介於 0.004~1.30 之間,之間,表明在添加表明在添加阿魏酸後賦予可食性複合膜良好的抗氧化能力。阿魏酸後賦予可食性複合膜良好的抗氧化能力。
綜合以上結果說明,以天然抗氧化劑化劑–阿魏阿魏酸能增強可食性複合膜的酸能增強可食性複合膜的氣體阻隔性能,並使其有良好抗氧化特性而具有延長食品保存期限之功氣體阻隔性能,並使其有良好抗氧化特性而具有延長食品保存期限之功能,且有作為新型態抗氧化活性食品包裝的潛力。能,且有作為新型態抗氧化活性食品包裝的潛力。
The film made of banana starch (BS) is colorless, tasteless, and non-toxic, so it can be used as a substrate for edible films. However, the hydrophilic nature of starch weakens the mechanical properties and water resistance capability, resulting in limitations for practical applications. The limitations of the starch film can be improved by incorporating with protein. Pea protein (PP) has good emulsifying ability and non-allergenic properties. PP film has physical and mechanical properties similar to whey protein and soy protein films. PP can also increase the interaction between base materials and glycerin. In this study, BS and PP at different ratios were used to prepare edible composite films. After measuring the physical and chemical properties to determine the optimum ratio of BS and PP for film preparation, ferulic acid (FA) was included to fabricate antioxidant edible films.
The experiment was divided into three parts. The first part was the analysis of the general composition and physical and chemical properties of BS and PP. According to the results, the amylose content of BS was 26.77%. The crystallization was determined by X-ray diffraction and the BS crystallinity was type C. The protein content of PP was 81.75%.
The second part of this study was to prepare composite edible films with different ratios of BS and PP (the total weight of BS and PP for each piece of film: 1 g). Glycerol (4% of BS and PP) was included in film-forming solution and the casting method was used. The edible composite film prepared with BS and PP at ratio of 0.5:0.5 g showed better mechanical properties with tensile strength 2.82±0.23 MPa and Young's modulus 441.44±36.43 MPa. Therefore, this type of composite film was used in the following study.
The third part was to prepare the BS and PP edible composite films with different concentrations of ferulic acid and to determine physicochemical properties and antioxidant capacity. As the ferulic acid concentration increased, the moisture content and oxygen transmission rate decreased and antioxidant capacity increase. The free radical scavenging rate of DPPH was between 6.65-78.75%, the scavenging activity of ABTS was between 2.94-11.26%, and the absorbance value of FRAP reduction ability was between 0.004-1.30, indicating that the addition of ferulic acid conferred the edible composite films with good antioxidant capacity.
The above results indicate that ferulic acid as a natural antioxidant can enhance oxygen barrier performance and antioxidant properties of the edible composite films. As a new type of active packaging materials, these composite films have the potential to extend the shelf life of foods.
表目錄 VI
圖目錄 VII
壹、前言 1
貳、文獻回顧 4
一、食品包裝 (food packaging)......................................................................4
二、可食性包裝 (edible packaging)............................................................. 11
(一) 可食性包裝之材料 15
1. 多醣 (polysaccharides) 15
2. 蛋白質 (protein) 16
3. 脂質 (lipid) 18
4.複合材料 (composite material) 19
(二) 可食性包裝之應用特性 21
三、香蕉澱粉 (banana starch) 23
(一) 澱粉顆粒型態 29
(二) 香蕉澱粉提取 31
(三) 香蕉澱粉成膜機制及功能特性 35
四、豌豆蛋白 (pea protein) 36
(一) 豌豆蛋白分離物提取 38
(二) 豌豆蛋白特性 41
(三) 豌豆蛋白成膜機制及功能特性 45
(四) 澱粉與蛋白質可食性複合膜形成機制 45
五、阿魏酸 (ferulic acid) 47
(一) 阿魏酸之生理活性 51
(二) 阿魏酸之特性 52
(三) 阿魏酸之應用 54
(四) 阿魏酸之抗氧化機制 56
(五) 阿魏酸之交聯機制 58
參、實驗架構 60
一、香蕉澱粉一般成分及理化特性分析 61
二、豌豆蛋白一般成分及理化特性分析 62
三、香蕉澱粉與豌豆蛋白可食性複合膜製備及物化特性分析 63
四、添加阿魏酸之香蕉澱粉與豌豆蛋白可食性複合膜製備及物化特性分析 64
肆、材料與方法 65
一、實驗材料 65
二、儀器設備 65
三、實驗方法 67
(一) 香蕉澱粉一般成分及理化特性分析 67
1. 水分含量 (moisture content, MC) 67
2. 總澱粉 (total starch) 67
3. 直鏈澱粉 (amylose) 68
4. 熱性質分析 (thermal properties) 68
5. X-ray 繞射分析 (X-ray diffraction) 69
(二) 豌豆蛋白一般成分及理化特性分析 69
1. 水分含量 (moisture content, MC) 69
2. 粗蛋白 (crude protein) 69
3. X-ray 繞射分析 (X-ray diffraction) 70
(三) 香蕉澱粉與豌豆蛋白可食性複合膜製備及物化特性分析 70
1. 香蕉澱粉與豌豆蛋白可食性複合膜之製備 70
2. 香蕉澱粉與豌豆蛋白可食性複合膜之物化特性分析 71
(1) 厚度測定 (thickness) 71
(2) 水分含量 (moisture content, MC) 71
(3) 水溶解度 (water solubility, WS) 71
(4) 不透明度 (opacity) 72
(5) 色澤分析 (color analysis) 72
(6) 機械特性 (mechanical properties) 73
(四) 添加阿魏酸之香蕉澱粉與豌豆蛋白可食性複合膜製備及物化特性分析 73
1. 添加阿魏酸之香蕉澱粉與豌豆蛋白可食性複合膜之製備 73
2. 添加阿魏酸之香蕉澱粉與豌豆蛋白可食性複合膜之物化特性分析 74
(1) 水氣滲透率 (water vapor permeability, WVP) 74
(2) 氧氣阻隔特性 (oxygen barrier property) 75
(3) 抗氧化能力分析 (antioxidant ability analysis) 76
a. DPPH 清除自由基活性 (DPPH free radical scavenging activity) 76
b. ABTS 清除活性能力 (ABTS scavenging activity) 76
c. FRAP 還原能力 (Ferric reducing antioxidant power) 77
(4) X-ray 繞射分析 (X-ray diffraction) 77
(5) 傅立葉轉換紅外光譜分析 (Fourier transform infrared spectroscopic, FTIR) 77
四、統計分析 78
伍、結果與討論 79
一、第一部分結果與討論 79
(一) 香蕉澱粉一般成分分析 79
(二) 香蕉澱粉理化特性分析 79
1. 熱性質分析 79
2. X-ray 繞射分析 80
(三) 豌豆蛋白一般成分分析 80
(四) 豌豆蛋白理化特性分析 80
1. X-ray 繞射分析 80
二、第二部分結果與討論 84
(一) 香蕉澱粉與豌豆蛋白可食性複合膜之製備 84
(二) 香蕉澱粉與豌豆蛋白可食性複合膜之物化特性分析 86
1. 香蕉澱粉與豌豆蛋白可食性複合膜之厚度 86
2. 香蕉澱粉與豌豆蛋白可食性複合膜之水分含量 86
3. 香蕉澱粉與豌豆蛋白可食性複合膜之水溶解度 87
4. 香蕉澱粉與豌豆蛋白可食性複合膜之不透明度 89
5. 香蕉澱粉與豌豆蛋白可食性複合膜之色澤分析 89
6. 香蕉澱粉與豌豆蛋白可食性複合膜之機械特性 92
三、第三部分結果與討論 94
(一) 添加阿魏酸之香蕉澱粉與豌豆蛋白可食性複合膜之製備 94
(二) 添加阿魏酸之香蕉澱粉與豌豆蛋白可食性複合膜之物化特性分析 96
1. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之厚度 96
2. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之水分含量 96
3. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之水溶解度 97
4. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之不透明度 99
5. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之色澤分析 99
6. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之機械特性 102
7. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之水氣滲透率 104
8. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之氧氣阻隔特性 106
9. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之抗氧化能力分析 108
(1) DPPH 清除自由基活性 108
(2) ABTS 清除活性能力 110
(3) FRAP還原能力 112
10. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之 X-ray 繞射分析 114
11. 添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之 FTIR 分析 116
陸、結論 120
柒、參考文獻 122


表目錄
表一、不同品種香蕉澱粉之一般成分分析 25
表二、香蕉提取物中之生物活性化合物種類 26
表三、各種穀物、蔬菜、水果及食品中的阿魏酸含量 48
表四、以不同比例製成香蕉澱粉與豌豆蛋白可食性複合膜之厚度、水分含量及水溶解度 88
表五、以不同比例製成香蕉澱粉與豌豆蛋白可食性複合膜之色澤分析及不透明度 91
表六、以不同比例製成香蕉澱粉與豌豆蛋白可食性複合膜之機械特性 93
表七、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之厚度、水分含量及水溶解度 98
表八、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之色澤分析及不透明度 101
表九、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之機械特性 103

圖目錄
圖一、包裝材料的選擇概念 (左) 與測試步驟 (右) 6
圖二、包裝研發的材料選擇程序 6
圖三、生物塑料:材料來源和生物降解性 7
圖四、塑性材料生物降解的一般機制 9
圖五、應用於食品業包裝之功能特性 10
圖六、可食性薄膜或塗層在肉類、蔬菜及水果等新鮮食品的功能特性 13
圖七、可食性包裝之功能特性 14
圖八、可生物降解/生物基質包裝聚合物的分類 20
圖九、天然抗氧化劑之分類 22
圖十、香蕉成熟過程中澱粉顆粒的變化 27
圖十一、不同香蕉品種在成熟期間澱粉含量變化之 SEM 圖像 28
圖十二、A 型和 B 型澱粉的結晶型態 29
圖十三、不同澱粉原料之 XRD 圖譜型態 30
圖十四、香蕉澱粉酸水解方法 32
圖十五、香蕉澱粉鹼水解方法 33
圖十六、澱粉糊化的最適條件 34
圖十七、澱粉的兩個主要成分:直鏈澱粉及支鏈澱粉 35
圖十八、不同程序萃取豌豆蛋白分離物方法及製成相關產品之步驟 39
圖十九、豌豆蛋白鹼提取法 40
圖二十、豌豆蛋白在不同研磨時間之 SEM 圖像 42
圖二十一、豌豆蛋白加熱前及加熱後之乳化特性影響 43
圖二十二、豌豆蛋白分離物經由共噴霧劑作用後可改善其結構性質及功能特性 44
圖二十三、豌豆蛋白製成可食性膜的性質分析 46
圖二十四、阿魏酸結構式 47
圖二十五、阿魏酸經由聚合反應生成製得多種聚合物 50
圖二十六、植物中阿魏酸及相關化合物的化學結構及合成 53
圖二十七、多醣基質 (如幾丁聚醣和藻酸鹽)、功能性添加物 (如酚醛類、精油和奈米顆粒) 結合以改善可食性塗層/薄膜的整體性能 55
圖二十八、阿魏酸通過抑制 ROS 的產生而減弱 AAPH 誘導細胞內氧化作用之機制 57
圖二十九、酚酸類和蛋白質胺側鏈之間的反應 59
圖三十、香蕉澱粉之 XRD 繞射分析圖 82
圖三十一、豌豆蛋白之 XRD 繞射分析圖 83
圖三十二、以不同比例製成香蕉澱粉與豌豆蛋白可食性複合膜之外觀及透明度 85
圖三十三、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之外觀及透明度 95
圖三十四、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之水氣滲透率 105
圖三十五、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之氧氣阻隔能力 107
圖三十六、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之 DPPH 自由基活性清除能力 109
圖三十七、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之 ABTS 活性清除能力 111
圖三十八、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之 FRAP 還原能力 113
圖三十九、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之 XRD 圖譜 115
圖四十、添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之 FTIR 圖譜 118
圖四十一、香蕉澱粉、豌豆蛋白、阿魏酸和添加阿魏酸的香蕉澱粉與豌豆蛋白可食性複合膜之 FTIR 圖譜 119
邱宜婷,2019,以梔子素交聯及添加溶菌酶與阿魏酸開發活性酪蛋白鈉可食性膜。國立嘉義大學食品科學系碩士論文。
姚舜文,2020,檸檬酸交聯可食性綠豆澱粉膜之開發。國立嘉義大學食品科學系碩士論文。
AACC International. (2000). Approved methods of the American Association of Cereal Chemists (11th Edition). Saint Paul, Minnesota, USA: Methods 44-15A and 76-13.01.
Acevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L. T., Pinzon, M. I., & Villa, C. C. (2018). Development of native and modified banana starch nanoparticles as vehicles for curcumin. International Journal of Biological Macromolecules, 111, 498-504.
Acquah, C., Zhang, Y., Dube, M. A., & Udenigwe, C. C. (2020). Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Current Research in Food Science, 2, 61-69.
Agarwal, S., Hoque, M., Bandara, N., Pal, K., & Sarkar, P. (2020). Synthesis and characterization of tamarind kernel powder-based antimicrobial edible films loaded with geraniol. Food Packaging and Shelf Life, 26, 100562.
Aggarwal, A. & Langowski, H. C. (2020). Packaging functions and their role in technical development of food packaging systems: functional equivalence in yoghurt packaging. Procedia CIRP, 90, 405-410.
Al-Mqbali, L. R. A., & Hossain, M. A. (2019). Cytotoxic and antimicrobial potential of different varieties of ripe banana used traditionally to treat ulcers. Toxicology Reports, 6, 1086-1090.
Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. (2020). Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: A review. Food Chemistry, 310, 125915.
Alves, M. M., Gonçalves, M. P., & Rocha, C. M. R. (2017). Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. LWT - Food Science and Technology, 80, 409-415.
Arteaga, V. G., Leffler, S., Muranyi, I., Eisner, P., & Schweiggert-Weisz, U. (2021). Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Current Research in Food Science, 4, 1-10.
Arun, J., Gopinath, K., P., Sivaramakrishnan, R., Shyam, S., Mayuri, N., Manasa, S., & Pugazhendhi, A. (2021). Hydrothermal liquefaction of Prosopis juliflora biomass for the production of ferulic acid and bio-oil. Bioresource Technology, 319, 124116.
ASTM. (2016). Standard test methods for water vapor transmission of materials. E96/96 M. American Society for Testing and Materials, Philadelphia, PA, USA.
ASTM. (2018). Standard test method for tensile properties of thin plastic sheeting. D882. American Society for Testing and Materials, Philadelphia, PA, USA.N
Azeredo, H. M., & Waldron, K. W. (2016). Crosslinking in polysaccharide and protein films and coatings for food contact–A review. Trends in Food Science & Technology, 52, 109-122.
Azevedo, V. M., Borges, S. V., Marconcini, J. M., Yoshida, M. I., Neto, A. R. S., Pereira, T. C., & Pereira, C. F. G. (2017). Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydrate Polymers, 157, 971-980.
Berton, S. B. R., Cabral, M. R. P., Jesus, G. A. M. D., Sarragiotto, M. H., Pilau, E. J., Martins, A. F., Bonafe, E. G., & Matsushita, M. (2020). Ultra-high-performance liquid chromatography supports a new reaction mechanism between free radicals and ferulic acid with antimicrobial and antioxidant activities. Industrial Crops & Products, 154, 112701.
Boukid, F., Rosell, C. M., & Castellari, M. (2021). Pea protein ingredients: A mainstream ingredient to (re) formulate innovative foods and beverages. Trends in Food Science & Technology, 110, 729-742.
Broeren, M. L. M., Molenveld, K., Oever, M. J. A. V. D., Patel, M. K., Worrell, E., & Shen, L. (2016). Early-stage sustainability assessment to assist with material selection: A case study for biobased printer panels. Journal of Cleaner Production, 135, 30-41.
Burger, T. G. & Zhang, Y. (2019). Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science & Technology, 86, 25-33.
Cazon, P., Velazquez, G., Ramírez, J. A., & Vazquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148.
Chakravartula, S. S. N., Soccio, M., Lotti, N., Balestra, F., Dalla Rosa, M., & Siracusa, V. (2019). Characterization of composite edible films based on pectin/alginate/whey protein concentrate. Materials, 12(15), 2454.
Chan, Y. M., Cheng, N. K., Nigam, P. S., & Owusu-Apenten, R. K. (2016). Effect of pH on the radical quenching capacity of tea infusions using the ABTS•+ assay. Journal of Applied Life Sciences International, 6(2), 1-8.
Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications, 2, 100024.
Cheng, S. Y., Wang, B. J., & Weng, Y. M. (2015). Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT-Food Science and Technology, 63(1), 115-121.
Cordoba, L. D. P., Silva, R. G. D., Gomes, D. D. S., Schnitzler, E., & Waszczynskyj, N. (2018). A thermal, structural and rheological investigation of resistant starch from different cultivars. Journal of Thermal Analysis and Calorimetry, 134, 2065-2073.
Cruz-Diaz, K., Cobos, Á., Fernández-Valle, M. E., Díaz, O., & Cambero, M. I. (2019). Characterization of edible films from whey proteins treated with heat, ultrasounds and/or transglutaminase. Application in cheese slices packaging. Food Packaging and Shelf Life, 22, 100397.
Cui, L., Kimmel, J., Zhou, L., Chen, B., & Rao, J. (2021). Improving the functionality of pea protein isolate through co-spray drying with emulsifying salt or disaccharide. Food Hydrocolloids, 113, 106534.
Dai, L., Zhang, J., & Cheng, F. (2019). Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. International Journal of Biological Macromolecules, 132, 897-905.
Dash, K. K., Ali, N. A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules, 139, 449-458.
Day, L., & Swanson, B. G. (2013). Functionality of protein‐fortified extrudates. Comprehensive Reviews in Food Science and Food Safety, 12(5), 546-564.
de Menezes, B. B., Frescura, L. M., Duarte, R., Villetti, M. A., & da Rosa, M. B. (2021). A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC50 determination by UV–Vis spectroscopy. Analytica Chimica Acta, 1157, 338398.
Domene-López, D., Delgado-Marín, J. J., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2019). Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3- methylimidazolium acetate as plasticizer. International Journal of Biological Macromolecules, 135, 845-854.
Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids, 25(6), 1441-1447.
Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109, 372-379.
Fang, K., He, W., Jiang, Y., Li, K., & Li, J. (2020). Preparation, characterization and physicochemical properties of cassava starch-ferulic acid complexes by mechanical activation. International Journal of Biological Macromolecules, 160, 482-488.
Galindez, A., Daza, L. D., Homez-Jara, A., Eim, V. S., & Váquiro, H. A. (2019). Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydrate Polymers, 215, 143-150.
Galus, S., & Lenart, A. (2013). Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering, 115, 459-465.
Ganesan, A. R., Shanmugam, M., Ilansuriyan, P., Anandhakumar, R., & Balasubramanian, B. (2019). Composite film for edible oil packaging from carrageenan derivative and konjac glucomannan: Application and quality evaluation. Polymer Testing, 78, 105936.
Gao, H., Huang, S., Dong, T., Yang, Q., & Yi, G. (2016). Analysis of resistant starch degradation in postharvest ripening of two banana cultivars: focus on starch structure and amylases. Postharvest Biology and Technology, 119, 1-8.
Garavand, F., Rouhi, M., Razavi, S. H., Cacciotti, I., & Mohammadi, R. (2017). Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules, 104, 687-707.
Ghobadi, M., Varidi, M. J., Koocheki, A., & Varidi, M. (2021). Effect of heat treatment on the structure and stability of Grass pea (Lathyrus sativus) protein isolate/Alyssum homolocarpum seed gum nanoparticles. International Journal of Biological Macromolecules, 182, 26-36.
Graf, E. (1992). Antioxidant potential of ferulic acid. Free Radical Biology and Medicine, 13(4), 435-448.
Güçbilmez, Ç. M., Yemenicioğlu, A., & Arslanoğlu, A. (2007). Antimicrobial and antioxidant activity of edible zein films incorporated with lysozyme, albumin proteins and disodium EDTA. Food Research International, 40(1), 80-91.
Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095-1107.
Hosseinnejad, M. (2014). Active packaging for food applications - A review. International Journal of Advanced Biological and Biomedical Research, 2(4), 1174-1180.
Huntrakul, K., Yoksan, R., Sane, A., & Harnkarnsujarit, N. (2020). Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life, 24, 100480.
Itagaki, S., Kurokawa, T., Nakata, C., Saito, Y., Oikawa, S., Kobayashi, M., Hirano, T., & Iseki, K. (2009). In vitro and in vivo antioxidant properties of ferulic acid: A comparative study with other natural oxidation inhibitors. Food Chemistry, 114(2), 466-471.
Jebalia, I., Maigret, J. E., Réguerre, A. L., Novales, B., Guessasma, S., Lourdin, D., Della Valle, G., & Kristiawan, M. (2019). Morphology and mechanical behaviour of pea-based starch-protein composites obtained by extrusion. Carbohydrate Polymers, 223, 115086.
Jeevahan, J. J., Chandrasekaran, M., Venkatesan, S. P., Sriram, V., Joseph, G. B., Mageshwaran, G., & Durairaj, R. B. (2020). Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends in Food Science & Technology, 100, 210-222.
Jiang, H., Zhang, Y., Hong, Y., Bi, Y., Gu, Z., Cheng, L., Li, Z., & Li, C. (2015). Digestibility and changes to structural characteristics of green banana starch during in vitro digestion. Food Hydrocolloids, 49, 192-199.
Kakadellis, S. & Harris, Z. M. (2020). Don’t scrap the waste: The need for broader system boundaries in bioplastic food packaging life-cycle assessment - A critical review. Journal of Cleaner Production, 274, 122831.
Kalpana, S., Priyadarshini, S. R., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145-157.
Kaur, L., Dhull, S. B., Kumar, P., & Singh, A. (2020). Banana starch: Properties, description, and modified variations - A review. International Journal of Biological Macromolecules, 165, 2096-2102.
Khanzadi, M., Jafari, S. M., Mirzaei, H., Chegini, F. K., Maghsoudlou, Y., & Dehnad, D. (2015). Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydrate Polymers, 118, 24-29.
Khoozani, A. A., Bekhit, A. E. D. A., & Birch, J. (2019). Effects of different drying conditions on the starch content, thermal properties and some of the physicochemical parameters of whole green banana flour. International Journal of Biological Macromolecules, 130, 938-946.
Kim, J. H. J., Varankovich, N. V., & Nickerson, M. T. (2016). The effect of pH on the gelling behaviour of canola and soy protein isolates. Food Research International, 81, 31-38.
Kim, S. R. B., Choi, Y. G., Kim, J. Y., & Lim, S. T. (2015). Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. LWT - Food Science and Technology, 64, 475-482.
Kusznierewicz, B., Staroszczyk, H., Malinowska-Pańczyk, E., Parchem, K., & Bartoszek, A. (2020). Novel ABTS-dot-blot method for the assessment of antioxidant properties of food packaging. Food Packaging and Shelf Life, 24, 100478.
Lan, Y., Xu, M., Ohm, J. B., Chen, B., & Rao, J. (2019). Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chemistry, 278, 665-673.
Li, K., Zhu, J., Guan, G., & Wu, H. (2019). Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism. International Journal of Biological Macromolecules, 122, 485-492.
Li, S., Ma, Y., Ji, T., Sameen, D. E., Ahmed, S., Qin, W., Dai, J., Li, S., & Liu, Y. (2020). Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydrate Polymers, 248, 116805.
Li, T., Xia, N., Xu, L., Zhang, H., Zhang, H., Chi, Y., Zhang, Y., Li, L., & Li, H. (2021). Preparation, characterization and application of SPI-based blend film with antioxidant activity. Food Packaging and Shelf Life, 27, 100614.
Li, Y., Chen, F., Zhang, L., & Yao, Y. (2015). Effect of surface changes of soy protein materials on water resistance. Materials Letters, 149, 120-122.
Liu, J., Meng, C. G., Liu, S., Kan, J., & Jin, C. H. (2017). Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocolloids, 63, 457-466.
Liu, Q., Dai, Y., Hou, H., Wang, W., Ding, X., Zhang, H., Li, X., & Dong, H. (2020). Changes in the structure and emulsification properties of pea protein isolate during grinding. LWT - Food Science and Technology, 133, 110066.
Liu, W., Xie, J., Li, L., Xue, B., Li, X., Gan, J., Shao, Z., & Sun, T. (2021). Properties of phenolic acid-chitosan composite films and preservative effect on penaeus vannamei. Journal of Molecular Structure, 130531.
Ma, M., Liu, Y., Chen, X., Brennan, C., Xu, X., Sui, Z., & Corke, H. (2020). Thermal and pasting properties and digestibility of blends of potato and rice starches differing in amylose content. International Journal of Biological Macromolecules, 165, 321-332.
Mahalik, N. P., & Nambiar, A. N. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science & Technology, 21, 117-128.
Mahcene, Z., Khelil, A., Hasni, S., Akman, P. K., Bozkurt, F., Birech, K., Goudjil, M. B., & Tornuk, F. (2020). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. International Journal of Biological Macromolecules, 145, 124-132.
Maqsoudlou, A., Assadpour, E., Mohebodini, H., & Jafari, S. M. (2020). Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science, 278, 102122.
Martelli-Tosi, M., Masson, M. M., Silva, N. C., Esposto, B. S., Barros, T. T., Assis, O. B. G., & Tapia-Blácido, D. R. (2018). Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydrate Polymers, 198, 61-68.
Mathew, S., & Abraham, T. E. (2008). Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocolloids, 22(5), 826-835.
Mei, Y., & Zhao, Y. (2003). Barrier and mechanical properties of milk protein-based edible films containing nutraceuticals. Journal of Agricultural and Food Chemistry, 51(7), 1914-1918.
Mkandawire, M., & Aryee, A. N. (2018). Resurfacing and modernization of edible packaging material technology. Current Opinion in Food Science, 19, 104-112.
Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A Review. Carbohydrate Polymers, 238, 116178.
Moreirinha, C., Vilela, C., Silva, N. H. C. S., Pinto, R. J. B., Almeida, A., Rocha, M. A. M., Coelho, E., Coimbra, M. A., Silvestre, A. J. D., & Freire, C. S. R. (2020). Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocolloids, 108, 105836.
Mostafavi, F. S., & Zaeim, D. (2020). Agar-based edible films for food packaging applications - A review. International Journal of Biological Macromolecules, 159, 1165-1176.
Moustafa, H., Youssef, A. M., Darwish, N. A., & Abou-Kandil, A. I. (2019). Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B, 172, 16-25.
Murillo-Martínez, M. M., Pedroza-Islas, R., Lobato-Calleros, C., Martínez-Ferez, A., & Vernon-Carter, E. J. (2011). Designing W1/O/W2 double emulsions stabilized by protein-polysaccharide complexes for producing edible films: Rheological, mechanical and water vapour properties. Food Hydrocolloids, 25, 577-585.
Na, Y. Z., Jia, W. W., Zhen, S. C., Fan, L. H., Bo, C. W., Ping, Z. Q., Gui, L. Z., Xuan, X., Juan, M. J., Kun, Y., Tian, M., Meng, Z. M., & Hui, W. (2019). Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomedical and Environmental Sciences, 32(1), 11-21.
Nair, M. S., Tomar, M., Punia, S., Kukula-Koch, W., & Kumar, M. (2020). Enhancing the functionality of chitosan-and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules, 164, 304-320.
Nieto-Suaza, L., Acevedo-Guevara, L., Sánchez, L. T., Pinzón, M. I., & Villa, C. C. (2019). Characterization of aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. Food Structure, 22, 100131.
Nimsung, P., Thongngam, M., & Naivikul, O. (2007). Compositions, morphological and thermal properties of green banana flour and starch. Kasetsart J. (Nat. Sci.), 41, 324-330.
Ojeda-Hernández, D. D., Gomez-Pinedo, U., Hernández-Sapiéns, M. A., Canales-Aguirre, A. A., Espinosa-Andrews, H., Matias-Guiu, J., Gonz´alez-García, Y., & Mateos-Díaz, J. C. (2021). Biocompatibility of ferulic/succinic acid-grafted chitosan hydrogels for implantation after brain injury: A preliminary study. Materials Science & Engineering C, 121, 111806.
Olawoye, B., Fagbohun, O. F., Gbadamosi, S. O., & Akanbi, C. T. (2020). Succinylation improves the slowly digestible starch fraction of cardaba banana starch. A process parameter optimization study. Artificial Intelligence in Agriculture, 4, 219-228.
Oliveira, M. A., Gonzaga, M. L. C., Bastos, M. S. R., Magalhães, H. C. R., Benevides, S. D., Furtado, R. F., Zambelli, R. A., & Garruti, D. S. (2020). Packaging with cashew gum/gelatin/essential oil for bread: Release potential of the citral. Food Packaging and Shelf Life, 23, 100431.
Orsuwan, A., Shankar, S., Wang, L. F., Sothornvit, R., & Rhim, J. W. (2016). Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocolloids, 60, 476-485.
Otoni, C. G., Avena-Bustillos, R. J., Olsen, C. W., Bilbao-Sainz, C., & McHugh, T. H. (2016). Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids, 57, 72-79.
Parthiban, A., & Vasantha, V. A. (2020). Biorenewable functional oligomers and polymers – Direct copolymerization of ferulic acid to obtain polymeric UV absorbers and multifunctional materials. Polymer, 188, 122122.
Pelissari, F. M., Andrade-Mahecha, M. M., do Amaral Sobral, P. J., & Menegalli, F. C. (2013). Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca). LWT-Food Science and Technology, 52(1), 1-11.
Peng, W., Kong, X., Chen, Y., Zhang, C., Yang, Y., & Hua, Y. (2016). Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocolloids, 52, 301-310.
Pernin, A., Bosc, V., Maillard, M. N., & Dubois-Brissonnet, F. (2019). Ferulic acid and eugenol have different abilities to maintain their inhibitory activity against listeria monocytogenes in emulsified systems. Frontiers in Microbiology, 10, 137.
Petkoska, A. T., Daniloski, D., D’Cunha, N. M., Naumovski, N., & Broach, A. T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International, 140, 109981.
Plath, A. M. S., Facchi, S. P., Souza, P. R., Sabino, R. M., Corradini, E., Muniz, E. C., Popat, K. C., Filho, L. C., Kipper, M. J., & Martins, A. F. (2021). Zein supports scaffolding capacity toward mammalian cells and bactericidal and antiadhesive properties on poly (ε-caprolactone)/zein electrospun fibers. Materials Today Chemistry, 20, 100465.
Rani, P., Yu, X., Liu, H., Li, K., He, Y., Tian, H., & Kumar, R. (2021). Material, antibacterial and anticancer properties of natural polyphenols incorporated soy protein isolate: A review. European Polymer Journal, 152, 110494.
Reyes-Atrizco, J. N., Agama-Acevedo, E., Bello-Perez, L. A., & Alvarez-Ramirez, J. (2019). Morphological, molecular evolution an in vitro digestibility of filamentous granules of banana starch during fruit development. International Journal of Biological Macromolecules, 132, 119-125.
Rompothi, O., Pradipasena, P., Tananuwong, K., Somwangthanaroj, A., & Janjarasskul, T. (2017). Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability. Carbohydrate Polymers, 157, 748-756.
Roy, F., Boye, J. I., & Simpson, B. K. (2010). Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International, 43, 432-442.
Sarıcaoglu, F. T., & Turhan, S. (2020). Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packaging and Shelf Life, 25, 100527.
Sartori, T., & Menegalli, F. C. (2016). Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrocolloids, 55, 210-219.
Shafqat, A., Tahir, A., Mahmood, A., Tabinda, A. B., Yasar, A., & Pugazhendhi, A. (2020). A review on environmental significance carbon foot prints of starch based bio-plastic: A substitute of conventional plastics. Biocatalysis and Agricultural Biotechnology, 27, 101540.
Sharma, S., Jaiswal A. K., Duffy, B., & Jaiswal, S. (2020). Ferulic acid incorporated active films based on poly(lactide)/poly(butylene adipate-co-terephthalate) blend for food packaging. Food Packaging and Shelf Life, 24, 100491.
Shrestha, S., Sadiq, M. B., & Anal, A. K. (2018). Culled banana resistant starch soy protein isolate conjugate based emulsion enriched with astaxanthin to enhance its stability. International Journal of Biological Macromolecules, 120, 449-459.
Silva, V. D. M., Macedo, M. C. C., Rodrigues, C. G., dos Santos, A. N., e Loyola, A. C. D. F., & Fante, C. A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38, 100750.
Sivakumar, S., Murali, R., Arathanaikotti, D., Gopinath, A., Senthilkumar, C., Kesavan, S., & Madhan, B. (2021). Ferulic acid loaded microspheres reinforced in 3D hybrid scaffold for antimicrobial wound dressing. International Journal of Biological Macromolecules, 177, 463-473.
Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., & Nickerson, M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76, 31-38.
Su, Y., Duan, H., Wang, Z., Song, G., Kang, P., & Chen, D. (2020). Characterizing the environmental impact of packaging materials for express delivery via life cycle assessment. Journal of Cleaner Production, 274, 122961.
Susmitha, A., Sasikumar, K., Rajan, D., M, A. P., & Nampoothiri, K. M. (2021). Development and characterization of corn starch-gelatin based edible films incorporated with mango and pineapple for active packaging. Food Bioscience, 41, 100977.
Tanger, C., Engel, J., & Kulozik, U. (2020). Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloids, 107, 105949.
Tavares, L., Souza, H. K. S., Gonçalves, M. P., & Rocha, C. M. R. (2021). Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocolloids, 113, 106471.
Tibolla, H., Pelissari, F. M., Martins, J. T., Lanzoni, E. M., Vicente, A. A., Menegalli, F. C., & Cunha, R. L. (2019). Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydrate Polymers, 207, 169-179.
Tillet, G., Boutevin, B., & Ameduri, B. (2011). Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Progress in Polymer Science, 36(2), 191-217.
Umaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science & Technology, 98, 10-24.
Wang, J. S., Wang, A. B., Ma, W. H., Xu, B. Y., Zang, X. P., Tan, L., Jin, Z. Q., & Li, J. Y. (2019). Comparison of physicochemical properties and in vitro digestibility of starches from seven banana cultivars in China. International Journal of Biological Macromolecules, 121, 279-284.
Wen, Y., Yao, T., Xu, Y., Corke, H., & Sui, Z. (2020). Pasting, thermal and rheological properties of octenylsuccinylate modified starches from diverse small granule starches differing in amylose content. Journal of Cereal Science, 95, 103030.
Woranuch, S., Yoksan, R., & Akashi, M. (2015). Ferulic acid-coupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers, 115, 744-751.
Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C., Xia, R., Zhang, Z., Shen, G., Liu, Y., Li, S., & Li, M. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97, 105208.
Wu, T. Y., Tsai, S. J., Sun, N. N., Dai, F. J., Yu, P. H., Chen, Y. C., & Chau, C. F. (2020). Enhanced thermal stability of green banana starch by heat-moisture treatment and its ability to reduce body fat accumulation and modulate gut microbiota. International Journal of Biological Macromolecules, 160, 915-924.
Yan, J., Li, M., Wang, H., Lian, X., Fan, Y., Xie, Z., Niu, B., & Li, W. (2021). Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites. Food Control, 126, 108049.
Yerramathi, B. B., Kola, M., Muniraj, B. A., Aluru, R., Thirumanyam, M., & Zyryanov, G. V. (2021). Structural studies and bioactivity of sodium alginate edible films fabricated through ferulic acid crosslinking mechanism. Journal of Food Engineering, 301, 110566.
Yu, J. Y., Roh, S. H., & Park, H. J. (2021). Characterization of ferulic acid encapsulation complexes with maltodextrin and hydroxypropyl methylcellulose. Food Hydrocolloids, 111, 106390.
Zabala, C. C. V. (2020). An overview on starch structure and chemical nature. In: Zabala, C. C. V. (Ed), Starch-based Nanomaterials, (Chapter 2, pp. 3-9). Springer, Berlin, Germany.
Zduńska, K., Dana, A., Kolodziejczak, A., & Rotsztejn, H. (2018). Antioxidant properties of ferulic acid and its possible application. Skin pharmacology and physiology, 31, 332-336.
Zhao, Z., & Moghadasian, M. H. (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry, 109, 691-702.
電子全文 電子全文(網際網路公開日期:20260725)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊