跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡麗玉
研究生(外文):Oh Maressa Wintora
論文名稱:財務困境的決定因素:以台灣公司為例
論文名稱(外文):The Determinant of Financial Distress: Evidence from Taiwan Companies
指導教授:王詩韻王詩韻引用關係
指導教授(外文):Shin-Yun Wang
口試委員:羅德謙翁培師
口試委員(外文):Te-Chien LoPei-Shih Weng
口試日期:2020-12-01
學位類別:碩士
校院名稱:國立東華大學
系所名稱:財務金融學系
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:76
外文關鍵詞:Financial DistressFinancial RatiosRiskBankruptcyTaiwan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
The unhealthy financial situation can be a massive and can cause long term distress which can result in limitations of capital flows, investments activities, and performance of companies. This study is using a sample of 110 companies in Taiwan and it is selected randomly from Taiwan Economic Journal (TEJ) during the period 2016-2018 with quarterly data. Logistic Regression issued to analyze the relationships between financial distress and firms’ characteristics and risk. The dependent variables consist of dummy variable, which has negative Earning per Share (EPS) and positive Earning per Share (EPS). EPS is the portion of company’s profit allocated to each outstanding share of common stock. Financially distressed companies (have negative EPS) are coded 1 and healthy companies (if not) are coded 0. The independent variables are profitability, liquidity or solvency, turnover, total assets, net sales, and ROE (Return on Equity). The results of the analysis show that profitability, turnover and total assets have correlation with the financial distress of Taiwanese companies. Profitability and turnover are found to be significant and have a positive relationship with financial distress, while total assets has a negative relationship with financial distress. However, there are no significant effect among Solvency/Liquidity, Net Sales, and ROE to the financial distress. The determinant of financial distress at industry level shows that total assets and ROE are found to be significant and have a negative relationship with financial distress on electronics industry. As the results of textile industry show that profitability is found to be significant and have a negative relationship with financial distress. Then, turnover is significant and have a positive relationship with financial distress. The results of other industries show that profitability and total assets are found to be significant and have a negative relationship with financial distress.
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Questions 5
1.3 Research Aims 6
1.4 The Significance of the Research 6
CHAPTER 2 LITERATURE REVIEW 9
2.1 Financial Distress 9
2.2 Financial Distress Prediction Models 15
2.3 Binary Logistic Regression 17
2.4 Financial Ratios 21
CHAPTER 3 RESEARCH METHODOLOGY 29
3.1 Research Type 29
3.2 Data Source 29
3.3 Research Framework 30
3.4 Definition of Operating Variables 30
3.5 Data Analysis Techniques 32
CHAPTER 4 RESULTS 35
4.1 Descriptive Statistics and Deviance Residual 35
4.2 Logistic Regression 37
4.3 Histogram 46
4.4 Scatterplot 50
CHAPTER 5 CONCLUSION 52
REFERENCES 54
APPENDIX 64
1. Alifiah, M. N., Salamudin, N., & Ahmad, I. (2013). Prediction of financial distress companies in the consumer products sector in Malaysia. Jurnal Teknologi (Social Sciences), 64(1), 85–91.
2. Al-khatib, H. B. & Al-Horani, A. (2012). Predicting financial distress of public companies listed in Amman Stock Exchange. European Scientific Journal, 8(15), 1-17.
3. Altman, E. (1968). Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609.
4. Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETA Analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 1, 29-54.
5. Altman, E.I. (1993). Corporate Financial Distress and Bankruptcy, (2nd ed.). John Wiley & Sons, New York.
6. Altman, Edward. I. (2013). Predicting financial distress of companies: revisiting the Z-Score and ZETA models. Handbook of Research Methods and Applications in Empirical Finance, 17, 428-456.
7. Amirulloh, M. & Isbanah, Y. (2017). Analisis Model Prediksi Financial Distress dan Determinan yang Mempengaruhinya (Studi pada Perusahaan Sektor Pertambangan di BEI Tahun 2014-2016). Seminar Nasional Call for Paper, 83-98.
8. Anandarajan, M., Lee, P. & Anandarajan, A. (2001) Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks. International Journal of Intelligent Systems in Accounting, Finance and Management, 10 (2):69– 81.
9. Andrade, G., & Kaplan, S. N. (1998). How costly is financial (not economic) distress: Evidence from highly leveraged transactions that became distressed. Journal of Finance, 53(5), 1442-1493.
10. Anggraini, Dewi. (2016). Financial Distress Model Prediction for Indonesian Companies. International Journal of Management and Administrative Sciences, 3(4), 74-84.
11. Bae, Jae Kwon. (2012). Predicting Financial Distress of the South Korean Manufacturing Industries. Expert Systems with Applications: An International Journal. 39(10), 9159-9165.
12. Ball, R., & Foster, G. (1982). Corporate financial reporting: A methodological review of empirical research. Journal of Accounting Research, 20, 161-234.
13. Beaver, W. H. (1966). Financial Ratio as Predictor of Failure, Empirical Research in accounting: Selected Studies. Journal of Accounting Research, 5, 71-111.
14. Beaver, William. H. (1968). Alternative Accounting Measures as Predictors of Failure. The Accounting Review, 43(1), 113-122.
15. Binh, P. V. N., Trung, D. T., & Duc, V. H. (2018). A Prediction of Financial Distress of Listed Firms in Vietnam A Sector Analysis. Review of Pacific Basin Financial Markets and Policies.
16. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
17. Boyd, C. R., Tolson, M. A., & Copes, W. S. (1987). Evaluating trauma care: The TRISS method. Trauma Score and the Injury Severity Score. The Journal of Trauma. 27 (4), 370–378.
18. Casey, C. J. & N. J. Bartczak (1985). Using operating cash flow data to predict financial distress: Some extensions. Journal of Accounting Research, 23, 384-401.
19. Coats, P. K., & Fant, L. F. (1993). Recognizing Financial Distress Patterns Using a Neural Network Tool. Financial Management, 22(3), 142.
20. Dichev, I. D. (1998). Is the risk of bankruptcy a systematic risk? The Journal of Finance, 53(3), 1131–1147.
21. Dietrich, J. R. (1984). Discussion of methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 83-86.
22. Dimitras, A.I., Zanakis, S.H., & Zopounidis, C. (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90(3), 487-513.
23. Dun & Bradstreet. (2016). Global Bankruptcy Report 2016. USA: The Dun & Bradstreet Corporation.
24. Elloumi, F., & Gueyié, J. P. (2001). CEO compensation, IOS and the role of corporate governance. Corporate Governance: The International Journal of Business in Society, 1(2), 23-33.
25. Elloumi, F., & Gueyie, J. P. (2001). Financial Distress and Corporate Governance: an empirical analysis. Corporate Governance International Journal of Business in Society, 1(1), 15-23.
26. Fahmi, I. (2011). Analisis Laporan Keuangan. Bandung: CV Alberta.
27. Fahmi, Irham. (2012). Analisis Kinerja Keuangan. Bandung: Alfabeta.
28. Fama, E., & French, K. (2004). New lists: fundamentals and survival rates. Journal of Financial Economics, 73(2), 229-269.
29. Fulmer, J. G. (1984). A Bankruptcy Classification Model for Small Firms. The Journal of Commercial Bank Lending, 66(11), 25-37.
30. Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236-247.
31. Grice, S. & Dugan, M. (2001). The limitations of bankruptcy prediction models: some cautions for the researcher. Review Quantitative Finance Accounting, 17(2), 151–166.
32. Grover, J. & Lavin, A. (2001). Financial Ratios, Discriminant Analysis and The Prediction of Corporate Bankruptcy: a Service Industry Extension of Altman’s Z-Score Model of Bankruptcy Prediction. Working Paper. Southern Finance Association Annual Meeting.
33. Grusky, D. B., Western, B., & Wimer, C. (2011). The Great Recession. New York: Russel Sage Foundation.
34. Gruszczynski, M. (2004). Financial Distress of Companies in Poland. International Advances in Economic Research, 10(4), 249-256.
35. Haq, S., Arfan, M., & Siswar, D. (2013). Analisis rasio keuangan dalam memprediksi financial distress (studi pada perusahaan yang terdaftar di bursa efek indonesia). Jurnal Akuntansi Pascasarjana Universitas Syiah Kuala, 2(1), 37-46.
36. Heniwati, E., & Essen, E. (2020). Which Retail Firm Characteristics Impact On Financial Distress? Jurnal Akuntansi dan Keuangan, 22(1), 40-46.
37. Hery. (2016). Analisis Laporan Keuangan. Jakarta: PT. Grasindo.
38. Hidayat, M. A., & Meiranto, W. (2014). Prediksi financial distress perusahaan manufaktur di Indonesia. Journal of Accounting, 3(3), 1-11.
39. Hua, Z., Wang, Y., Xu, X., Zhang, B., & Liang, L. (2007). Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications, 33(2), 434–440.
40. Hui, H., & Zhao, J. (2008). Relationship between Corporate Governance and Financial Distress: An Empirical Study of Distressed Companies in China. International Journal of Management, 25(4), 654-664.
41. Johnsen, T., & Melicher, R. W. (1994). Predicting corporate bankruptcy and financial distress: Information value added by multinomial logit models. Journal of Economics and Business, 46(4), 269–286.
42. Kartika, R. & Hasanuddin. (2019). Analisis Pengaruh Likuiditas, Leverage, Aktivitas, dan Profitabilitas terhadap Financial Distress pada Perusahaan Terbuka Sektor Infrastruktur, Utilitas, dan Transportasi Periode 2011-2015. Jurnal Ilmu Manajemen, 15(1), 1-16.
43. Kasmir. (2017). Analisis Laporan Keuangan. Jakarta: Raja Grafindo Persada.
44. Kasmir. S.E., M. (2016). Analisis Laporan Keuangan. Jakarta: Rajawali Pers.
45. Khaliq, Ahmad. (2014). Identifying Financial Distress Firms: A Case Study of Malaysia's Government Linked Companies (GLC). International Journal of Economics, Finance and Management, 3(3), 141-150.
46. Kholisoh, S. N., & Dwiarti, R. (2020). The Analysis of Fundamental Variables and Macro Economic Variables in Predicting Financial Distress. Management Analysis Journal, 9(1), 81-90.
47. Kim. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. The Service Industries Journal, 31(3), 441-468.
48. Kliestik, T., Valaskova, K., Lazaroiu, G., Kovacova, M., & Vrbka, J. (2020). Remaining Financially Healthy and Competitive: The Role of Financial Predictors. Journal of Competitiveness, 12(1), 74–92.
49. Laitinen, E. (1991). Financial ratios and different failure processes. Journal Business Finance and Accounting, 18(5), 649-673.
50. Laitinen, Erkki. K. (2005). Survival Analysis and Financial Distress Prediction: Finnish Evidence. Review of Accounting and Finance, 4(4), 6-90.
51. Liang, D., Tsai, C. F., & Wu, H. T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73, 289-297.
52. Louma, M and Latinen, E. K. (1991). Survival analysis as a tool for company failure prediction. The International Journal of Management Science, 19(6), 673-678.
53. Maux, J. & Morin, D. (2011). Black and white and red all over: Lehman Brother’s inevitable bankruptcy splashed across its financial statements. International Journal of Business and Social Science, 2(20), 39–65.
54. Mazumder, B., & Miller, S. (2014). The effects of the Massachusetts health reform on financial distress. Working Paper, Federal Reserve Bank of Chicago. No. 2014-01.
55. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449-470.
56. Moses, D., & Liao, S. (1995). On developing models for failure prediction. Journal of Commercial Bank Lending, 69(7), 27-38.
57. Mselmi, N., Lahiani, A., & Hamza, T. (2017). Financial distress prediction: The case of French small and medium-sized firms. International Review of Financial Analysis, 50, 67-80.
58. Murtadha, Milla Alsura, Murtadha, Milla Alsura, Muhammad Arfan, & Mulia Saputra. (2018). Factors Influencing Financial Distress and Its Impact on Company Values of the Sub-Sectors Firms in Indonesian. Journal of Accounting Research, Organization and Economics, 1(2), 191–204.
59. Nurcahyanti, Wahyu. (2015). Studi Komparatif Model Z-Score Altman, Springate dan Zmijewski Dalam Mengindikasikan Kebangkrutan Perusahaan Yang Terdaftar di Bursa Efek Indonesia. Jurnal Akuntansi, 3(1), 1-24.
60. Nurhayati, Mufidah, A. & Kholidah, A. N. (2017). The Determinants of Financial Distress of Basic Industry and Chemical Companies Listed in Indonesia Stock Exchange. Review of Management and Entrepreneurship, 1(2), 19-26.
61. Ohlson, J. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18 (1), 109-131.
62. Olsen et al. (1983). Improving the prediction of restaurant failure through ratio analysis. International Journal of Hospitality Management, 2(4), 187-193.
63. Orr, K.G., (2003). Corporate insolvency. Times of Malta. Available from: http://www.timesofmalta.com/articles/view/20130422/local/Corporate-insolvency.466585 (accessed October 13th, 2019).
64. Peter & Yoseph. (2011). Analisis Kebangkrutan Dengan Metode Z-Score Altman, Springate dan Zmijewski Pada PT. Indofood Sukses Makmur Tbk Periode 2005-2009. Akurat Jurnal Ilmiah Akuntansi, 2(4), 1-20.
65. Platt, H. D., & Platt, M. B. (1990). Development of a class of stable predictive variables: the case of bankruptcy prediction. Journal of Business Finance and Accounting, 17(1), 31-51.
66. Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: reflecting on choice-based sample bias. Journal of Economics and Finance, 26(2), 184-199.
67. Platt, H. D., & Platt, M. B. (2006). Understanding differences between financial distress and bankruptcy. Review of Applied Economics, 2(2), 141-157.
68. Poston, K. M., Harmon, W. K., & Gramlich, J. D. (1994). A test of financial ratios as predictors of turnaround versus failure among financially distressed firms. Journal of Applied Business Research, 10(1), 41-56.
69. Richard, P.V., & Kalyani. B. (2019). Study of Financial Distress of Public Sector Undertakings Companies in India. Journal of Management (JOM), 6(3). 70-76.
70. Ross, S., Westerfield, R., & Jaffe, J. (2000). Corporate Finance. McGraw-Hill Irwin, New York.
71. Salehi, M., & Abedini, B. (2009). Financial Distress Prediction in Emerging Market: Empirical Evidences from Iran. Business Intelligence Journal, 2 (2), 398-409.
72. Salim, Sallal. (2017). Predicting Financial Distress of investment companies using financial ratios of Kida model and its impact on EPS: A study in Iraq Stock Exchange. International Journal of Innovation and Applied Studies, 20(3), 752–761.
73. Sayari, N., & Mugan, C. S. (2017). Industry specific financial distress modeling. BRQ Business Research Quarterly, 20(1), 45–62.
74. Segal, Troy. (2020). Turnover Ratio Definition. Retrieved from https://www.investopedia.com/terms/t/turnoverratio.asp
75. Setiawan, H. & Amboningtyas, D. (2018). Financial Ratio Analysis for Predicting Financial Distress Condition (Study on Telecomunication Companies Listed in Indonesia Stock Exchange Period 2010-2016). Journal of Management, 4(4), 1-18.
76. Shirata, C. Y. (1998). Financial Ratios as Predictors of Bankruptcy in Japan: An Empirical Research. Tsukuba College of Technology.
77. Shumway, T. (2001). Forecasting Bankruptcy More Accurately: A Simple Hazard Model. The Journal of Business, 74(1), 101-124.
78. Springate, Gordon L.V. (1978). Predicting the Possibility of Failure in a Canadian Firm. M.B.A. Research Project, Simon Fraser University.
79. Stock, J. H., & Watson, M. W. (2006). Introduction to Econometrics Second Edition. Boston: Addison Wesley.
80. Sun, J., & Li, H. (2008). Data mining method for listed companies’ financial distress prediction. Knowledge-Based Systems, 21(1), 1-5.
81. Sun, J., Fujita, H., Chen, P., & Li, H. (2017). Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble. Knowledge-Based Systems, 120, 4–14.
82. Sung, T. K., Chang, N., & Lee, G. (1999). Dynamics of Modeling in Data Mining: Interpretive Approach to Bankruptcy Prediction. Journal of Management Information Systems, 16(1), 63-85.
83. Theodossiou, P. (1991). Alternative models for assessing the financial condition of business in Greece. Journal of Business Finance & Accounting, 18(5), 697-720.
84. Theodossiou, P., Kahya, E., Saidi, R., & Philippatos, G. (1996). Financial distress and corporate acquisitions: further empirical evidence. Journal of Business Finance & Accounting, 23(5-6), 699-719.
85. Thim, Chan Kok, Yap Voon Choong, & Chai Shin Nee. (2011). Factors Affecting Financial Distress: The Case of Malaysian Public Listed Firms. Corporate Ownership and Control, 8(4), 345–351.
86. Trading Economics. (2019). Taiwan Bankruptcies Data. Retrieved from https://tradingeconomics.com/taiwan/bankruptcies
87. Turetsky, S. & McEwen, R. A. (2001). An empirical investigation of firm longevity: A model of the ex-ante predictors of financial distress. Review of Quantitative Finance and Accounting, 16(4), 323-343.
88. Van Horne, J.C. (1998). Financial Management and Policy. Prentice-Hall, Inc., Upper Saddle River.
89. Wanke, P., Barros, C. P., & Faria, J. R. (2015). Financial distress drivers in Brazilian banks: A dynamic slacks approach. European Journal of Operational Research, 240(1), 258-268.
90. Wheelock, D. C. & Wilson, P. W. (2000). Why do banks disappear? The determinants of US bank failure and acquisitions. Review of Economics and Statistics, 77(4), 689-700.
91. Whitaker, R. B. (1999). The early stages of financial distress. Journal of Economics and Finance, 23, 123-133.
92. Widati, W. L., & Pratama, B. A. (2015). Pengaruh Current Ratio, Debt to Equity Ratio, dan Return on Equity, untuk memprediksi kondisi financial distress. Journal of Accounting and Banking, 4(1), 1-13.
93. Wikipedia. (2019). Logistic regression. Retrieved from https://en.wikipedia.org/wiki/Logistic_regression#:~:text=Binary%20logistic%20regression%20is%20used,that%20it%20is%20a%20noncase.
94. Wruck, Karen. H. (1990). Financial distress, reorganization, and organizational efficiency. Journal of Financial Economics, 27(2), 419-444.
95. Yudiawati, R. & Indriani, A. (2016). Analisis Pengaruh Current Ratio, Debt To Total Asset Ratio, Total Asset Turnover, Dan Sales Growth Ratio Terhadap Kondisi Financial Distress (Studi Kasus Pada Perusahaan Manufaktur yang Terdaftar di BEI Tahun 2012-2014). Diponegoro Journal of Management, 5(2), 379-391.
96. Zhafirah, Anindya, & Majidah. (2019). Analisis Determinan Financial Distr1. Alifiah, M. N., Salamudin, N., & Ahmad, I. (2013). Prediction of financial distress companies in the consumer products sector in Malaysia. Jurnal Teknologi (Social Sciences), 64(1), 85–91.
2. Al-khatib, H. B. & Al-Horani, A. (2012). Predicting financial distress of public companies listed in Amman Stock Exchange. European Scientific Journal, 8(15), 1-17.
3. Altman, E. (1968). Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609.
4. Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETA Analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 1, 29-54.
5. Altman, E.I. (1993). Corporate Financial Distress and Bankruptcy, (2nd ed.). John Wiley & Sons, New York.
6. Altman, Edward. I. (2013). Predicting financial distress of companies: revisiting the Z-Score and ZETA models. Handbook of Research Methods and Applications in Empirical Finance, 17, 428-456.
7. Amirulloh, M. & Isbanah, Y. (2017). Analisis Model Prediksi Financial Distress dan Determinan yang Mempengaruhinya (Studi pada Perusahaan Sektor Pertambangan di BEI Tahun 2014-2016). Seminar Nasional Call for Paper, 83-98.
8. Anandarajan, M., Lee, P. & Anandarajan, A. (2001) Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks. International Journal of Intelligent Systems in Accounting, Finance and Management, 10 (2):69– 81.
9. Andrade, G., & Kaplan, S. N. (1998). How costly is financial (not economic) distress: Evidence from highly leveraged transactions that became distressed. Journal of Finance, 53(5), 1442-1493.
10. Anggraini, Dewi. (2016). Financial Distress Model Prediction for Indonesian Companies. International Journal of Management and Administrative Sciences, 3(4), 74-84.
11. Bae, Jae Kwon. (2012). Predicting Financial Distress of the South Korean Manufacturing Industries. Expert Systems with Applications: An International Journal. 39(10), 9159-9165.
12. Ball, R., & Foster, G. (1982). Corporate financial reporting: A methodological review of empirical research. Journal of Accounting Research, 20, 161-234.
13. Beaver, W. H. (1966). Financial Ratio as Predictor of Failure, Empirical Research in accounting: Selected Studies. Journal of Accounting Research, 5, 71-111.
14. Beaver, William. H. (1968). Alternative Accounting Measures as Predictors of Failure. The Accounting Review, 43(1), 113-122.
15. Binh, P. V. N., Trung, D. T., & Duc, V. H. (2018). A Prediction of Financial Distress of Listed Firms in Vietnam A Sector Analysis. Review of Pacific Basin Financial Markets and Policies.
16. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
17. Boyd, C. R., Tolson, M. A., & Copes, W. S. (1987). Evaluating trauma care: The TRISS method. Trauma Score and the Injury Severity Score. The Journal of Trauma. 27 (4), 370–378.
18. Casey, C. J. & N. J. Bartczak (1985). Using operating cash flow data to predict financial distress: Some extensions. Journal of Accounting Research, 23, 384-401.
19. Coats, P. K., & Fant, L. F. (1993). Recognizing Financial Distress Patterns Using a Neural Network Tool. Financial Management, 22(3), 142.
20. Dichev, I. D. (1998). Is the risk of bankruptcy a systematic risk? The Journal of Finance, 53(3), 1131–1147.
21. Dietrich, J. R. (1984). Discussion of methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 83-86.
22. Dimitras, A.I., Zanakis, S.H., & Zopounidis, C. (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90(3), 487-513.
23. Dun & Bradstreet. (2016). Global Bankruptcy Report 2016. USA: The Dun & Bradstreet Corporation.
24. Elloumi, F., & Gueyié, J. P. (2001). CEO compensation, IOS and the role of corporate governance. Corporate Governance: The International Journal of Business in Society, 1(2), 23-33.
25. Elloumi, F., & Gueyie, J. P. (2001). Financial Distress and Corporate Governance: an empirical analysis. Corporate Governance International Journal of Business in Society, 1(1), 15-23.
26. Fahmi, I. (2011). Analisis Laporan Keuangan. Bandung: CV Alberta.
27. Fahmi, Irham. (2012). Analisis Kinerja Keuangan. Bandung: Alfabeta.
28. Fama, E., & French, K. (2004). New lists: fundamentals and survival rates. Journal of Financial Economics, 73(2), 229-269.
29. Fulmer, J. G. (1984). A Bankruptcy Classification Model for Small Firms. The Journal of Commercial Bank Lending, 66(11), 25-37.
30. Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236-247.
31. Grice, S. & Dugan, M. (2001). The limitations of bankruptcy prediction models: some cautions for the researcher. Review Quantitative Finance Accounting, 17(2), 151–166.
32. Grover, J. & Lavin, A. (2001). Financial Ratios, Discriminant Analysis and The Prediction of Corporate Bankruptcy: a Service Industry Extension of Altman’s Z-Score Model of Bankruptcy Prediction. Working Paper. Southern Finance Association Annual Meeting.
33. Grusky, D. B., Western, B., & Wimer, C. (2011). The Great Recession. New York: Russel Sage Foundation.
34. Gruszczynski, M. (2004). Financial Distress of Companies in Poland. International Advances in Economic Research, 10(4), 249-256.
35. Haq, S., Arfan, M., & Siswar, D. (2013). Analisis rasio keuangan dalam memprediksi financial distress (studi pada perusahaan yang terdaftar di bursa efek indonesia). Jurnal Akuntansi Pascasarjana Universitas Syiah Kuala, 2(1), 37-46.
36. Heniwati, E., & Essen, E. (2020). Which Retail Firm Characteristics Impact On Financial Distress? Jurnal Akuntansi dan Keuangan, 22(1), 40-46.
37. Hery. (2016). Analisis Laporan Keuangan. Jakarta: PT. Grasindo.
38. Hidayat, M. A., & Meiranto, W. (2014). Prediksi financial distress perusahaan manufaktur di Indonesia. Journal of Accounting, 3(3), 1-11.
39. Hua, Z., Wang, Y., Xu, X., Zhang, B., & Liang, L. (2007). Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications, 33(2), 434–440.
40. Hui, H., & Zhao, J. (2008). Relationship between Corporate Governance and Financial Distress: An Empirical Study of Distressed Companies in China. International Journal of Management, 25(4), 654-664.
41. Johnsen, T., & Melicher, R. W. (1994). Predicting corporate bankruptcy and financial distress: Information value added by multinomial logit models. Journal of Economics and Business, 46(4), 269–286.
42. Kartika, R. & Hasanuddin. (2019). Analisis Pengaruh Likuiditas, Leverage, Aktivitas, dan Profitabilitas terhadap Financial Distress pada Perusahaan Terbuka Sektor Infrastruktur, Utilitas, dan Transportasi Periode 2011-2015. Jurnal Ilmu Manajemen, 15(1), 1-16.
43. Kasmir. (2017). Analisis Laporan Keuangan. Jakarta: Raja Grafindo Persada.
44. Kasmir. S.E., M. (2016). Analisis Laporan Keuangan. Jakarta: Rajawali Pers.
45. Khaliq, Ahmad. (2014). Identifying Financial Distress Firms: A Case Study of Malaysia's Government Linked Companies (GLC). International Journal of Economics, Finance and Management, 3(3), 141-150.
46. Kholisoh, S. N., & Dwiarti, R. (2020). The Analysis of Fundamental Variables and Macro Economic Variables in Predicting Financial Distress. Management Analysis Journal, 9(1), 81-90.
47. Kim. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. The Service Industries Journal, 31(3), 441-468.
48. Kliestik, T., Valaskova, K., Lazaroiu, G., Kovacova, M., & Vrbka, J. (2020). Remaining Financially Healthy and Competitive: The Role of Financial Predictors. Journal of Competitiveness, 12(1), 74–92.
49. Laitinen, E. (1991). Financial ratios and different failure processes. Journal Business Finance and Accounting, 18(5), 649-673.
50. Laitinen, Erkki. K. (2005). Survival Analysis and Financial Distress Prediction: Finnish Evidence. Review of Accounting and Finance, 4(4), 6-90.
51. Liang, D., Tsai, C. F., & Wu, H. T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73, 289-297.
52. Louma, M and Latinen, E. K. (1991). Survival analysis as a tool for company failure prediction. The International Journal of Management Science, 19(6), 673-678.
53. Maux, J. & Morin, D. (2011). Black and white and red all over: Lehman Brother’s inevitable bankruptcy splashed across its financial statements. International Journal of Business and Social Science, 2(20), 39–65.
54. Mazumder, B., & Miller, S. (2014). The effects of the Massachusetts health reform on financial distress. Working Paper, Federal Reserve Bank of Chicago. No. 2014-01.
55. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449-470.
56. Moses, D., & Liao, S. (1995). On developing models for failure prediction. Journal of Commercial Bank Lending, 69(7), 27-38.
57. Mselmi, N., Lahiani, A., & Hamza, T. (2017). Financial distress prediction: The case of French small and medium-sized firms. International Review of Financial Analysis, 50, 67-80.
58. Murtadha, Milla Alsura, Murtadha, Milla Alsura, Muhammad Arfan, & Mulia Saputra. (2018). Factors Influencing Financial Distress and Its Impact on Company Values of the Sub-Sectors Firms in Indonesian. Journal of Accounting Research, Organization and Economics, 1(2), 191–204.
59. Nurcahyanti, Wahyu. (2015). Studi Komparatif Model Z-Score Altman, Springate dan Zmijewski Dalam Mengindikasikan Kebangkrutan Perusahaan Yang Terdaftar di Bursa Efek Indonesia. Jurnal Akuntansi, 3(1), 1-24.
60. Nurhayati, Mufidah, A. & Kholidah, A. N. (2017). The Determinants of Financial Distress of Basic Industry and Chemical Companies Listed in Indonesia Stock Exchange. Review of Management and Entrepreneurship, 1(2), 19-26.
61. Ohlson, J. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18 (1), 109-131.
62. Olsen et al. (1983). Improving the prediction of restaurant failure through ratio analysis. International Journal of Hospitality Management, 2(4), 187-193.
63. Orr, K.G., (2003). Corporate insolvency. Times of Malta. Available from: http://www.timesofmalta.com/articles/view/20130422/local/Corporate-insolvency.466585 (accessed October 13th, 2019).
64. Peter & Yoseph. (2011). Analisis Kebangkrutan Dengan Metode Z-Score Altman, Springate dan Zmijewski Pada PT. Indofood Sukses Makmur Tbk Periode 2005-2009. Akurat Jurnal Ilmiah Akuntansi, 2(4), 1-20.
65. Platt, H. D., & Platt, M. B. (1990). Development of a class of stable predictive variables: the case of bankruptcy prediction. Journal of Business Finance and Accounting, 17(1), 31-51.
66. Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: reflecting on choice-based sample bias. Journal of Economics and Finance, 26(2), 184-199.
67. Platt, H. D., & Platt, M. B. (2006). Understanding differences between financial distress and bankruptcy. Review of Applied Economics, 2(2), 141-157.
68. Poston, K. M., Harmon, W. K., & Gramlich, J. D. (1994). A test of financial ratios as predictors of turnaround versus failure among financially distressed firms. Journal of Applied Business Research, 10(1), 41-56.
69. Richard, P.V., & Kalyani. B. (2019). Study of Financial Distress of Public Sector Undertakings Companies in India. Journal of Management (JOM), 6(3). 70-76.
70. Ross, S., Westerfield, R., & Jaffe, J. (2000). Corporate Finance. McGraw-Hill Irwin, New York.
71. Salehi, M., & Abedini, B. (2009). Financial Distress Prediction in Emerging Market: Empirical Evidences from Iran. Business Intelligence Journal, 2 (2), 398-409.
72. Salim, Sallal. (2017). Predicting Financial Distress of investment companies using financial ratios of Kida model and its impact on EPS: A study in Iraq Stock Exchange. International Journal of Innovation and Applied Studies, 20(3), 752–761.
73. Sayari, N., & Mugan, C. S. (2017). Industry specific financial distress modeling. BRQ Business Research Quarterly, 20(1), 45–62.
74. Segal, Troy. (2020). Turnover Ratio Definition. Retrieved from https://www.investopedia.com/terms/t/turnoverratio.asp
75. Setiawan, H. & Amboningtyas, D. (2018). Financial Ratio Analysis for Predicting Financial Distress Condition (Study on Telecomunication Companies Listed in Indonesia Stock Exchange Period 2010-2016). Journal of Management, 4(4), 1-18.
76. Shirata, C. Y. (1998). Financial Ratios as Predictors of Bankruptcy in Japan: An Empirical Research. Tsukuba College of Technology.
77. Shumway, T. (2001). Forecasting Bankruptcy More Accurately: A Simple Hazard Model. The Journal of Business, 74(1), 101-124.
78. Springate, Gordon L.V. (1978). Predicting the Possibility of Failure in a Canadian Firm. M.B.A. Research Project, Simon Fraser University.
79. Stock, J. H., & Watson, M. W. (2006). Introduction to Econometrics Second Edition. Boston: Addison Wesley.
80. Sun, J., & Li, H. (2008). Data mining method for listed companies’ financial distress prediction. Knowledge-Based Systems, 21(1), 1-5.
81. Sun, J., Fujita, H., Chen, P., & Li, H. (2017). Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble. Knowledge-Based Systems, 120, 4–14.
82. Sung, T. K., Chang, N., & Lee, G. (1999). Dynamics of Modeling in Data Mining: Interpretive Approach to Bankruptcy Prediction. Journal of Management Information Systems, 16(1), 63-85.
83. Theodossiou, P. (1991). Alternative models for assessing the financial condition of business in Greece. Journal of Business Finance & Accounting, 18(5), 697-720.
84. Theodossiou, P., Kahya, E., Saidi, R., & Philippatos, G. (1996). Financial distress and corporate acquisitions: further empirical evidence. Journal of Business Finance & Accounting, 23(5-6), 699-719.
85. Thim, Chan Kok, Yap Voon Choong, & Chai Shin Nee. (2011). Factors Affecting Financial Distress: The Case of Malaysian Public Listed Firms. Corporate Ownership and Control, 8(4), 345–351.
86. Trading Economics. (2019). Taiwan Bankruptcies Data. Retrieved from https://tradingeconomics.com/taiwan/bankruptcies
87. Turetsky, S. & McEwen, R. A. (2001). An empirical investigation of firm longevity: A model of the ex-ante predictors of financial distress. Review of Quantitative Finance and Accounting, 16(4), 323-343.
88. Van Horne, J.C. (1998). Financial Management and Policy. Prentice-Hall, Inc., Upper Saddle River.
89. Wanke, P., Barros, C. P., & Faria, J. R. (2015). Financial distress drivers in Brazilian banks: A dynamic slacks approach. European Journal of Operational Research, 240(1), 258-268.
90. Wheelock, D. C. & Wilson, P. W. (2000). Why do banks disappear? The determinants of US bank failure and acquisitions. Review of Economics and Statistics, 77(4), 689-700.
91. Whitaker, R. B. (1999). The early stages of financial distress. Journal of Economics and Finance, 23, 123-133.
92. Widati, W. L., & Pratama, B. A. (2015). Pengaruh Current Ratio, Debt to Equity Ratio, dan Return on Equity, untuk memprediksi kondisi financial distress. Journal of Accounting and Banking, 4(1), 1-13.
93. Wikipedia. (2019). Logistic regression. Retrieved from https://en.wikipedia.org/wiki/Logistic_regression#:~:text=Binary%20logistic%20regression%20is%20used,that%20it%20is%20a%20noncase.
94. Wruck, Karen. H. (1990). Financial distress, reorganization, and organizational efficiency. Journal of Financial Economics, 27(2), 419-444.
95. Yudiawati, R. & Indriani, A. (2016). Analisis Pengaruh Current Ratio, Debt To Total Asset Ratio, Total Asset Turnover, Dan Sales Growth Ratio Terhadap Kondisi Financial Distress (Studi Kasus Pada Perusahaan Manufaktur yang Terdaftar di BEI Tahun 2012-2014). Diponegoro Journal of Management, 5(2), 379-391.
96. Zhafirah, Anindya, & Majidah. (2019). Analisis Determinan Financial Distress (Studi Empiris Pada Perusahaan Subsektor Tekstil Dan Garmen Periode 2013-2017). Jurnal Riset Akuntansi Dan Keuangan, 7(1), 195–202.
97. Zmijewski, M. E. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22, 59-82.
98. Zopounidis, C., & Dimitras, A.I. (1998). Multicriteria Decision Aid Methods for the Prediction of Business Failure. Springer, New York.
ess (Studi Empiris Pada Perusahaan Subsektor Tekstil Dan Garmen Periode 2013-2017). Jurnal Riset Akuntansi Dan Keuangan, 7(1), 195–202.
97. Zmijewski, M. E. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22, 59-82.
98. Zopounidis, C., & Dimitras, A.I. (1998). Multicriteria Decision Aid Methods for the Prediction of Business Failure. Springer, New York.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊