跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王威曜
研究生(外文):Wang, Wei-Yao
論文名稱:促成行銷敏捷性因素之研究
論文名稱(外文):Drivers of Marketing Agility: The Roles of IT and Alignment
指導教授:李爵安
指導教授(外文):Lee, Chueh-An
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:行銷與觀光管理學系研究所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:行銷敏捷性行銷-營運部門校準資源分配能力資訊科技協作能力進階分析能力
外文關鍵詞:Marketing agilityMarketing-operations alignmentResource allocationIT CollaborationAdvanced analytical capability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現代環境市場的變化,隨之而來是更多接觸顧客的方式以及競爭和技術的快速變化,這些要素導致企業更重視敏捷行銷,但由於行銷敏捷是一個新穎的概念,先前探討此概念的文獻都是質性研究,本研究的目的為量化行銷敏捷的概念,並探討企業如何增加行銷敏捷性。本研究提出「行銷-營運部門校準」、「資源分配能力」為促成敏捷行銷的重要因素,同時「進階分析能力」、「資訊科技協作能力」能提升「行銷-營運部門校準」與「資源分配能力」。本研究以台灣服務業前兩千大企業為研究對象,研究結果顯示企業具備優秀的行銷-營運部門校準與資源分配能力能提升行銷敏捷性,而導入資訊科技協作工具則可以幫助企業的部門校準以及資源分配,另外進階分析能力雖然對於提升行銷敏捷性沒有直接效果,但可以幫助增強資源分配能力進而間接增加企業的行銷敏捷性。
In recent business environment, market changes rapidly, followed by more ways to reach customers, to compete, and to advance technology. Firms thus pay more attention to marketing agility. However, since marketing agility is a novel concept, the literature is less discussed and investigated. Thus, this research aims to conceptualize marketing agility and to explore how firms enhance marketing agility. This study proposes “marketing-operations alignment” and “resource allocation” are critical antecedents of marketing agility. “Advanced analytical capabilities” and “IT collaboration capability” are further proposed to directly or indirectly drive marketing agility. The research target is the top 2,000 firms in the service industry in Taiwan. The research results show that firms with excellent marketing-operations alignment and resource allocation can enhance marketing agility; IT collaboration tools can help the company’s marketing-operations alignment and resource allocation. In addition, although advanced analysis ability has no direct effect on marketing agility, it rather can help firms enhance resource allocation directly and increase marketing agility indirectly.
摘要 i
Abstract ii
序言 iii
目錄 iv
圖目錄 viii
表目錄 ix
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 4
第四節 研究流程 5
第二章 文獻探討 6
第一節 行銷敏捷性 6
一、 敏捷性起源 6
二、 組織敏捷性 7
三、 行銷敏捷性 7
第二節 資訊科技協作能力 11
一、 協作能力 11
二、 資訊科技協作能力 11
三、 資訊科技協作的應用 12
第三節 行銷-營運部門校準 14
一、 校準 14
二、 行銷-營運部門校準 15
第四節 進階分析能力 17
一、 進階分析能力 17
二、 大數據分析 18
三、 機器學習與AI 18
四、 進階分析能力的應用 18
第五節 資源分配 20
一、 資源分配 20
二、 資源分配的應用 22
第六節 各構念之定義 24
第三章 研究方法 25
第一節 研究架構 25
第二節 研究假說 25
一、 行銷-營運部門校準與行銷敏捷性 25
二、 行銷-營運部門校準與資源分配 26
三、 資源分配與行銷敏捷性 27
四、 進階分析能力與行銷敏捷性 27
五、 資訊科技協作能力與行銷-營運部門校準 28
六、 資訊科技協作能力與資源分配 29
七、 進階分析能力與資源分配 29
第三節 研究變數的操作型定義與衡量 30
一、 研究變數的操作型定義 30
二、 研究變數的衡量 31
第四節 研究對象、抽樣方法 36
一、 研究對象 36
二、 抽樣方法 36
第五節 資料分析方法 36
第四章 研究結果與分析 37
第一節 整體模型之評鑑 37
一、 公司基本資料的描述性統計 37
二、 一階構念衡量模型 39
三、 一階構念交叉負荷表 41
四、 一階構念區別效度檢定表 44
第二節 行銷敏捷性反映性指標之測量 45
一、 行銷敏捷性反映性測量指標參數估計 45
二、 行銷敏捷性反映性測量模型交叉負荷表 47
三、 行銷敏捷性反映性測量模型區別效度檢定表 47
四、 行銷敏捷性反映性測量模型重複分析 48
第三節 結構模式分析 49
一、 結構模式分析 49
二、 共同方法偏誤檢測 50
第五章 研究結果、討論與建議 52
第一節 研究結論與討論 52
一、 行銷-營運部門校準與行銷敏捷性之關係 52
二、 行銷-營運部門校準與資源分配之關係 52
三、 資源分配與行銷敏捷性之關係 53
四、 進階分析能力與行銷敏捷性之關係 53
五、 資訊科技協作能力與行銷-營運部門校準之關係 53
六、 資訊科技協作能力與資源分配之關係 53
七、 進階分析能力與資源分配 54
八、 控制變數與行銷敏捷性之關係 54
第二節 實務意涵 55
一、 使用敏捷性的行銷方法 55
二、 建立敏捷性的團隊 56
三、 建置公司的資訊科技設備 56
第三節 研究限制 57
第四節 未來研究方向 58
一、 不同行業特性 58
二、 關於行銷敏捷性的要素 58
三、 行銷敏捷性的負面效果 58
參考文獻 59

圖 1-1 研究流程 5
圖 2-1 Trello介面圖 13
圖 2-2 Trello燃盡圖 14
圖 3-1研究架構圖 25
圖 4-1重複分析路徑圖 47
圖 4-2 研究路徑分析圖 49

表 2- 1 行銷敏捷性與相關構造進行比較 9
表 2- 2 行銷-營運部門校準的定義 16
表 2- 3 資源分配對企業戰略的影響 20
表 2- 4 理論概念和研究架構表 24
表 3-1各項變數之操作性定義 30
表 3-2各項變數之衡量題項 31
表 4-1公司基本資料分析表 37
表 4-2一階構念測量模型參數估計表 39
表 4-3一階構念交叉負荷表 41
表 4-4一階構念區別效度檢定表 44
表 4-5 HTMT分析表 45
表 4-6行銷敏捷性反映性測量模型參數估計表 46
表 4-7行銷敏捷性反映性測量模型交叉負荷表 47
表 4-8行銷敏捷性反映性測量模型區別效度檢定表 47
表 4-9 行銷敏捷性反映性測量模型區別效度檢定表 48
表 4-10結構模式分析 49
表 4-11 CLC檢測法與原始模型比較表 50
Banker, R. D., Bardhan, I., & Asdemir, O. (2006). Understanding the impact of collaboration software on product design and development. Information Systems Research, 17(4), 352-373.
Bennis, W. G., & O’Toole, J. (2005). How business schools have lost their way. Harvard business review, 83(5), 96-104.
Bouras, C., Giannaka, E., & Tsiatsos, T. (2008). E-collaboration concepts, systems, and applications. In Encyclopedia of Internet Technologies and Applications (pp. 165-171): IGI Global.
Bower, J. L. (1970). Managing the Resource Allocation Process. Boston. MA: Harvard Business School.
Bradlow, E. T., Gangwar, M., Kopalle, P., & Voleti, S. (2017). The role of big data and predictive analytics in retailing. Journal of Retailing, 93(1), 79-95.
Breu, K., Hemingway, C. J., Strathern, M., & Bridger, D. (2002). Workforce agility: the new employee strategy for the knowledge economy. Journal of Information technology, 17(1), 21-31.
Brown, S. A., Dennis, A. R., & Venkatesh, V. (2010). Predicting collaboration technology use: Integrating technology adoption and collaboration research. Journal of Management Information Systems, 27(2), 9-54.
Burgelman, R. A. (1983). A process model of internal corporate venturing in the diversified major firm. Administrative science quarterly, 223-244.
Calantone, R. J., Schmidt, J. B., & Song, X. M. (1996). Controllable factors of new product success: A cross-national comparison. Marketing science, 15(4), 341-358.
Chakravarty, A., Grewal, R., & Sambamurthy, V. (2013). Information technology competencies, organizational agility, and firm performance: Enabling and facilitating roles. Information Systems Research, 24(4), 976-997.
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 1165-1188.
Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. In: JSTOR.
Chris, J., & Brook, B. (2020). Marketing Agility: How it Works and What it Means for the Rest of the Organization. Retrieved from https://gorillalogic.com/blog/marketing-agility-how-it-works-and-what-it-means-for-the-rest-of-the-organization/
Christensen, C. M., & Bower, J. L. (1996). Customer power, strategic investment, and the failure of leading firms. Strategic management journal, 17(3), 197-218.
Collier, K. (2012). Agile analytics: A value-driven approach to business intelligence and data warehousing: Addison-Wesley.
Cooper, R. G., & Kleinschmidt, E. J. (1988). Resource allocation in the new product process. Industrial Marketing Management, 17(3), 249-262.
Danneels, E. (2007). The process of technological competence leveraging. Strategic management journal, 28(5), 511-533.
Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73-80.
Deloitte. (2019). Deloitte's Heat Launches Articial Intelligence Practice 'Heat AI'. Retrieved from https://www.prnewswire.com/news-releases/deloittes-heat-launches-artificial-intelligence-practice-heat-ai-300867673.html
Dillenbourg, P. (1999). What do you mean by collaborative learning? In.
Dove, R. (2002). Response ability: the language, structure, and culture of the agile enterprise: John Wiley & Sons.
Doz, Y., & Kosonen, M. (2008). The dynamics of strategic agility: Nokia's rollercoaster experience. California Management Review, 50(3), 95-118.
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71.
Dubey, R., Gunasekaran, A., Childe, S. J., Fosso Wamba, S., Roubaud, D., & Foropon, C. (2021). Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. International Journal of Production Research, 59(1), 110-128.
Eves, K., Salmon, J., Olsen, J., & Fagergren, F. (2018). A comparative analysis of computer-aided design team performance with collaboration software. Computer-Aided Design and Applications, 15(4), 476-487.
Fawcett, S. E., Magnan, G. M., & McCarter, M. W. (2008). Benefits, barriers, and bridges to effective supply chain management. Supply chain management: An international journal.
Fawcett, S. E., Wallin, C., Allred, C., Fawcett, A. M., & Magnan, G. M. (2011). Information technology as an enabler of supply chain collaboration: a dynamic‐capabilities perspective. Journal of Supply Chain Management, 47(1), 38-59.
Folta, T. B., Helfat, C. E., & Karim, S. (2016). Examining resource redeployment in multi-business firms. In Resource redeployment and corporate strategy: Emerald Group Publishing Limited.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Franks, B. (2014). The analytics revolution: How to improve your business by making analytics operational in the big data era: John Wiley & Sons.
Ghobadian, A., O'Regan, N., Howard, T., Gallear, D., Kathuria, R., Joshi, M. P., & Porth, S. J. (2007). Organizational alignment and performance: past, present and future. Management Decision.
Gilbert, C. G. (2006). Change in the presence of residual fit: Can competing frames coexist? Organization science, 17(1), 150-167.
Gilson, L. L., & Shalley, C. E. (2004). A little creativity goes a long way: An examination of teams’ engagement in creative processes. Journal of Management, 30(4), 453-470.
Hair, J. F. (2009). Multivariate data analysis.
Harraf, A., Wanasika, I., Tate, K., & Talbott, K. (2015). Organizational agility. Journal of Applied Business Research (JABR), 31(2), 675-686.
Homburg, C., Theel, M., & Hohenberg, S. (2020). Marketing Excellence: Nature, Measurement, and Investor Valuations. Journal of Marketing, 0022242920925517.
Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30-50.
Hung, R. Y. Y., Yang, B., Lien, B. Y.-H., McLean, G. N., & Kuo, Y.-M. (2010). Dynamic capability: Impact of process alignment and organizational learning culture on performance. Journal of world business, 45(3), 285-294.
Kalaignanam, K., Tuli, K. R., Kushwaha, T., Lee, L., & Gal, D. (2021). Marketing Agility: The Concept, Antecedents, and a Research Agenda. Journal of Marketing, 85(1), 35-58.
Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE access, 6, 32328-32338.
Kock, N., Davison, R., Wazlawick, R., & Ocker, R. (2001). E‐collaboration: A look at past research and future challenges. Journal of Systems and Information Technology.
Lai, E. R. (2011). Collaboration: A literature review. Pearson Publisher. Retrieved November, 11, 2016.
Liang, H., Wang, N., Xue, Y., & Ge, S. (2017). Unraveling the alignment paradox: How does business—IT alignment shape organizational agility? Information systems research, 28(4), 863-879.
Liker, J. K. (2004). The 14 principles of the Toyota way: an executive summary of the culture behind TPS. The Toyota Way, 14(1), 35-41.
Lin, Y., & Wu, L.-Y. (2014). Exploring the role of dynamic capabilities in firm performance under the resource-based view framework. Journal of business research, 67(3), 407-413.
Lu, Y., & Ramamurthy, K. (2011). Understanding the link between information technology capability and organizational agility: An empirical examination. MIS quarterly, 931-954.
Malhotra, M. K., & Sharma, S. (2002). Spanning the continuum between marketing and operations. Journal of Operations Management, 20(3), 209-219.
Marchwinski, C., & Shook, J. (2003). Lean lexicon: a graphical glossary for lean thinkers: Lean Enterprise Institute.
Maritan, C. A., & Lee, G. K. (2017a). Bringing a resource and capability lens to resource allocation. Journal of Management, 43(8), 2609-2619.
Maritan, C. A., & Lee, G. K. (2017b). Resource allocation and strategy. In: SAGE Publications Sage CA: Los Angeles, CA.
Marques, A., Lacerda, D. P., Camargo, L. F. R., & Teixeira, R. (2014). Exploring the relationship between marketing and operations: Neural network analysis of marketing decision impacts on delivery performance. International Journal of Production Economics, 153, 178-190.
McGaughey, N. (1988). The manufacturing connection: a competitive requirement. Ind. Manage, 1, 23-25.
Miltenburg, J. (2008). Setting manufacturing strategy for a factory-within-a-factory. International Journal of Production Economics, 113(1), 307-323.
Montgomery, D. B., Hausman, W., & Roth, A. (2002). Why Should Marketing and Manufacturing Work Together? Some Exploratory Empirical Result. Journal of Operations Management, 20(3), 241.
Morrison, M. E. (2019). TD’s Agile Approach to Always-On Marketing. Retrieved from https://deloitte.wsj.com/articles/tds-agile-approach-to-always-on-marketing-01548640938
Noda, T., & Bower, J. L. (1996). Strategy making as iterated processes of resource allocation. Strategic management journal, 17(S1), 159-192.
O'Cass, A., Ngo, L. V., & Siahtiri, V. (2015). Marketing resource-capability complementarity and firm performance in B2B firms. Journal of Business & Industrial Marketing.
O'Leary, D. E. (2013). Artificial intelligence and big data. IEEE intelligent systems, 28(2), 96-99.
Paiva, E. L. (2010). Manufacturing and marketing integration from a cumulative capabilities perspective. International Journal of Production Economics, 126(2), 379-386.
Palmer III, R. C. (2007). Assessing information alignment in production organizations. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
Park, Y., El Sawy, O. A., & Fiss, P. (2017a). The role of business intelligence and communication technologies in organizational agility: a configurational approach. Journal of the association for information systems, 18(9), 1.
Park, Y., El Sawy, O. A., & Fiss, P. C. (2017b). The role of business intelligence and communication technologies in organizational agility: A configurational approach. Journal of the Association for Information Systems, 18(9), 648-686.
Pavlou, P. A., & El Sawy, O. A. (2006). From IT leveraging competence to competitive advantage in turbulent environments: The case of new product development. Information Systems Research, 17(3), 198-227.
Provine, W. B. (1989). Sewall Wright and evolutionary biology: University of Chicago Press.
Rigby, D. K., Sutherland, J., & Takeuchi, H. (2016). Embracing Agile. Harvard Business Review((pp.40–48, 50)). Retrieved from https://hbr.org/2016/05/embracing-agile
Roberts, N., & Grover, V. (2012). Leveraging information technology infrastructure to facilitate a firm's customer agility and competitive activity: An empirical investigation. Journal of Management Information Systems, 28(4), 231-270.
Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. Paper presented at the Computer supported collaborative learning.
Rosemann, M., & vom Brocke, J. (2015). The six core elements of business process management. In Handbook on business process management 1 (pp. 105-122): Springer.
Saboo, A. R., Kumar, V., & Park, I. (2016). Using big data to model time-varying effects for marketing resource (re) allocation. MIS quarterly, 40(4), 911-939.
Schildt, H. (2017). Big data and organizational design–the brave new world of algorithmic management and computer augmented transparency. Innovation, 19(1), 23-30.
Schultz, E. J. (2018). FORD TAPS BRYAN CRANSTON FOR SWAGGER-FILLED U.S. CAMPAIGN. Retrieved from https://adage.com/article/cmo-strategy/ford-taps-bryan-cranston-swagger-filed-u-s-campaign/315326
Shin, H., Lee, J.-N., Kim, D., & Rhim, H. (2015). Strategic agility of Korean small and medium enterprises and its influence on operational and firm performance. International Journal of Production Economics, 168, 181-196.
Sombultawee, K., & Boon-itt, S. (2018). Marketing-operations alignment: A review of the literature and theoretical background. Operations research perspectives, 5, 1-12.
Srinivasan, R., & Swink, M. (2018). An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. Production and Operations Management, 27(10), 1849-1867.
Tatikonda, M. V., & Montoya-Weiss, M. M. (2001). Integrating operations and marketing perspectives of product innovation: The influence of organizational process factors and capabilities on development performance. Management science, 47(1), 151-172.
Tehseen, S., Ramayah, T., & Sajilan, S. (2017). Testing and controlling for common method variance: A review of available methods. Journal of Management Sciences, 4(2), 142-168.
Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism. International Journal of Production Economics, 222, 107498.
Yu, W., Ramanathan, R., & Nath, P. (2014). The impacts of marketing and operations capabilities on financial performance in the UK retail sector: A resource-based perspective. Industrial Marketing Management, 43(1), 25-31.
Zammuto, R. F., Griffith, T. L., Majchrzak, A., Dougherty, D. J., & Faraj, S. (2007). Information technology and the changing fabric of organization. Organization science, 18(5), 749-762.
Zhang, H., Song, M., & He, H. (2020). Achieving the success of sustainability development projects through big data analytics and artificial intelligence capability. Sustainability, 12(3), 949.
電子全文 電子全文(網際網路公開日期:20260823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top