跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石正湘
研究生(外文):Cheng-Shiang Shih
論文名稱:合成不同構型之二氧化鈰/二氧化鈦複合材料應用於磷酸化蛋白質體學
論文名稱(外文):Selective Ce/Ti oxide materials enrichment of phosphopeptides for mass spectrometery-based phosphoproteomic analysis
指導教授:江政剛
指導教授(外文):Cheng-Kang Chiang
口試委員:何彥鵬謝伊婷
口試委員(外文):Yen-Peng HoYi-Ting Hsieh
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:78
中文關鍵詞:水熱法溶膠凝膠法奈米材料二氧化鈰二氧化鈦磷酸化蛋白質體學
外文關鍵詞:hydrothermal methodsol–gel processnanomaterialcerium oxidetitanium oxidephosphoproteomic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討利用結合溶膠凝膠法與水熱法,合成不同構型之二氧化鈰/二氧化鈦(CeO2/TiO2)奈米材料,並探究其可否做為選擇性富集磷酸化胜肽分子之奈米探針。當分析所合成的四種不同構型,包含立方體(cube)、棒狀(rod)、球形(sphere)與八面體(octahedral)的CeO2/TiO2)奈米材料時,實驗結果顯示立方體構型之CeO2/TiO2)奈米材料對於磷酸化胜肽的富集有著較為良好的靈敏度與專一性。除了最低可偵測到2 femtomole之低豐度β-酪蛋白(β-casein)之磷酸化胜肽外,亦可於牛血清蛋白(BSA)和β-casein以莫爾數比1000:1的比例混合下,有效偵測屬於-casein的磷酸化胜肽片段,並且使用標準磷酸化胜肽進行回收率測試與最大磷酸化胜肽吸附容量實驗時,分別可以達到88.9%的回收率與100 mg/g的最大吸附容量。此外,當進行真實樣品如血清與奶粉的磷酸化胜肽分析時,此奈米探針亦能選擇性的分離出7個與4個之磷酸化胜肽片段,代表此奈米材料可對於複雜生物樣品中磷酸化胜肽偵測具有良好的潛力。
In this study, CeO2/TiO2 nanomaterial with different shape have been prepared through the sol–gel method under hydrothermal treatment, to be used as an affinity probe for the enrichment of phosphopeptides. Among the four shape-controlled nanostructures (i.e. cube, nanorod, sphere, and octahedral), the mass spectrometric results reveal that CeO2/TiO2 cube nanocrystals provide the superior performance on capturing phosphopeptides from tryptic digests of β-casein. Under the optimized condition for phoshpopeptides enrichment, the as-prepared nanomaterial possess high detection sensitivity (2 fmol) for β-casein tryptic phosphopeptides, high selectivity (a molar ratio of bovine serum albumin digest and β-casein digest of 1000:1), reasonable capture recovery (88.9%), high capture capacity (100 mg/g) and good repeatability. This technique demonstrates its potential by effectively enriching phosphopeptides in the complex biological specimens. Seven and four phosphopeptides were selectively enriched from the milk powder digest and human serum digest, respectively.
第一章 緒論
第二章 研究目標
第三章 研究內容
第四章 實驗結果
第五章 結論
第六章 參考文獻
1.Wilkins, M. R.; Williams, K. L.; Appel, R. D.; Hochstrasser, D. F., Proteome Research: New Frontiers in Functional Genomics. Springer-Verlag Berlin Heidelberg 1997.
2.Protein Phosphorylation. Kinexus.
3.Eymann, C.; Becher, D.; Bernhardt, J.; Gronau, K.; Klutzny, A.; Hecker, M., Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics 2007, 7 (19), 3509-3526.
4.Arrigo, A. P.; Michel, M. R., Decreased heat- and tumor necrosis factor-mediated hsp28 phosphorylation in thermotolerant HeLa cells. FEBS Lett 1991, 282 (1), 152-156.
5.Aponte, A. M.; Phillips, D.; Harris, R. A.; Blinova, K.; French, S.; Johnson, D. T.; Balaban, R. S., 32P labeling of protein phosphorylation and metabolite association in the mitochondria matrix. Methods Enzymol 2009, 457, 63-80.
6.Sarkar, P. K.; Morris, J. J.; Martin, J. V., Non-genomic effect of L-triiodothyronine on calmodulin-dependent synaptosomal protein phosphorylation in adult rat cerebral cortex. Indian J Exp Biol 2011, 49 (3), 169-176.
7.El-Benna, J.; Dang, P. M., Analysis of protein phosphorylation in human neutrophils. Methods Mol Biol 2007, 412, 85-96.
8.Weber, K.; Osborn, M., The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 1969, 244 (16), 4406-4412.
9.O'Farrell, P. H., High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250 (10), 4007-4021.
10.Klose, J., Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975, 26 (3), 231-243.
11.Alwine, J. C.; Kemp, D. J.; Stark, G. R., Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 1977, 74 (12), 5350-5354.
12.Burnette, W. N., "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 1981, 112 (2), 195-203.
13.Towbin, H.; Staehelin, T.; Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979, 76 (9), 4350-4354.
14.Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
15.Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T., Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 1991, 63 (24), 1193A-1203A.
16.Osterberg, R., Metal and hydrogen-ion binding properties of o-phosphoserine. Nature 1957, 179 (4557), 476-7.
17.Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258 (5536), 598-599.
18.Andersson, L.; Porath, J., Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 1986, 154 (1), 250-254.
19.Michel, H. P.; Bennett, J., Identification of the phosphorylation site of an 8.3 kDa protein from photosystem II of spinach. FEBS Letters 1987, 212 (1), 103-108.
20.Chaga, G. S., Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 2001, 49 (1-3), 313-334.
21.Suen, S. Y.; Liu, Y. C.; Chang, C. S., Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species. J Chromatogr B Analyt Technol Biomed Life Sci 2003, 797 (1-2), 305-319.
22.Arnold, F. H., Metal-affinity separations: a new dimension in protein processing. Biotechnology (N Y) 1991, 9 (2), 151-156.
23.Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002, 20 (3), 301-305.
24.Wolschin, F.; Wienkoop, S.; Weckwerth, W., Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 2005, 5 (17), 4389-4397.
25.Wolschin, F.; Weckwerth, W., Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites. Plant Methods 2005, 1 (1), 9.
26.Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 2005, 4 (7), 873-886.
27.Pearson, R. G., Hard and Soft Acids and Bases. Journal of the American Chemical Society 1963, 85 (22), 3533-3539.
28.Chen, Y.-F.; Lee, C.-Y.; Yeng, M.-Y.; Chiu, H.-T., The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of Crystal Growth 2003, 247 (3), 363-370.
29.Agarwal, S.; Mojet, B.; Lefferts, L.; Datye, A., Ceria Nanoshapes-Structural and Catalytic Properties. Catalysis by Materials with Well-Defined Structures 2015, 31-70.
30.Manto, M. J.; Xie, P. F.; Wang, C., Catalytic Dephosphorylation Using Ceria Nanocrystals. Acs Catalysis 2017, 7 (3), 1931-1938.
31.Tan, Z. C.; Wu, T. S.; Soo, Y. L.; Peng, Y. K., Unravelling the true active site for CeO2-catalyzed dephosphorylation. Applied Catalysis B-Environmental 2020, 264.
32.Younis, A.; Chu, D.; Li, S., Cerium oxide nanostructures and their applications. 2016.
33.Malavasi, L.; Fisher, C. A.; Islam, M. S., Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 2010, 39 (11), 4370-4387.
34.Bumajdad, A.; Eastoe, J.; Mathew, A., Cerium oxide nanoparticles prepared in self-assembled systems. Adv Colloid Interface Sci 2009, 147-148, 56-66.
35.Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S., Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 2007, 28 (31), 4600-4607.
36.Yang, G.; Park, S. J., Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials (Basel) 2019, 12 (7).
37.Nahar, L.; Arachchige, I. U., Sol-Gel methods for the assembly of metal and semiconductor nanoparticles. JSM Nanotechnol Nanomedicne 2013, 1, 1004.
38.Egger, L.; Menard, O.; Baumann, C.; Duerr, D.; Schlegel, P.; Stoll, P.; Vergeres, G.; Dupont, D.; Portmann, R., Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data. Food Research International 2019, 118, 32-39.Crane, C. W.; Neuberger, A., The digestion and absorption of protein by normal man. Biochem J 1960, 74, 313-23.
40.Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
41.Pedersen, S. L.; Tofteng, A. P.; Malik, L.; Jensen, K. J., Microwave heating in solid-phase peptide synthesis. Chemical Society Reviews 2012, 41 (5), 1826-1844.
42.Sharma, I.; Crich, D., Direct Fmoc-Chemistry-Based Solid-Phase Synthesis of Peptidyl Thioesters. Journal of Organic Chemistry 2011, 76 (16), 6518-6524.
43.Luna, O. F.; Gomez, J.; Cardenas, C.; Albericio, F.; Marshall, S. H.; Guzman, F., Deprotection Reagents in Fmoc Solid Phase Peptide Synthesis: Moving Away from Piperidine? Molecules 2016, 21 (11).
44.Ralhan, K.; KrishnaKumar, V. G.; Gupta, S., Piperazine and DBU: a safer alternative for rapid and efficient Fmoc deprotection in solid phase peptide synthesis. Rsc Advances 2015, 5 (126), 104417-104425.
45.Wade, J. D.; Mathieu, M. N.; Macris, M.; Tregear, G. W., Base-induced side reactions in Fmoc-solid phase peptide synthesis: Minimization by use of piperazine as N-alpha-deprotection reagent. Letters in Peptide Science 2000, 7 (2), 107-112.
46.Sun, S.; Ma, H.; Han, G.; Wu, R.; Zou, H.; Liu, Y., Efficient enrichment and identification of phosphopeptides by cerium oxide using on-plate matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Rapid Commun Mass Spectrom 2011, 25 (13), 1862-1868.
47.Huan, W.; Xing, M.; Cheng, C.; Li, J., Facile Fabrication of Magnetic Metal–Organic Framework Nanofibers for Specific Capture of Phosphorylated Peptides. ACS Sustainable Chemistry & Engineering 2019, 7 (2), 2245-2254.
48.Sun, M. X.; Li, Z. J.; Li, H.; Wu, Z. L.; Shen, W. Z.; Fu, Y. Q., Mesoporous Zr-doped CeO2 nanostructures as superior supercapacitor electrode with significantly enhanced specific capacity and excellent cycling stability. Electrochimica Acta 2020, 331.
49.Ma, C. Y.; Tang, F.; Chen, J. D.; Ma, R.; Yuan, X. Y.; Wen, Z. C.; Long, J. Q.; Li, J. T.; Du, M. M.; Zhang, J. T.; Cao, Y. G., Spectral, energy resolution properties and green-yellow LEDs applications of transparent Ce3+:Lu3Al5O12 ceramics. Journal of the European Ceramic Society 2016, 36 (16), 4205-4213.
50.Saalinraj, S.; Ajithprasad, K. C., Effect of Calcination Temperature on Non-linear Absorption Co-efficient of Nano Sized Titanium Dioxide (TiO2) Synthesised by Sol-Gel Method. Materials Today: Proceedings 2017, 4 (2, Part C), 4372-4379.
51.Stadie, N. P.; Callini, E.; Mauron, P.; Borgschulte, A.; Zuttel, A., Supercritical nitrogen processing for the purification of reactive porous materials. J Vis Exp 2015, (99), e52817.
52.Hsu, J. L.; Chen, S. H., Stable isotope dimethyl labelling for quantitative proteomics and beyond. Philos Trans A Math Phys Eng Sci 2016, 374 (2079).
53.Boersema, P. J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A. J., Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 2009, 4 (4), 484-94.
54.Su, J.; He, X. W.; Chen, L. X.; Zhang, Y. K., Adenosine Phosphate Functionalized Magnetic Mesoporous Graphene Oxide Nanocomposite for Highly Selective Enrichment of Phosphopeptides. ACS Sustainable Chemistry & Engineering 2018, 6 (2), 2188-2196.
55.Chen, Y. J.; Xiong, Z. C.; Peng, L.; Gan, Y. Y.; Zhao, Y. M.; Shen, J.; Qian, J. H.; Zhang, L. Y.; Zhang, W. B., Facile Preparation of Core–Shell Magnetic Metal–Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides. ACS Applied Materials & Interfaces 2015, 7 (30), 16338-16347.
56.Yan, Y. H.; Zheng, Z. F.; Deng, C. H.; Zhang, X. M.; Yang, P. Y., Facile synthesis of Ti4+-immobilized Fe3O4@polydopamine core-shell microspheres for highly selective enrichment of phosphopeptides. Chem Commun (Camb) 2013, 49 (44), 5055-5057.
57.Zhang, Y.; Li, L.; Ma, W.; Zhang, Y.; Yu, M.; Guo, J.; Lu, H.; Wang, C., Two-in-one strategy for effective enrichment of phosphopeptides using magnetic mesoporous gamma-Fe2O3 nanocrystal clusters. ACS Appl Mater Interfaces 2013, 5 (3), 614-621.
58.Li, L. P.; Liu, J. Z.; Xu, L. N.; Li, Z.; Bai, Y.; Xiao, Y. L.; Liu, H. W., GdF3 as a promising phosphopeptide affinity probe and dephospho-labelling medium: experiments and theoretical explanation. Chem Commun (Camb) 2014, 50 (78), 11572-11575.
59.Yan, Y.; Sun, X.; Deng, C.; Li, Y.; Zhang, X., Metal oxide affinity chromatography platform-polydopamine coupled functional two-dimensional titania graphene nanohybrid for phosphoproteome research. Anal Chem 2014, 86 (9), 4327-4332.
60.Sun, X. N.; Liu, X. D.; Feng, J. N.; Li, Y.; Deng, C. H.; Duan, G. L., Hydrophilic Nb5+-immobilized magnetic core–shell microsphere – A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides. Anal. Chim. Acta 2015, 880, 67-76.
61.Luo, B.; Yang, M. G.; Jiang, P. P.; Lan, F.; Wu, Y., Multi-affinity sites of magnetic guanidyl-functionalized metal-organic framework nanospheres for efficient enrichment of global phosphopeptides. Nanoscale 2018, 10 (18), 8391-8396.
62.Zheng, H. J.; Jia, J. X.; Li, Z.; Jia, Q., Bifunctional Magnetic Supramolecular-Organic Framework: A Nanoprobe for Simultaneous Enrichment of Glycosylated and Phosphorylated Peptides. Analytical Chemistry 2020, 92 (3), 2680-2689.
63.Li, J. Y.; Cao, Z. M.; Hua, Y.; Wei, G.; Yu, X. Z.; Shang, W. B.; Lian, H. Z., Solvothermal Synthesis of Novel Magnetic Nickel Based Iron Oxide Nanocomposites for Selective Capture of Global- and Mono-Phosphopeptides. Analytical Chemistry 2020, 92 (1), 1058-1067.
64.Zhang, H. Y.; Li, X. W.; Ma, S. J.; Ou, J. J.; Wei, Y. M.; Ye, M. L., One-step preparation of phosphate-rich carbonaceous spheres via a hydrothermal approach for phosphopeptide analysis. Green Chemistry 2019, 21 (8), 2052-2060.
電子全文 電子全文(網際網路公開日期:20230819)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊