跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林筠庭
研究生(外文):Lin, Yun-Ting
論文名稱:由鹼、酵素或高壓處理後之茶渣萃取寡醣之研究
論文名稱(外文):Extraction of oligosaccharides from brewed tea leaves with alkaline, enzyme and high-pressure treatments
指導教授:張文昌張文昌引用關係
指導教授(外文):Chang, Wen-Chang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:92
中文關鍵詞:木質纖維素茶葉廢棄物鹼預處理高壓加工技術寡醣
外文關鍵詞:Lignocellulosetea leavesalkali pretreatmenthigh pressure processingoligosaccharides
相關次數:
  • 被引用被引用:2
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年飲茶人口的增加,使得世界各國茶葉用量逐年上升,因此茶葉廢棄物成為需被正視的環境問題。而茶葉廢棄物其主要成分為木質纖維素,在先前文獻中發現,預處理對於木質纖維素生物質轉化過程是相當重要的步驟,藉由改變木質纖維素生物質的結構以利酵素進行糖化作用,另外,亦有文獻利用高壓加工技術提高酵素水解效率,故本研究將兩種茶葉廢棄物 - 高山烏龍茶渣及紅烏龍茶渣,先利用不同溫度及鹼濃度進行預處理,再配合纖維素酶、半纖維素酶與不同條件的高壓加工技術將其分解成小分子醣類,並使用高效液相層析分析其成分與含量,凝膠滲透層析分析其分子量,薄層層析推測茶渣水解液中醣類組成,藉由掃描式電子顯微鏡、X 射線繞射測定和傅立葉轉換紅外線光譜了解茶渣的表徵變化,以此了解 NaOH 預處理和酵素水解對處理後茶渣木質纖維素結構之影響。結果顯示,在預處理實驗中,為了得到較多的寡醣、較少的單糖,因此 40°C、1% NaOH 為最佳預處理條件,在不同加工處理方法中,相比於酵素水解組別,高壓加工技術使水解液中寡醣占比顯著降低,且提高單醣含量,因此選用酵素處理作為實驗組別。而在微觀結構分析的實驗結果中,隨著鹼處理而後酵素水解,可以看到茶渣表面出現孔洞及有序纖維素結構,在結晶度分析的結果,木質纖維素結構的崩解,使結晶度有上升的趨勢。在傅立葉轉換紅外線光譜分析結果中,可以得到木質素的鍵結斷裂、纖維素鍵結的顯露之結果。而在高效液相層析實驗中可以得知高山烏龍及紅烏龍水解液中皆含有木三糖、麥芽糖以及葡萄糖之成分,而在凝膠滲透層析和薄層層析則推測出水解液中含有四糖五糖之寡醣成分。綜合上述,透過本研究可將茶葉廢棄物分解為小分子寡醣類,以達到解決大量茶葉廢棄物的環境問題。
In recent years, the tea consumption in countries around the world has been increasing year by year since more and more people drink tea. Therefore, the environmental issues of tea leaves have to be faced. The main component of tea leaves is lignocellulose. It has been found in previous literature that the pretreatment plays an important role in lignocellulosic biomass conversion process. For example, it is required to prepare an altered structure of lignocellulosic biomass for the propose of accessibility on enzymatic saccharification. In addition, the high pressure processing can also be used to improve enzymes hydrolyzing. In this study, high-mountain oolong tea leaves and red oolong tea leaves were pretreated with different temperatures and alkali concentrations, and then combined with cellulase, hemicellulase and different conditions of high-pressure processing, finally, tea leaves were hydrolyzed into small molecule carbohydrate. The composition and content of the hydrolyzed solution were analyzed by high performance liquid chromatography, the molecular weight of the substance in the solution was analyzed by gel permeation chromatography, the carbohydrate components of the solution was analyzed by thin layer chromatography and the characterization changes of high-mountain oolong tea leaves and red oolong tea leaves were carried out by scanning Electron Microscope, X-ray diffraction and FT-IR Spectrometer, so as to study the influence of NaOH pretreatment and enzyme hydrolysis on the altered lignocellulose structure. In the pretreatment step, for preparing the composition of the tea leaves hydrolysate with more proportion of oligosaccharides and less proportion of monosaccharides, the pretreatment conditions are 40°C and 1% NaOH. Among the different processing methods, to compare with the enzyme hydrolysis group only, HPP significantly reduced the proportion of oligosaccharides and significantly increased the proportion of monosaccharides in the hydrolyzated components. Therefore, enzyme hydrolysis only was finally chosen as the experimental group. In the experimental results of the microstructural characteristics, the alkali treatment and enzyme hydrolysis increased the pores on the surface of tea leaves and ordered cellulose structure. In the results of the crystallinity index, the removal of lignocellulose structure increased the crystallinity slightly. In the results of FT-IR spectrometer analysis, the chemical bonding of the lignin were broken or the chemical bonding of the cellulose were exposed. In the experiments of high performance liquid chromatography, it can be known that the composition of the hydrolysates from high-mountain oolong tea leaves and red oolong tea leaves contained xylotriose, maltose, and glucose. By gel permeation chromatography and thin layer chromatography, it can be inferred that the composition of the hydrolysates contained tetrasaccharides and pentasaccharides. Based on these results, it is known that the tea leaves can be decomposed into small molecular oligosaccharides, so as to solve the environmental problem of a large amount of tea leaves.
中文摘要 I
Abstract II
縮寫表 IV
致謝 VI
壹、 前言 1
貳、 文獻回顧 3
一、 茶渣 3
二、 木質纖維素 (Lignocellulose) 5
三、 木質纖維素之組成分 8
(一) 纖維素 (Cellulose) 8
(二) 半纖維素 (Hemicellulose) 10
(三) 木質素 (Lignin) 12
四、 木質纖維素生物質之預處理方法 13
五、 鹼預處理 (Alkali pretreatment) 16
六、 益生質 (Prebiotics) 18
七、 膳食纖維 (Dietary fiber) 19
八、 寡醣 (Oligosaccharides) 20
(一) 纖維寡醣 (Cello-oligosaccharides, COS) 22
(二) 木寡醣 (Xylo-oligosaccharides, XOS) 23
九、 酵素協同作用 24
(一) 纖維素酶 (Cellulase) 24
(二) 半纖維素酶 (Hemicellulase) 25
十、 高壓加工技術 (High pressure processing, HPP) 27
參、 實驗架構與目的 28
一、 實驗架構 28
二、 實驗目的 29
肆、 實驗材料與方法 30
一、 實驗材料 30
二、 化學藥品及酵素 30
三、 儀器設備 31
四、 實驗方法 32
(一) 茶渣預處理 32
(二) 不同之 HPP 條件偕同酵素水解 32
(三) 高效液相層析分析 (High performance liquid chromatography, HPLC) 33
(四) 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 33
(五) X 射線繞射測定 (X-ray diffraction, XRD) 33
(六) 傅立葉轉換紅外線光譜儀分析 (FT-IR Spectrometer) 34
(七) 一般成分分析 34
(八) 凝膠滲透層析分析 (Gel Permeation Chromatography, GPC) 36
(九) 酒精純化 36
(十) 薄層層析分析 (Thin layer chromatography, TLC) 36
(十一) 統計分析 36
伍、 結果與討論 37
一、 預處理條件之探討 37
(一) 高山烏龍茶渣 37
(二) 紅烏龍茶渣 41
二、 不同加工處理之比較 46
(一) 高山烏龍茶渣 46
(二) 紅烏龍茶渣 49
三、 一般成分分析 53
四、 木質纖維素之表徵分析 54
(一) 微觀結構分析 (Microstructural characteristics) 54
(二) 結晶度分析 56
(三) 傅立葉轉換紅外線光譜儀分析 (FT-IR Spectrometer) 60
五、 茶渣水解產物之醣類成分分析 64
(一) 高效液相層析分析 (High performance liquid chromatography, HPLC) 64
(二) 凝膠滲透層析分析 (Gel Permeation Chromatography, GPC) 66
(三) 薄層層析分析 (Thin layer chromatography, TLC) 69
陸、 結論 71
柒、 參考文獻 72
捌、 附圖 86
一、 高效液相層析分析 - 標準曲線 86
二、 凝膠滲透層析分析 - 多醣標準品檢量線 89
三、 核磁共振光譜 (Nuclear Magnetic Resonance, NMR) 90










表目錄
表一、2017 至 2020 年茶葉年生產量 4
表二、木質纖維素生物質中纖維素、半纖維素、木質素、木聚醣之占比 11
表三、在 1% NaOH 下不同處理溫度對高山烏龍茶渣之各類醣類占比 39
表四、在 2% NaOH 下不同處理溫度對高山烏龍茶渣之各類醣類占比 40
表五、在 1% NaOH 下不同處理溫度對紅烏龍茶渣之各類醣類占比 43
表六、在 2% NaOH 下不同處理溫度對紅烏龍茶渣之各類醣類占比 44
表七、高山烏龍茶渣在不同高壓條件偕同酵素水解所產生之各類醣類占比 48
表八、紅烏龍茶渣在不同高壓條件偕同酵素水解所產生之各類醣類占比 51
表九、茶渣之一般成分分析 53
表十、不同加工處理高山烏龍及紅烏龍茶渣之結晶度 59
表十一、高山烏龍茶渣水解液中醣類之分子量及其占比 67
表十二、紅烏龍茶渣水解液中醣類之分子量及其占比 68











圖目錄
圖一、木質纖維素組成 6
圖二、木質素 - 碳水化合物鍵的結構 7
圖三、纖維二糖單元 9
圖四、木質纖維素生物質之各種預處理過程概述 15
圖五、木質纖維素生物質之寡醣類 21
圖六、不同加工處理高山烏龍茶渣及紅烏龍茶渣之 SEM 圖譜 55
圖七、不同加工處理高山烏龍茶渣之 XRD 圖譜 57
圖八、不同加工處理紅烏龍茶渣之 XRD 圖譜 58
圖九、不同加工處理高山烏龍茶渣之 FT-IR 光譜圖 62
圖十、不同加工處理紅烏龍茶渣之 FT-IR 光譜圖 63
圖十一、標準品混入於紅烏龍茶渣水解液之 HPLC 圖譜 65
圖十二、高山烏龍茶渣水解液之 GPC 圖譜 67
圖十三、紅烏龍茶渣水解液之 GPC 圖譜 68
圖十四、高山烏龍茶渣水解液之 TLC 分析 69
圖十五、紅烏龍茶渣水解液之 TLC 分析 70








附表目錄
附表一、高山烏龍茶渣水解液對應麥芽糖、葡萄糖之光譜位置 92

附圖目錄
附圖一、木三糖標準曲線 86
附圖二、麥芽糖標準曲線 87
附圖三、葡萄糖標準曲線 88
附圖四、多醣標準品檢量線 89
附圖五、高山烏龍茶渣水解液之氫光譜 90
附圖六、高山烏龍茶渣水解液之碳光譜 91
附圖七、麥芽糖及葡萄糖之化學結構 92
台灣區製茶工業同業公會。2021。茶訊月刊。1015。
何慧琳。2014。利用市售纖維素酶和半纖維素酶降解麥麩生成木寡糖與甘露寡糖。國立中興大學食品暨應用生物科技學系所。
林家騏。2017。應用Bacillus subtilis WB800N生產人造纖維素體酵素與其固定化酵素之特性與動力學研究。國立中興大學化學工程學系所。
周紹遷、汪少芸、黃順麗、陳秋妹、黃家熾。2012。一種利用廢棄茶渣製備的膳食纖維麵包。中華人民共和國國家知識產權局。
胡民強、王岳飛、徐俠鐘、楊賢強。2006。茶渣生物潔淨有機堆肥肥效試驗研究。茶葉。 32, 145-147。
郭芷君。2014。茶渣再利用及做為菇類栽培基質之探討。茶葉專訊。87, 13。
楊崇仁、陳可可、張穎君。2006。茶葉的分類及普洱茶的定義。茶葉科學技術。2, 37-38。
Aachary A. A., Prapulla S. G. 2011. Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characteriza tion, bioactive properties, and applications. Comprehensive Reviews in Food Science and Food Safety, 10, 2-16.
Akpinar O., Erdogan K., Bostanci S. 2009. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydrate Research, 344, 660-666.
Alander M., Matto J., Kneifel W., Johansson M., Kogler B., Crittenden R., Mattila‐Sandholm T., Saarela M. 2001. Effect of galactooligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb‐12 in the gastrointestinal tract. International Dairy Journal, 11, 817-825.
Alvira P., Tomas-Pejo E., Ballesteros M., Negro M. J. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 10, 4851-4861.
Amorim C., Silvério S. C., Kristala L., Prather J., Rodrigues L. R. 2019. From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides. Biotechnology Advances, 37, 7.
Ang, J. F., Crosby, G. A. 2005. Formulating reduced-calorie foods with powdered cellulose. Food Technology, 59, 35-38.
Aragon C. C., Santos A. F., Ruiz-Matute A. I., Corzo N., Guisan J. M., Monti R., Mateo C. 2013. Continuous production of xylooligosaccharides in a packed bed reactor with immobilized–stabilized biocatalysts of xylanase from Aspergillus versicolor. Journal of Molecular Catalysis B: Enzymatic, 98, 8-14.
Ávila P. F., Silva M. F., Martins M., Goldbeck R. 2021. Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications. World Journal of Microbiology and Biotechnology, 37, 73.
Barbosa F. C., Kendrick E., Brenelli L. B., Arruda H. S., Pastore G. M., Rabelo S. C., Damasio A., Franco T. T., Leak D., Goldbeck R. 2020. Optimization of cello-oligosaccharides production by enzymatic hydrolysis of hydrothermally pretreated sugarcane straw using cellulolytic and oxidative enzymes. Biomass & Bioenergy, 141.
Bajaj P., Mahajan R. 2019. Cellulase and xylanase synergism in industrial biotechnology. Applied Microbiology and Biotechnology, 103, 8711-8724.
Beckham G. T., Johnson C. W., Karp E. M., Salvachúa D., Vardon D. R. 2016. Current Opinion in Biotechnology, 42, 40-53.
Beg Q., Kapoor M., Mahajan L., Hoondal G. 2001. Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326-338.
Belorkar S. A., Gupta A. K. 2016. Oligosaccharides: a boon from nature's desk. AMB Express, 6, 82.
Bergenstråhle M., Wohlert J., Himmel M. E., Brady J.W. 2010. Simulation studies of the insolubility of cellulose. Carbohydrate Research, 345, 2060-2066.
Binod P., Satyanagalakshmi K., Sindhu R., Janu K. U., Sukumaran R. K., Pandey A. 2012. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 37, 109-116.
Birhade S., Pednekar M., Sagwal S., Odaneth A., Lali A. 2017. Preparation of cellulase concoction using differential adsorption phenomenon. Preparative Biochemistry & Biotechnology, 47, 520-529.
Bisaria V. S, Mishra S. 1989. Regulatory Aspects of Cellulase Biosynthesis and Secretion. Critical Reviews in Biotechnology, 9, 61-103.
Bonawitz N. D. 2014. Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature, 509, 376-380.
Bouhnik Y., Flourié B, Riottot M., Bisetti N., Gailing M. F., Guibert A., Bornet F., Rambaud J. C. 1996. Effects of fructooligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutrition and Cancer, 26, 21-29.
Carrillo C. I., Mendonça R.T., Ago M., Rojas O.J. 2018. Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, 25, 1011-1029.
Carvalho A. F. A., Marcondes W. F., de Oliva Neto P., Pastore G. M., Saddler J. N., Arantes V. 2018. The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse. Bioresource Technology, 250, 221-229.
Chandel A. K., Garlapati V. K., Singh A. K., Antunes F. A. F., da Silva S. S. 2018. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370-381.
Chandrasekaran M., Basheer S. M., Chellappan S., Krishna J. G., Beena P. S. 2015. Enzymes in Food and Beverage Processing, 117-137.
Chang V. S., Holtzapple M. T. 2000. Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 84, 5-37.
Chen L., Zhu J., Baez C., Kitin P., Elder T. 2016. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry, 18, 3835-3843.
Chen H., Liu J., Chang X., Chen D., Xue Y., Liu P., Lin H., Han S. 2017. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196-206.
Choudhary J. M. S., Nain L., Arora A. 2014. Enhanced saccharification of steam-pretreated rice straw by commercial cellulases supplemented with xylanase. Journal of Bioprocessing and Biotechniques, 4, 1-6.
Chu Q., Li X., Xu Y., Wang Z., Huang J., Yu S., Yong Q. 2014. Functional cello-oligosaccharides production from the corncob residues of xylo-oligosaccharides manufacture. Process Biochemistry, 49, 1217-1222.
Cotana F., Cavalaglio G., Gelosia M., Nicolini A., Coccia V., Petrozzi., et al. 2014. Production of bioethanol in a second generation prototype from pine wood chips. Energy Procedia, 45, 42-51.
Dammström S., Salmén L., Gatenholm P. 2009. On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. BioResources, 4, 3-14.
Deng Z., Xia A., Liao Q., Zhu X., Huang Y., and Fu Q. 2019. Laccase pretreatment of wheat straw: effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis. Biotechnol for Biofuels, 12, 159.
Dias M. O., Ensinas A. V., Nebra S. A., Maciel Filho R., Rossell C. E., Maciel M. R. W. 2009. Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chemical Engineering Research and Design, 87, 1206-1216.
Dirix C., Duvetter T., Loey A. V., Hendrickx M., Heremans K. 2005. The in situ observation of the temperature and pressure stability of recombinant aspergillus aculeatus pectin methylesterase with Fourier transform IR spectroscopy reveals anunusual pressure stability of beta-helices. Biochemical Journal, 392, 565-571.
Duwe A., Tippkötter N., Ulber R. 2019. Lignocellulose-Biorefinery: Ethanol-Focused. Advances in Biochemical Engineering/Biotechnology, 166, 177-215.
Eisenmenger M. J., Reyes-De-Corcuera J. I. 2009. High pressure enhancement of enzymes: A review. Enzyme and Microbial Technology, 45, 331-347.
Eriksson K. E. L., Bermek H., Schaechter M. 2009. Lignin, lignocellulose, ligninase. Encyclopedia of Microbiology, 373-384.
Farhat W., Venditti R. A., Hubbe M., Taha M., Becquart F., Ayoub A. 2017. A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. ChemSusChem, 10, 305-323.
Gibson G. R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K. S., Cani P. D., Verbeke K., Reid G. 2017. The international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterology & Hepatology, 14, 491-502.
Giummarella N., Lawoko Y. P. A. J. R. a. M. 2019. A critical review on the analysis of lignin carbohydrate bonds in plants. Green Chemistry, 21, 1573-1595.
Gurten I. I., Ozmak M., Yagmur E., Aktas Z. 2012. Preparation and Characterisation of activated carbon from waste tea using K2CO3. Biomass and Bioenergy, 37, 73-81.
Hall M., Bansal P., Lee J. H., Realff M. J., Bommarius A. S. 2010. Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. The FEBS Journal, 277, 1571-1582.
Hansen N. M. L., Plackett D. 2008. Sustainable Films and Coatings from Hemicelluloses: A Review. Biomacromolecules, 9, 1493-1505.
Hassan S. S., Williams G. A., Jaiswal A. K. 2019. Moving towards the second generation of lignocellulosic biorefineries in the EU: drivers, challenges, and opportunities. Renewable & Sustainable Energy Reviews, 101, 590-599.
Isikgor F. H., Becer C. R. 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6, 4497-4559.
Janu K. U., Sindhu R., Binod P., Kuttiraja M., Sukumaran R. K., Pandey A.2011. Studies on physicochemical changes during alkali pretreatment and optimization of hydrolysis conditions to improve sugar yield from bagasse. Journal of Scientific and Industrial Research, 70, 952-958.
Jeffries T. W. 1994. Biodegradation of lignin and hemicelluloses. Biochemistry of Microbial Degradation, 233-277.
Jiao L. F., Song Z. H., Ke Y. L., Xiao K., Hu C. H., Shi B. 2014. Cello-oligosaccharide influences intestinal microflora, mucosal architecture and nutrient transport in weaned pigs. Animal Feed Science and Technology, 195, 85-91.
Johansen H. N., Glitso V., Knudsen K. E. B. 1996. Influence of extraction solvent and temperature on the quantitative determination of oligosaccharides from plant materials by high‐performance liquid chromatography. Journal of Agricultural and Food Chemistry, 44, 1470-1474.
Karnaouri A., Matsakas L., Krikigianni E., Rova U., Christakopoulos P. 2019. Valorization of waste forest biomass toward the production of cello-oligosaccharides with potential prebiotic activity by utilizing customized enzyme cocktails. Biotechnology for Biofuels, 12, 285.
Kerckhoffs, A. P. M., Samson M., van Berge Henegouwen G. P. 2006. Sampling microbiota in the human gastrointestinal tract. Gastrointestinal Microbiology, 25-50.
Kim D., Han G. D. 2012. High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran. Innovative Food Science & Emerging Technologies, 16, 191-197.
Kim J. S., Lee Y. Y., Kim T. H. 2016. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42-48.
Kleessen B., Sykura B., Zunft H. J., Blaut M. 1997. Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. The American Journal of Clinical Nutrition, 65, 1397-1402.
Klemm D., Kramer F., Moritz S., Lindstrom T., Ankerfors M., Gray D. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50, 5438-5466.
Kumar A. K., Sharma S. 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4, 7.
Kumar V., Satyanarayana T. 2011. Applicability of thermo-alkali-stable and cellulase free xylanase from novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnology Letters, 33, 2279-2285.
Laser M., Larson E., Dale B., Wang M., Greene N., Lynd L. R. 2009. Comparative analysis of efficiency, environmental impact, and process economics for mature biomass refining scenarios. Biofuels Bioproducts and Biorefining, 3, 247-270.
Lee H. V., Hamid S. B., Zain S. K. 2014. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal.
Lewandowski I., Clifton-Brown J., Scurlock J., Huisman W. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy, 19, 209-227.
Li M., Wang J., Yang Y., Xie G. 2016. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Bioresource Technology, 208, 31-41.
Li H., Chen X., Xiong L., Luo M., Chen X., Wang C., Huang C., Chen X. 2019. Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresource Technology, 275, 345-351.
Ligero P., de Vega A., van der Kolk J. C., van Dam J.E.G. 2011. Production of xylo-oligosaccharides from Miscanthus × giganteus by autohydrolysis. BioResources, 6, 4417-4429.
Lina B. A. R., Jonker D., Kozianowsky G. 2002. Isomaltulose (Palatinose): a review of biological and toxicological studies. Food and Chemical Toxicology, 40, 1375-1381.
Liu J., Willför S., Xu C. 2015. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre, 5, 31-61.
Lucenius J., Valle-Delgado J. J., Parikka K., Österberg M. 2019. Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites. Journal of Colloid and Interface Science, 555, 104-114.
Lupton J. R. 2002. Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Journal of the American Dietetic Association. 102, 1621-1630.
Luo X., Liu J., Zheng P., Li M., Zhou Y., Huang L., Chen L., Shuai L. 2019. Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnology for Biofuels, 12, 51.
Lu Q. L., Tang L. R., Wang S., Huang B., Chen Y. D., Chen X. R. 2014. An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese. Biomass Bioenergy, 70, 267-272.
Ma T., Zhao J., Ao L., Liao X., Ni Y., Hu X., Song Y. 2018. Effects of different pretreatments on pumpkin (Cucurbita pepo) lignocellulose degradation. International Journal of Biological Macromolecules, 120, 665-672.
Mano M. C. R., Neri-Numa I. A., da Silva J. B., Paulino B. N., Pessoa M. G., Pastore G. M. 2018. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Applied Microbiology and Biotechnology, 102, 17-37.
Meng X., Pu Y., Yoo C. G., Li M., Bali G., Park D. Y. 2017. An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. ChemSusChem, 10, 139-150.
Menon V., Rao M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Progress in Energy and Combustion Science, 38, 522-550.
Miguel Â. S. M., Martins-Meyer T. S., da Costa Figueiredo É. V., Lobo B. W. P., Dellamora-Ortiz G. M. 2013. Enzymes in bakery: current and future trends. Food Industry, 287-321.
Montella, R., Coïsson, J. D., Travaglia, F., Locatelli, M., Malfa, P., Martelli, A., Arlorio M. 2013. Bioactive compounds from hazelnut skin (Corylus avellana L.): Effects on Lactobacillus plantarum P17630 and Lactobacillus crispatus P17631. Journal of Functional Foods, 5, 306-315.
Mosier N., Hendrickson R., Ho N., Sedlak M., Ladisch M. R. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology, 96, 1986-1993.
Mota T. R., de Oliveira D. M., Marchiosi R., Ferrarese-Filho O., dos Santos W. D. 2018. Plant cell wall composition and enzymatic deconstruction. AIMS Bioengineering, 5, 63-77.
Mussatto S. I., Mancilha I. M. 2007. Nondigestible oligosaccharides: a review. Carbohydrate Polymers, 68, 587-597.
Neralla S. 2012. Nanocrystals - Synthesis, characterization and applications. 6, 103-105.
Okazaki, M., Fujikaw, S., Matsumoto, N. 1990. Effect of xylooligosaccharide on the growth of Bifidobacteria. Bifidobacteria Microflora, 9, 77-86.
Otieno D., Ahring B. 2012. The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: Xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydrate Research, 360, 84-92.
Oudiani A. E., Chaabouni Y., Msahli S., Sakli F. 2011. Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydrate Polymers, 86, 1221-1229.
Phitsuwan P., Sakka K., Ratanakhanokchai K. 2016. Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment. Bioresource Technology, 218, 247-256.
Phitsuwan P., Charupongrat S., Klednark R., Ratanakhanokchai K. 2015. Structural features and enzymatic digestibility of Napier grass fibre treated with aqueous ammonia. Journal of Industrial and Engineering Chemistry, 32, 360-364.
Poletto P., Pereira G. N., Monteiro C. R. M., Pereira M. A. F., Bordignon S. E., Oliveira D. 2020. Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochemistry, 91, 352-363.
Qing Q., Li H., Kumar R., Wyman C. E. 2013. Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, 391-415.
Ragauskas A. J., Beckham G. T., Biddy M. J., Chandra R., Chen F., Davis M. F. 2014. Lignin valorization: improving lignin processing in the biorefinery. Science, 344, 1246843.
Rashid U., Ahmad J., Ibrahim M.L, Nisar J., Hanif M.A., Yaw T., Shean C. 2019. Single-Pot Synthesis of Biodiesel using Efficient Sulfonated-Derived Tea Waste-Heterogeneous Catalyst. Materials, 12, 2293.
Rennie E. A., Scheller H. V. 2014. Xylan biosynthesis. Current Opinion in Biotechnology, 26, 100-107.
Rinaldi R., Jastrzebski R., Clough M. T., Ralph J., Kennema M., Bruijnincx P. C. A., Weckhuysen B. M. 2015. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie International Edition, 55, 8164-8215.
Samanta A. K., Jayapal N., Jayaram C., Roy S., Kolte A. P., Senani S., Sridhar M. 2015. Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioactive Carbohydrates and Dietary Fibre, 5, 62-71.
Sanchez‐Mata M. C., Penuela‐Teruel M. J., Camara‐Hurtado M., Daez‐Marques C., Torija‐Isasa M. E. 1998. Determination of mono‐, di‐, and oligosaccharides in legumes by high‐performance liquid chromatography using an amino‐bonded silica column. Journal of Agricultural and Food Chemistry, 46, 3648-3652.
Sangeetha P. T., Ramesh M. N., Prapulla S. G. 2005. Recent trends in the microbial production, analysis and application of FOS. Trends in Food Science & Technology, 16, 442-457.
Sannigrahi P., Ragauskas A. J., Tuskan G. A. 2010. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioproducts and Biorefining, 4, 209-226.
Santibáñez L., Henríquez C., Corro-Tejeda R., Bernal S., Armijo B., Salazar O. 2021. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydrate Polymers, 251, 117118.
Sanz M. L., Gibson G. R., Rastall R. A. 2005. Influence of disaccharide structure on prebiotic selectivity in vitro. Journal of Agricultural and Food Chemistry, 53, 5192-5199.
Schmer M. R., Vogel K. P., Mitchell R. B., Perrin R. K. 2008. Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences, 105, 464-469.
Schneeman, B. O. 1986. Dietary fiber: Physical and chemical properties, methods of analysis, and physiological effects. Food Technology, 40, 104-110.
Sharma H. K., Xu C., Qin W. 2019. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste and Biomass Valorization, 10, 235-251.
Sindhu R., Pandey A., Binod P. 2015. Chapter 4 - Alkaline Treatment. Pretreatment of Biomass. Pretreatment of Biomass, 51-60.
Song J., Jiao L. F., Xiao K., Luan Z. S., Hu C. H., Shi B., Zhan X. A. 2013. Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. Animal Feed Science and Technology, 185, 175-181.
Tarasov D., Leitch M., Fatehi P. 2018. Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnology for Biofuels, 11, 269.
Tayeb A. H., Amini E., Ghasemi S., Tajvidi M. 2018. Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules, 23, 2684.
Tolonen L. K., Juvonen M., Niemelä K., Mikkelson A., Tenkanen M., Sixta H. 2015. Supercritical water treatment for cello-oligosaccharide production from microcrystalline cellulose. Carbohydrate Research, 401, 16-23.
Uyeno Y., Kawashima K., Hasunuma T., Wakimoto W., Noda M., Nagashima S. 2013. Effects of cellooligosaccharide or a combination of cellooligosaccharide and live clostridium butyricum culture on performance and intestinal ecology in holstein calves fed milk or milk replacer. Livestock Science, 153, 88-93.
Vazquez M. J., Alonso J. L., Domınguez H., Parajo J. C. 2000. Xylooligosaccharides: manufacture and applications. Trends in Food Science & Technology, 11, 387-393.
Wang Q., Wang W., Tan X., Zahoor, Chen X., Guo Y., Yu Q., Yuan Z., Zhuang X. 2019. Low-temperature sodium hydroxide pretreatment for ethanol production from sugarcane bagasse without washing process. Bioresource Technology, 291, 121844.
Wang W., Zhuang X., Tan X., Wang Q., Chen X., Yu Q., Qi W., Wang Z., Yuan Z. 2018. Dual effect of nonionic surfactants on improving the enzymatic hydrolysis of lignocellulose. Energy & Fuels, 32, 5951-5959.
Wang W., Wang Q., Tan X., Qi W., Yu Q., Zhou G., Zhuang X., Yuan Z. 2016. High conversion of sugarcane bagasse into monosaccharides based on sodium hydroxide pretreatment at low water consumption and wastewater generation. Bioresource Technology, 218, 1230-1236.
Wang X., Yao C., Wang F., Li Z. 2017. Cellulose-Based Nanomaterials for Energy Applications. Small, 13, 10.
Wilkinson S., Smart K. A., Cook D. J. 2014. Optimisation of alkaline reagent based chemical pre-treatment of Brewers spent grains for bioethanol production. Industrial Crops and Products, 62, 219-227.
Yamashita Y., Shono M., Sasaki C., Nakamura Y. 2010. Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydrate Polymers, 79, 914-920.
Yuan Z., Wen Y., Li G. 2018. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresource Technology, 259, 228-236.
Zeng Y., Zhao S., Yang S., Ding S. Y. 2014. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 27, 38-45.
Zhao Y., Wang Y., Zhu J.Y., Ragauskas A., Deng Y. 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering, 99, 1320-1328.
Zhang L., Peng X., Zhong L., Chua W., Xiang Z., Sun R. 2019. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering. Current Medicinal Chemistry, 26, 2456-2474.
Zhong C., Ukowitz C., Domig K. J., Nidetzky B. 2020. Short-chain cello-oligosaccharides: intensification and scale-up of their enzymatic production and selective growth promotion among probiotic bacteria. Journal of Agricultural and Food Chemistry, 68, 8557-8567.
Zhou C., Wu Q. 2012. Recent Development in Applications of Cellulose Nanocrystals for Advanced Polymer-Based Nanocomposites by Novel Fabrication Strategies. Nanocrystals - Synthesis, Characterization and Applications.
Zhou P., Liu C., Wang W., Wang F., Nie K., Deng L. 2020. The effectively simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose by enzymatic esterification. Applied Biochemistry and Biotechnology, 192, 600-615.
Zhu Z. Y., Zhao L., Ge X. R., Tang Y. L., Chen L. J., Pang W., Zhang Y. 2015. Preparation, characterization and bioactivity of xylobiose and xylotriose from corncob xylan by xylanase. European Food Research and Technology. 241, 27-35.
Ziemer C. J., Gibson G. R. 1998. An overview of probiotics, prebiotics and synbiotics in the functional food concept: Perspectives and future strategies. International Dairy Journal, 8, 473-479.
電子全文 電子全文(網際網路公開日期:20261021)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top