一、中文文獻
王文科(2000)。質的教育研究法。台北:師大書苑。
王勝弘(2002)。國小學童面積測量公式概念形成歷程之研究。未出
版之碩士論文,國立台南大學數學教育學系,台南。
中央社(2009)。國小高年級數學真的好難?中央社。線上檢索日
期:2021年3月2日。取自:
https://www.cna.com.tw/postwrite/Detail/44360.aspx
李心儀(2016)。不同解題歷程模式中的回顧。臺灣教育評論月刊,
5(8),157-161.
林福來(2015)。就是要學好數學Just Do Math 第一年結案報告。
線上檢索日期:2020年12月16 日取自
https://drive.google.com/drive/folders/0BwUMwhK0cyy2Q0Y4V1
hjWUJxVFk
林曉菁(2007)。「故事式」數學教學模組之研究-以面積單元為例。
未出版之碩士論文,國立嘉義大學數學教育研究所,嘉義。
江重輝(2008)。國小長方體表面積之補充教學。未出版之碩士論文,國立嘉義大學數學教育研究所,嘉義。
周武男(1988)。國中生實測概念之發展。國科會專題研究計劃成果
報告(報告編號CS77-01110-S017-01A)。
邱錦屏(2018)。論中小學教師落實十二年國教「以學生為主體」的
教學實踐策略。臺灣教育評論月刊,7(7),39-46。
呂惠汝(2012)。PPt簡報融入國小五年級複合形體表面積補救教學
之研究。未出版之碩士論文,國立屏東教育大學數理教育研究
所,屏東。
吳心瑀(2019)。國小五年級學童表面積學習成效探討。未出版之碩
士論文,國立台南大學應用數學系碩士在職專班,台南。
汪榮財(1995)。國小學生之後設認知與科學文章閱讀理解。國民教
育集刊,1,81-83。
高敬文(1989)。我國國小學童測驗概念發展研究。國立屏東師範學
院初等教育研究,1,183-219。
陳人豪(2001)。國小高年級學童面積與周長概念之錯誤類型研究。
未出版之碩士論文,國立台中教育大學數學教育系,台中。
康鳳梅、鍾瑞國、劉俊祥、李金泉(2002)。高職機械製圖科學生空
間能力差異之研究。師大學報:科學教育類,47(1),55-69。
梁立鑑、譚寧君、楊凱翔(2014)。拆、猜、看—尋找正方體十一個
展開圖策略。科學教育月刊,366,2-10。
張宇樑、吳樎椒(2006)。研究設計:質化、量化及混合方法取向。
台北:學富文化。
張宇樑(2012)。國小數學教科書研究之回顧與前瞻。教育研究月刊
,217,74-87。
張宇樑(2020)。教師專業發展:以促進學生理解之教學為進路。教
育研究月刊,311,32-45。
張春興(2013)。教育心理學。台北市:東華書局。
郭生玉(2012)。心理與教育研究法:量化、質性與混和研究方法。
台北:精華出版社。
黃茂在、陳文典(2004)。「問題解決」的能力。科學教育月刊,
273,21-41。
黃瑞琴(2001)。質的教育研究方法。台北:心理出版社。
楊雅芬(2008)。以後設認知教學為導向之國小六年級學童分數除法
學習歷程及成效之研究。未出版之碩士論文,國立臺南大學數
學教育學系教學碩士班碩士論文,臺南市。
鄭美玲(2015)。國小六年級學生表面積與體積概念調查之研究。未
出版之碩士論文,國立台北教育大學數學暨資訊教育學系,台
北。
蔡清田(2013)。社會科學研究方法新論。台北:五南圖書。
教育部(2014)。十二年國民基本教育課程綱要—總綱。台北:作者。
教育部(2018)。十二年國民基本教育課程綱要—數學領域。台北:
作者。
潘淑滿(2003)。質性研究-理論與運用。台北:心理出版社。
國家教育研究院(2020)。十二年國民基本教育課程綱要-數學領域
課程手冊。台北:作者。
譚寧君(1998)。國小兒童面積迷思概念分析研究。臺北師院學報,
11,573-602。
二、外文文獻
Anthony, G. (2000). Factors influencing first-year students’ success
in mathematics. International Journal of Mathematical Education
in Science and Technology, 31(1), 3-14
Battista, M. T., Wheatly, G. H., & Talsma, G. (1982). The importance
of spatial visualization and cognitive development for geometry
learning in preservice elementary teachers. Journal for Research
in Mathematics Education, 13(5), 332-340.
Brown, A. (1987). Metacognition, executive control, self-regulation,
and other more mysterious mechanisms. In F. E. Weinert & R. H.
Kluwe (Eds.) Metacognition, motivation, and understanding (pp.
65-116). Hillsdale, NJ: Lawrence Erlbaum.
Bishop, A. J. (1980). Spatial abilities and mathematics education: A
review. Educational Studies in Mathematics, 11, 257-269.
Campbell, P. F. & Bamberger, H. J. (1990). Implementing the
standards: The vision of problem solving in the standards.
Arithmetic Teacher, 37(9), 14-17.
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of reasoning on mathematics teaching and learning (pp.402-464). New York: Macmillan.
Chang, Y. L. & Wu, S. C. (2015). Examining relationships among elementary mathematics teachers’ efficacy and their students’ mathematics self-efficacy and achievement. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1307-1320.
Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (2nd ed.). Thousand Oaks, CA: Sage.
D'Zurilla, T. J., & Goldfried, M. R. (1971). Problem Solving and Behavior Modification. Journal of Abnormal Psychology, 78, 107-126.
Flavell, J. H. (1981). Cognitive Monitoring. In W. Patrick Dickson, Children’s oral communication skills. New York : Academic Press.
Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 8(3), 211-215.
Garrett, N. (1986). The problem with grammar. Modern Language Journal, 70, 133-47.
Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16, 163-176.
Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education,16, 163-176.
Klausmeier, H. J. (1985). Educational psychology. New York, Harper & Row.
Kroll, J. (1988). The challenge of the borderline patient: Competency in diagnosis and treatment. New York: W W Norton & Co.
Lester, J. K. (1980). Problem solving : Is it a problem? In M. M. Lindquist (Ed), Selected issues in mathematics education0(p.29-45). Berkeley, CA: Mc Cutchan.
Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence 4 (p.181-248), Hillsdale, NJ: Lawrence Erlbaum
Lord, T. R. (1985). Enhancing the visual-spatial aptitude of students. Journal of research in science teacher, 22(5), 395-405.
Lord, T. R. (1987). Spatial teaching. The Science Teacher, 52(2), 32-34.
Mayer, R. (1985). Implications of cognitive psychology for instruction in mathematical problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 123-138). Hillsdale, NJ: Lawrence Erlbaum Associates.
Mayer, R. E. (1992). Cognition and instruction: Their historic meeting within educational psychology. Journal of Educational Psychology, 84,405-412.
McCormack, A. (1988). Visual/spatial thinking: An element of elementary school science. San Diego, CA: Council for Elementary Science International, San Diego State University.
Montague, M. (2003). Solve it: A mathematical problem-solving instructional program. Reston, VA: Exceptional Innovations.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston. VA: National Council of Teachers of Mathematics.
Newell, A., & Simon, H. (1972). Human problem solving. Englewood cliffs, NJ: Prentice-Hall.
Outhred, L., & Mitchelmore, M. C. (2000). Young children’s intuitive understanding of rectangular area measurement. Journal for Research in Mathematics Education, 31(2), 144-167.
Piaget, J. (1967). The child’s conception of space. New York: W W Norton & Co.
Polya, G. (1945). How to solve it; a new aspect of mathematical method. Princeton, NJ: Princeton University Press.
Polya, G. (1957) How to Solve It. A New Aspect of Mathematical Method (2nd ed.). Princeton, NJ: Princeton University Press.
Polya, G. (1962). Mathematical discovery: On understanding, learning and teaching problem solving (vol. 1). New York: Wiley.
Pittalis, M., & Christou, C. (2010). Types of Reasoning in 3D Geometry Thinking and Their Relations with Spatial Ability. Educational Studies in Mathematics, 75, 191-212.
Schoenfeld, A. H. (1979). Explicit heuristic training as a variable in problem solving performance. Journal for Research in Mathematics Education, 10, 173-187.
Schoenfeld, A. H. (1983). Problem solving in the mathematics curriculum: A report, recommendations, and an annotated bibliography. Washington, D.C.: Mathematical Association of America.
Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.
Schoenfeld, A. H. (1987). Pólya, problem solving, and education. Mathematics magazine, 60(5), 283-291.
Schoenfeld, A. H. (1989). Problem solving in context(s). In R. Charles & E. Silver (Eds.), The teaching and assessing of mathematical problem solving, pp. 82-92. Reston, VA: National Council of teachers of Mathematics.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334-370). New York: MacMillan.
Schoenfeld, A. H. (2011). How we think: A theory of goal-oriented decision making and its educational application. New York: Routledge.
Schoenfeld, A. H. (2020). Mathematical practices, in theory and
practice. The International Journal on Mathematics Education 52(4). DOI:10.1007/s11858-020-01162-w
Schroeder, T. L., & Lester, F. K. Jr. (1989). Developing
under-standing in mathematics via problem solving. In P. R.
Trafton (Ed.). New directions for elementary school mathematics,
1989 yearbook of the National Council of Teachers of
Mathematics (NCTM) (pp. 31-42). Reston, VA: NCTM.
Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
Silver, E. A., Branca, N., & Adams, V. (1980). Metacognition:The missing link in problem solving? In R. Karplus (Ed.), Proceedings of the Fourth International Congress on Mathematical Education (pp. 429-433). Boston, MA : Birkhauser.
Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning: The componential analysis of human abilities. Hillsdale, NJ: Lawrence Erlbaum.
Strutchens, M. E., Martin, W. G., & Kenney, P. A. (2003). What students know about measurement: Perspectives from the national assessment of educational progress. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement: 2003 yearbook (pp. 195-207). Reston, VA: National Council of Teachers of Mathematics.
Williamson, T. (2016). Abductive Philosophy. Philosophical Forum, 47(3-4), 263-280.