跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉怡真
論文名稱:五年級學生運用數學問題解決策略之學習表現研究
論文名稱(外文):A Study of Fifth-Graders’ Learning Performance on Applying Mathematical Problem Solving Strategies
指導教授:張宇樑張宇樑引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:教育學系研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:128
中文關鍵詞:數學問題解決表面積學習表現五年級
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探析國小五年級學生運用數學問題解決策略之學習表現,特別針對學生們在表面積單元的學習活動歷程中之學習表現進行深入探析。本研究採質性之個案分析方法,並以嘉義市某國小五年級學生為研究對象。研究結果顯示:數學問題解決策略之學習活動對學生之數學學習表現有正向助益,包含:有系統地進行數學問題解決與理解概念、與同儕進行互動和互助學習、反思自我學習狀況、及提升口語表達能力。其次,個案教師運用數學問題解決策略融入表面積的教學設計與實施頗具適切性,除能有效提升學生之數學學習動機外,亦能提升學生之學習表現與成效。最後,根據研究結果與討論提出具體的研究建議。
This study aimed to explore fifth-graders’ learning performance on applying mathematical problem-solving strategies into the unit of surface area during the whole learning process. A qualitative case study approach was employed in this study, where fifth graders of an elementary school in Chiayi City were the main participants. Based on the results of data analysis, it was found that: The targeted learning activities of applying mathematical problem-solving strategies were beneficial for those fifth-graders’ learning performance, which included solving mathematical problems systematically and comprehending the targeted concepts, interacting with peers and learning collaboratively, reflecting her/his own learning conditions, and advancing her/his capability of oral expression. Besides, the targeted students’ teacher appropriately applied mathematical problem-solving strategies into the design and implementation of the “surface area” unit. In this teaching and learning process, students’ learning motives were positively promoted, which led to advancing their learning performance and outcome. Finally, concrete suggestions were proposed based on the research findings and discussions for future improvements.
中文摘要 i
Abstract ii
謝誌 iv
目次 v
表次 vii
圖次 viii
第一章 緒論 1
第一節 研究動機 1
第二節 研究問題與目的 5
第三節 名詞釋義 6
第四節 研究範圍與限制 7
第二章 文獻探討 9
第一節 數學問題解決 9
第二節 國小高年級幾何教學內容 33
第三節 表面積之迷思概念 41
第三章 研究設計 47
第一節 研究方法與對象 47
第二節 教學設計 52
第三節 資料蒐集與處理 55
第四節 研究倫理 60
第四章 研究結果與討論 63
第一節 學生之數學學習課前評估分析 63
第二節 學生於問題解決策略活動中之學習表現 73
第三節 學生於問題解決策略活動中之學習成效 92
第五章 研究結論與建議 107
第一節 研究結論 107
第二節 建議 110
參考文獻 113
一、中文文獻 113
二、外文文獻 117
附錄一 127
附錄二 128
一、中文文獻
王文科(2000)。質的教育研究法。台北:師大書苑。
王勝弘(2002)。國小學童面積測量公式概念形成歷程之研究。未出
版之碩士論文,國立台南大學數學教育學系,台南。
中央社(2009)。國小高年級數學真的好難?中央社。線上檢索日
期:2021年3月2日。取自:
https://www.cna.com.tw/postwrite/Detail/44360.aspx
李心儀(2016)。不同解題歷程模式中的回顧。臺灣教育評論月刊,
5(8),157-161.
林福來(2015)。就是要學好數學Just Do Math 第一年結案報告。
線上檢索日期:2020年12月16 日取自
https://drive.google.com/drive/folders/0BwUMwhK0cyy2Q0Y4V1
hjWUJxVFk
林曉菁(2007)。「故事式」數學教學模組之研究-以面積單元為例。
未出版之碩士論文,國立嘉義大學數學教育研究所,嘉義。
江重輝(2008)。國小長方體表面積之補充教學。未出版之碩士論
文,國立嘉義大學數學教育研究所,嘉義。
周武男(1988)。國中生實測概念之發展。國科會專題研究計劃成果
報告(報告編號CS77-01110-S017-01A)。
邱錦屏(2018)。論中小學教師落實十二年國教「以學生為主體」的
教學實踐策略。臺灣教育評論月刊,7(7),39-46。
呂惠汝(2012)。PPt簡報融入國小五年級複合形體表面積補救教學
之研究。未出版之碩士論文,國立屏東教育大學數理教育研究
所,屏東。
吳心瑀(2019)。國小五年級學童表面積學習成效探討。未出版之碩
士論文,國立台南大學應用數學系碩士在職專班,台南。
汪榮財(1995)。國小學生之後設認知與科學文章閱讀理解。國民教
育集刊,1,81-83。
高敬文(1989)。我國國小學童測驗概念發展研究。國立屏東師範學
院初等教育研究,1,183-219。
陳人豪(2001)。國小高年級學童面積與周長概念之錯誤類型研究。
未出版之碩士論文,國立台中教育大學數學教育系,台中。
康鳳梅、鍾瑞國、劉俊祥、李金泉(2002)。高職機械製圖科學生空
間能力差異之研究。師大學報:科學教育類,47(1),55-69。
梁立鑑、譚寧君、楊凱翔(2014)。拆、猜、看—尋找正方體十一個
展開圖策略。科學教育月刊,366,2-10。
張宇樑、吳樎椒(2006)。研究設計:質化、量化及混合方法取向。
台北:學富文化。
張宇樑(2012)。國小數學教科書研究之回顧與前瞻。教育研究月刊
,217,74-87。
張宇樑(2020)。教師專業發展:以促進學生理解之教學為進路。教
育研究月刊,311,32-45。
張春興(2013)。教育心理學。台北市:東華書局。
郭生玉(2012)。心理與教育研究法:量化、質性與混和研究方法。
台北:精華出版社。
黃茂在、陳文典(2004)。「問題解決」的能力。科學教育月刊,
273,21-41。
黃瑞琴(2001)。質的教育研究方法。台北:心理出版社。
楊雅芬(2008)。以後設認知教學為導向之國小六年級學童分數除法
學習歷程及成效之研究。未出版之碩士論文,國立臺南大學數
學教育學系教學碩士班碩士論文,臺南市。
鄭美玲(2015)。國小六年級學生表面積與體積概念調查之研究。未
出版之碩士論文,國立台北教育大學數學暨資訊教育學系,台
北。
蔡清田(2013)。社會科學研究方法新論。台北:五南圖書。
教育部(2014)。十二年國民基本教育課程綱要—總綱。台北:作者。
教育部(2018)。十二年國民基本教育課程綱要—數學領域。台北:
作者。
潘淑滿(2003)。質性研究-理論與運用。台北:心理出版社。
國家教育研究院(2020)。十二年國民基本教育課程綱要-數學領域
課程手冊。台北:作者。
譚寧君(1998)。國小兒童面積迷思概念分析研究。臺北師院學報,
11,573-602。
二、外文文獻
Anthony, G. (2000). Factors influencing first-year students’ success
in mathematics. International Journal of Mathematical Education
in Science and Technology, 31(1), 3-14
Battista, M. T., Wheatly, G. H., & Talsma, G. (1982). The importance
of spatial visualization and cognitive development for geometry
learning in preservice elementary teachers. Journal for Research
in Mathematics Education, 13(5), 332-340.
Brown, A. (1987). Metacognition, executive control, self-regulation,
and other more mysterious mechanisms. In F. E. Weinert & R. H.
Kluwe (Eds.) Metacognition, motivation, and understanding (pp.
65-116). Hillsdale, NJ: Lawrence Erlbaum.
Bishop, A. J. (1980). Spatial abilities and mathematics education: A
review. Educational Studies in Mathematics, 11, 257-269.
Campbell, P. F. & Bamberger, H. J. (1990). Implementing the
standards: The vision of problem solving in the standards.
Arithmetic Teacher, 37(9), 14-17.
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of reasoning on mathematics teaching and learning (pp.402-464). New York: Macmillan.
Chang, Y. L. & Wu, S. C. (2015). Examining relationships among elementary mathematics teachers’ efficacy and their students’ mathematics self-efficacy and achievement. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1307-1320.
Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (2nd ed.). Thousand Oaks, CA: Sage.
D'Zurilla, T. J., & Goldfried, M. R. (1971). Problem Solving and Behavior Modification. Journal of Abnormal Psychology, 78, 107-126.
Flavell, J. H. (1981). Cognitive Monitoring. In W. Patrick Dickson, Children’s oral communication skills. New York : Academic Press.
Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 8(3), 211-215.
Garrett, N. (1986). The problem with grammar. Modern Language Journal, 70, 133-47.
Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16, 163-176.
Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education,16, 163-176.
Klausmeier, H. J. (1985). Educational psychology. New York, Harper & Row.
Kroll, J. (1988). The challenge of the borderline patient: Competency in diagnosis and treatment. New York: W W Norton & Co.
Lester, J. K. (1980). Problem solving : Is it a problem? In M. M. Lindquist (Ed), Selected issues in mathematics education0(p.29-45). Berkeley, CA: Mc Cutchan.
Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence 4 (p.181-248), Hillsdale, NJ: Lawrence Erlbaum
Lord, T. R. (1985). Enhancing the visual-spatial aptitude of students. Journal of research in science teacher, 22(5), 395-405.
Lord, T. R. (1987). Spatial teaching. The Science Teacher, 52(2), 32-34.
Mayer, R. (1985). Implications of cognitive psychology for instruction in mathematical problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 123-138). Hillsdale, NJ: Lawrence Erlbaum Associates.
Mayer, R. E. (1992). Cognition and instruction: Their historic meeting within educational psychology. Journal of Educational Psychology, 84,405-412.
McCormack, A. (1988). Visual/spatial thinking: An element of elementary school science. San Diego, CA: Council for Elementary Science International, San Diego State University.
Montague, M. (2003). Solve it: A mathematical problem-solving instructional program. Reston, VA: Exceptional Innovations.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston. VA: National Council of Teachers of Mathematics.
Newell, A., & Simon, H. (1972). Human problem solving. Englewood cliffs, NJ: Prentice-Hall.
Outhred, L., & Mitchelmore, M. C. (2000). Young children’s intuitive understanding of rectangular area measurement. Journal for Research in Mathematics Education, 31(2), 144-167.
Piaget, J. (1967). The child’s conception of space. New York: W W Norton & Co.
Polya, G. (1945). How to solve it; a new aspect of mathematical method. Princeton, NJ: Princeton University Press.
Polya, G. (1957) How to Solve It. A New Aspect of Mathematical Method (2nd ed.). Princeton, NJ: Princeton University Press.
Polya, G. (1962). Mathematical discovery: On understanding, learning and teaching problem solving (vol. 1). New York: Wiley.
Pittalis, M., & Christou, C. (2010). Types of Reasoning in 3D Geometry Thinking and Their Relations with Spatial Ability. Educational Studies in Mathematics, 75, 191-212.
Schoenfeld, A. H. (1979). Explicit heuristic training as a variable in problem solving performance. Journal for Research in Mathematics Education, 10, 173-187.
Schoenfeld, A. H. (1983). Problem solving in the mathematics curriculum: A report, recommendations, and an annotated bibliography. Washington, D.C.: Mathematical Association of America.
Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.
Schoenfeld, A. H. (1987). Pólya, problem solving, and education. Mathematics magazine, 60(5), 283-291.
Schoenfeld, A. H. (1989). Problem solving in context(s). In R. Charles & E. Silver (Eds.), The teaching and assessing of mathematical problem solving, pp. 82-92. Reston, VA: National Council of teachers of Mathematics.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334-370). New York: MacMillan.
Schoenfeld, A. H. (2011). How we think: A theory of goal-oriented decision making and its educational application. New York: Routledge.
Schoenfeld, A. H. (2020). Mathematical practices, in theory and
practice. The International Journal on Mathematics Education 52(4). DOI:10.1007/s11858-020-01162-w
Schroeder, T. L., & Lester, F. K. Jr. (1989). Developing
under-standing in mathematics via problem solving. In P. R.
Trafton (Ed.). New directions for elementary school mathematics,
1989 yearbook of the National Council of Teachers of
Mathematics (NCTM) (pp. 31-42). Reston, VA: NCTM.
Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
Silver, E. A., Branca, N., & Adams, V. (1980). Metacognition:The missing link in problem solving? In R. Karplus (Ed.), Proceedings of the Fourth International Congress on Mathematical Education (pp. 429-433). Boston, MA : Birkhauser.
Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning: The componential analysis of human abilities. Hillsdale, NJ: Lawrence Erlbaum.
Strutchens, M. E., Martin, W. G., & Kenney, P. A. (2003). What students know about measurement: Perspectives from the national assessment of educational progress. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement: 2003 yearbook (pp. 195-207). Reston, VA: National Council of Teachers of Mathematics.
Williamson, T. (2016). Abductive Philosophy. Philosophical Forum, 47(3-4), 263-280.
電子全文 電子全文(網際網路公開日期:20260801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top