( 您好!臺灣時間:2024/06/21 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Association between exposure to nano- or micro-scale metal fume particles and advanced glycation end products in shipyard welders
外文關鍵詞:Welding fumeUrinary metalsNanoparticleAdvanced glycation end productsSoluble receptor for advanced glycation end productsN-ε-carboxymethyl-lysineIL-6TNF-αhs-CRPSimilar exposure group
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 VI
第一章、緒論 1
第一節、研究背景與重要性 1
第二節、研究動機 4
第三節、研究目的 7
第四節、研究假設 8
第二章、文獻探討 9
第一節、焊接人員之職業環境暴露介紹 9
第二節、細懸浮微粒及金屬暴露對人體健康之效應 16
第三節、奈米微粒之來源及組成 24
第四節、單粒子感應藕荷電漿質譜儀簡介 29
第五節、奈米微粒與金屬暴露對人體健康之效應 35
第六節、糖化終產物及其受體與心血管疾病之關聯 42
第七節、相似暴露族群 55
第三章、研究方法與設計 60
第一節、研究設計與架構 60
第二節、研究對象 63
第三節、研究工具 64
第四節、實驗室品質管制 97
第五節、資料處理與統計方法 100
第四章 研究結果 104
第一節、基本人口學變項之描述 104
第二節、環境採樣數據之描述 108
第三節、尿中金屬及尿中奈米金屬微粒之描述性檢定 117
第四節、自變項與依變項之相關性矩陣 118
第五節、自變項與依變項之迴歸分析 124
第六節、相似暴露族群之分析 139
第五章 討論 149
第一節、本研究之效度 149
第二節、人口學變項及環境採樣數據之探討 152
第三節、內在劑量暴露指標與糖化終產物及其受體之探討 157
第四節、糖化終產物及其可溶性受體與發炎因子與心血管指標之探討 166
第五節、奈米金屬微粒與與糖化終產物及其受體與心血管疾病之探討 169
第六節、相似暴露族群 175
第七節、研究優點及限制 179
第六章、結論與建議 181
第一節、結論 181
第二節、建議 182
第七章、參考文獻 183
附錄一、實驗之檢量線 251
附錄二、造船廠勞工健康狀況調查問卷 261
Adamopoulos, C., Farmaki, E., Spilioti, E., Kiaris, H., Piperi, C., & Papavassiliou, A. G. (2014). Advanced glycation end-products induce endoplasmic reticulum stress in human aortic endothelial cells. Clin Chem Lab Med, 52(1), 151-160. doi:10.1515/cclm-2012-0826
Adamopoulos, C., Piperi, C., Gargalionis, A. N., Dalagiorgou, G., Spilioti, E., Korkolopoulou, P., . . . Sciences, M. L. (2016). Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways. 73(8), 1685-1698.
Ahsan, S. A., Lackovic, M., Katner, A., & Palermo, C. (2009). Metal fume fever: a review of the literature and cases reported to the Louisiana Poison Control Center. The Journal of the Louisiana State Medical Society : official organ of the Louisiana State Medical Society, 161(6), 348-351.
Almeida, J. P. M., Chen, A. L., Foster, A., & Drezek, R. J. N. (2011). In vivo biodistribution of nanoparticles. 6(5), 815-835.
Aloraier, A., Ibrahim, R., Thomson, P. J. I. J. o. P. V., & Piping. (2006). FCAW process to avoid the use of post weld heat treatment. 83(5), 394-398.
Antonini, J. M. (2003). Health Effects of Welding. Critical Reviews in Toxicology, 33(1), 61-103. doi:10.1080/713611032
Antonini, J. M., Clarke, R. W., Murthy, G. G. K., Sreekanthan, P., Jenkins, N., Eagar, T. W., & Brain, J. D. (1998). Freshly generated stainless steel welding fume induces greater lung inflammation in rats as compared to aged fume. Toxicology letters, 98(1-2), 77-86.
Antonini, J. M., Keane, M., Chen, B. T., Stone, S., Roberts, J. R., Schwegler-Berry, D., . . . Sriram, K. (2011). Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity. Nanotoxicology, 5(4), 700-710. doi:10.3109/17435390.2010.550695
Antonini, J. M., Leonard, S. S., Roberts, J. R., Solano-Lopez, C., Young, S.-H., Shi, X., & Taylor, M. D. (2005). Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Molecular and cellular biochemistry, 279(1-2), 17-23. doi:10.1007/s11010-005-8211-6
Armstrong, J. J. B. j. o. p. (2007). Mitochondrial medicine: pharmacological targeting of mitochondria in disease. 151(8), 1154-1165.
Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens, 21(1), 3-12. doi:10.1097/00004872-200301000-00002
Ascenço, C. G., Gomes, J. F. P., Cosme, N. M., & Miranda, R. M. (2005). Analysis of welding fumes: A short note on the comparison between two sampling techniques. Toxicological & Environmental Chemistry, 87(3), 345-349.
Aschner, M., Erikson, K. M., & Dorman, D. C. (2005). Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol, 35(1), 1-32. doi:10.1080/10408440590905920
Badalova, K., Herbello-Hermelo, P., Bermejo-Barrera, P., & Moreda-Piñeiro, A. (2019). Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. J Trace Elem Med Biol, 54, 55-61. doi:10.1016/j.jtemb.2019.04.003
Bao, B., Prasad, A. S., Beck, F. W., Bao, G. W., Singh, T., Ali, S., . . . communications, b. r. (2011). Intracellular free zinc up-regulates IFN-γ and T-bet essential for Th1 differentiation in Con-A stimulated HUT-78 cells. 407(4), 703-707.
Baynes, J. W., & Thorpe, S. R. J. D. (1999). Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. 48(1), 1-9.
Beaver, L. M., Stemmy, E. J., Schwartz, A. M., Damsker, J. M., Constant, S. L., Ceryak, S. M., & Patierno, S. R. (2009). Lung inflammation, injury, and proliferative response after repetitive particulate hexavalent chromium exposure. Environ Health Perspect, 117(12), 1896-1902. doi:10.1289/ehp.0900715
Berglund, M., Lindberg, A.-L., Rahman, M., Yunus, M., Grandér, M., Lönnerdal, B., & Vahter, M. (2011). Gender and age differences in mixed metal exposure and urinary excretion. Environmental Research, 111(8), 1271-1279. doi:https://doi.org/10.1016/j.envres.2011.09.002
Bertram, J., Brand, P., Schettgen, T., Lenz, K., Purrio, E., Reisgen, U., & Kraus, T. (2015). Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel. Ann Occup Hyg, 59(4), 467-480. doi:10.1093/annhyg/meu104
Bhasin, G., Kauser, H., & Athar, M. (2002). Iron augments stage-I and stage-II tumor promotion in murine skin. Cancer Lett, 183(2), 113-122. doi:10.1016/s0304-3835(02)00116-7
Bian, S.-W., Mudunkotuwa, I. A., Rupasinghe, T., & Grassian, V. H. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir, 27(10), 6059-6068.
Blake, G. J., & Ridker, P. M. (2003). C-reactive protein: a surrogate risk marker or mediator of atherothrombosis? Am J Physiol Regul Integr Comp Physiol, 285(5), R1250-1252. doi:10.1152/ajpregu.00227.2003
Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 8(1), 57-69. doi:10.1038/nrn2038
Boldo, E., Medina, S., Le Tertre, A., Hurley, F., Mücke, H.-G., Ballester, F., & Aguilera, I. (2006). Apheis: Health impact assessment of long-term exposure to PM 2.5 in 23 European cities. European journal of epidemiology, 21(6), 449-458.
Borel, T., & Sabliov, C. M. (2014). Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu Rev Food Sci Technol, 5, 197-213. doi:10.1146/annurev-food-030713-092354
Brand, P., Lenz, K., Reisgen, U., & Kraus, T. (2013). Number size distribution of fine and ultrafine fume particles from various welding processes. The Annals of occupational hygiene, 57(3), 305-313. doi:10.1093/annhyg/mes070
Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., . . . Tager, I. (2004). Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109(21), 2655-2671. doi:10.1161/01.Cir.0000128587.30041.C8
Bullock, W. H., & Ignacio, J. S. (2006). A strategy for assessing and managing occupational exposures: AIHA.
Byrne, J. D., & Baugh, J. A. (2008). The significance of nanoparticles in particle-induced pulmonary fibrosis. Mcgill J Med, 11(1), 43-50.
Cai, W., He, J. C., Zhu, L., Lu, C., & Vlassara, H. (2006). Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc Natl Acad Sci U S A, 103(37), 13801-13806. doi:10.1073/pnas.0600362103
Calderon Moreno, R., Navas-Acien, A., Escolar, E., Nathan, D. M., Newman, J., Schmedtje, J. F., Jr., . . . Fonseca, V. (2019). Potential Role of Metal Chelation to Prevent the Cardiovascular Complications of Diabetes. The Journal of Clinical Endocrinology & Metabolism, 104(7), 2931-2941. doi:10.1210/jc.2018-01484
Canivet, L., Denayer, F. O., Dubot, P., Garçon, G., & Lo Guidice, J. M. (2021). Toxicity of iron nanoparticles towards primary cultures of human bronchial epithelial cells. J Appl Toxicol, 41(2), 203-215. doi:10.1002/jat.4033
Cannino, G., Ferruggia, E., Luparello, C., & Rinaldi, A. M. J. M. (2009). Cadmium and mitochondria. 9(6), 377-384.
Cao, X., Fu, M., Bi, R., Zheng, X., Fu, B., Tian, S., . . . Liu, J. (2021). Cadmium induced BEAS-2B cells apoptosis and mitochondria damage via MAPK signaling pathway. Chemosphere, 263, 128346. doi:https://doi.org/10.1016/j.chemosphere.2020.128346
Carter, J. D., Ghio, A. J., Samet, J. M., & Devlin, R. B. (1997). Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicology and Applied Pharmacology, 146(2), 180-188.
Cena, L. G., Keane, M. J., Chisholm, W. P., Stone, S., Harper, M., & Chen, B. T. (2014). A novel method for assessing respiratory deposition of welding fume nanoparticles. J Occup Environ Hyg, 11(12), 771-780. doi:10.1080/15459624.2014.919393
Chang, C., Demokritou, P., Shafer, M., & Christiani, D. (2013). Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes. Environ Sci Process Impacts, 15(1), 214-224. doi:10.1039/c2em30505d
Chen, J. (2016). The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med, 6(3), a026104. doi:10.1101/cshperspect.a026104
Chen, S.-H., Yuan, K.-C., Lee, Y.-C., Shih, C.-K., Tseng, S.-H., Tinkov, A. A., . . . Chang, J.-S. (2020). Iron and Advanced Glycation End Products: Emerging Role of Iron in Androgen Deficiency in Obesity. Antioxidants (Basel, Switzerland), 9(3), 261. doi:10.3390/antiox9030261
Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y., Schmitz, D. A., Singh, M., . . . Froines, J. R. (2005). Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res, 99(1), 40-47. doi:10.1016/j.envres.2005.01.003
Colhoun, H. M., Betteridge, D. J., Durrington, P., Hitman, G., Neil, A., Livingstone, S., . . . Preston, G. M. J. D. (2011). Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: an analysis from the CARDS trial. 60(9), 2379-2385.
Crasto, C. L., Semba, R. D., Sun, K., Dalal, M., Corsi, A. M., Bandinelli, S., . . . Ferrucci, L. (2011). Endogenous secretory receptor for advanced glycation end products is associated with low serum interleukin-1 receptor antagonist and elevated IL-6 in older community-dwelling adults. The journals of gerontology. Series A, Biological sciences and medical sciences, 66(4), 437-443. doi:10.1093/gerona/glq225
Crinnion, W. J. (2009). The benefits of pre- and post-challenge urine heavy metal testing: Part 1. Altern Med Rev, 14(1), 3-8.
Damiano, J. (1995). Quantitative exposure assessment strategies and data in the Aluminum Company of America. 10(4), 289-298.
de Vos, L. C., Lefrandt, J. D., Dullaart, R. P., Zeebregts, C. J., & Smit, A. J. (2016). Advanced glycation end products: An emerging biomarker for adverse outcome in patients with peripheral artery disease. Atherosclerosis, 254, 291-299. doi:10.1016/j.atherosclerosis.2016.10.012
Degueldre, C., Favarger, P. Y., & Wold, S. (2006). Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Analytica Chimica Acta, 555(2), 263-268. doi:https://doi.org/10.1016/j.aca.2005.09.021
Deluyker, D., Evens, L., & Bito, V. (2017). Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs. Amino Acids, 49(9), 1535-1541. doi:10.1007/s00726-017-2464-8
den Engelsen, C., van den Donk, M., Gorter, K. J., Salomé, P. L., & Rutten, G. E. (2012). Advanced glycation end products measured by skin autofluorescence in a population with central obesity. Dermatoendocrinol, 4(1), 33-38. doi:10.4161/derm.17999
Deppe, V. M., Bongaerts, J., O'Connell, T., Maurer, K. H., & Meinhardt, F. (2011). Enzymatic deglycation of Amadori products in bacteria: mechanisms, occurrence and physiological functions. Appl Microbiol Biotechnol, 90(2), 399-406. doi:10.1007/s00253-010-3083-4
des Rieux, A., Fievez, V., Garinot, M., Schneider, Y. J., & Préat, V. (2006). Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release, 116(1), 1-27. doi:10.1016/j.jconrel.2006.08.013
Donaldson, K., Tran, L., Jimenez, L. A., Duffin, R., Newby, D. E., Mills, N., . . . Stone, V. (2005). Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol, 2, 10. doi:10.1186/1743-8977-2-10
Dreher, K. L., Jaskot, R. H., Lehmann, J. R., Richards, J. H., Ghio, J. K. M. A. J., Costa, D. L. J. J. o. t., & a, e. h. p. (1997). Soluble transition metals mediate residual oil fly ash induced acute lung injury. 50(3), 285-305.
Eble, A. S., Thorpe, S. R., & Baynes, J. W. (1983). Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J Biol Chem, 258(15), 9406-9412.
Ellingsen, D. G., Chashchin, M., Berlinger, B., Fedorov, V., Chashchin, V., & Thomassen, Y. (2017). Biological monitoring of welders' exposure to chromium, molybdenum, tungsten and vanadium. J Trace Elem Med Biol, 41, 99-106. doi:10.1016/j.jtemb.2017.03.002
Esworthy, R. (2013). Air quality: EPA's 2013 changes to the particulate matter (PM) standard.
Evans, E. H., Horstwood, M., Pisonero, J., & Smith, C. M. J. J. o. A. A. S. (2013). Atomic spectrometry update: review of advances in atomic spectrometry and related techniques. 28(6), 779-800.
Fabricius, A.-L., Duester, L., Meermann, B., & Ternes, T. A. (2014). ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Analytical and Bioanalytical Chemistry, 406(2), 467-479. doi:10.1007/s00216-013-7480-2
Falcone, L. M., Erdely, A., Salmen, R., Keane, M., Battelli, L., Kodali, V., . . . Zeidler-Erdely, P. C. (2018). Pulmonary toxicity and lung tumorigenic potential of surrogate metal oxides in gas metal arc welding-stainless steel fume: Iron as a primary mediator versus chromium and nickel. PloS one, 13(12), e0209413-e0209413. doi:10.1371/journal.pone.0209413
Fatola, O. I., Olaolorun, F. A., Olopade, F. E., & Olopade, J. O. (2019). Trends in vanadium neurotoxicity. Brain Research Bulletin, 145, 75-80. doi:https://doi.org/10.1016/j.brainresbull.2018.03.010
Ferretti, A. M., Usseglio, S., Mondini, S., Drago, C., La Mattina, R., Chini, B., . . . Ponti, A. (2021). Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. Journal of Colloid and Interface Science, 582, 678-700. doi:https://doi.org/10.1016/j.jcis.2020.08.026
Fishman, S. L., Sonmez, H., Basman, C., Singh, V., & Poretsky, L. (2018). The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Molecular Medicine, 24(1), 1-12.
Flynn, M. R., Susi, P. J. J. o. o., & hygiene, e. (2009). Manganese, iron, and total particulate exposures to welders. 7(2), 115-126.
Folarin, O. R., Snyder, A. M., Peters, D. G., Olopade, F., Connor, J. R., & Olopade, J. O. (2017). Brain Metal Distribution and Neuro-Inflammatory Profiles after Chronic Vanadium Administration and Withdrawal in Mice. Frontiers in neuroanatomy, 11, 58-58. doi:10.3389/fnana.2017.00058
Fröhlich, E., & Salar-Behzadi, S. (2014). Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. International journal of molecular sciences, 15(3), 4795-4822. doi:10.3390/ijms15034795
Frampton, M. W., Stewart, J. C., Oberdörster, G., Morrow, P. E., Chalupa, D., Pietropaoli, A. P., . . . Utell, M. J. (2006). Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environ Health Perspect, 114(1), 51-58. doi:10.1289/ehp.7962
Gaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. J. A. o. t. (2014). Copper: toxicological relevance and mechanisms. 88(11), 1929-1938.
Garg, G., Singh, S., Singh, A. K., & Rizvi, S. I. (2017). Metformin Alleviates Altered Erythrocyte Redox Status During Aging in Rats. Rejuvenation Res, 20(1), 15-24. doi:10.1089/rej.2016.1826
Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., . . . Gehr, P. (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect, 113(11), 1555-1560. doi:10.1289/ehp.8006
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. Int J Environ Res Public Health, 17(11), 3782. doi:10.3390/ijerph17113782
Gillery, P. (2014). [Assays of HbA1c and Amadori products in human biology]. Ann Pharm Fr, 72(5), 330-336. doi:10.1016/j.pharma.2014.04.002
Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products: Key players in skin aging? Dermatoendocrinol, 4(3), 259-270. doi:10.4161/derm.22028
Gobba, N., Hussein Ali, A., El Sharawy, D. E., & Hussein, M. A. (2018). The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders. Arch Environ Occup Health, 73(3), 189-202. doi:10.1080/19338244.2017.1314930
Gomes, J. F. P., Albuquerque, P. C. S., Miranda, R. M. M., & Vieira, M. T. F. (2012). Determination of Airborne Nanoparticles from Welding Operations. Journal of Toxicology and Environmental Health, Part A, 75(13-15), 747-755. doi:10.1080/15287394.2012.688489
Gonçalves, A. C., Barbosa-Ribeiro, A., Alves, V., Silva, T., & Sarmento-Ribeiro, A. B. (2013). Selenium compounds induced ROS-dependent apoptosis in myelodysplasia cells. Biol Trace Elem Res, 154(3), 440-447. doi:10.1007/s12011-013-9749-x
Gschwind, S., Aja Montes, M. d. L., & Günther, D. (2015). Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration. Analytical and Bioanalytical Chemistry, 407(14), 4035-4044. doi:10.1007/s00216-015-8620-7
Guan, L., Jiang, Q., Li, Z., Huang, F., Ren, Y., Yang, Y., & Xu, C. J. B. r. (2009). The subcellular distribution of MnSOD alters during sodium selenite-induced apoptosis. 42(6), 361-366.
Guha, N., Loomis, D., Guyton, K. Z., Grosse, Y., El Ghissassi, F., Bouvard, V., . . . Straif, K. (2017). Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. The Lancet Oncology, 18(5), 581-582.
Haikerwal, A., Akram, M., Del Monaco, A., Smith, K., Sim, M. R., Meyer, M., . . . Dennekamp, M. (2015). Impact of fine particulate matter (PM 2.5) exposure during wildfires on cardiovascular health outcomes. Journal of the American Heart Association, 4(7), e001653.
Hanssen, N. M., Wouters, K., Huijberts, M. S., Gijbels, M. J., Sluimer, J. C., Scheijen, J. L., . . . Schalkwijk, C. G. (2014). Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J, 35(17), 1137-1146. doi:10.1093/eurheartj/eht402
Haque, E., Kamil, M., Hasan, A., Irfan, S., Sheikh, S., Khatoon, A., . . . Mir, S. S. (2019). Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology, 30(1), 49-57. doi:10.1093/glycob/cwz073
Hegab, Z., Gibbons, S., Neyses, L., & Mamas, M. A. (2012). Role of advanced glycation end products in cardiovascular disease. World J Cardiol, 4(4), 90-102. doi:10.4330/wjc.v4.i4.90
Heyland, D. K., Dhaliwal, R., Suchner, U., & Berger, M. M. J. I. c. m. (2005). Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. 31(3), 327-337.
Hori, O., Yan, S. D., Ogawa, S., Kuwabara, K., Matsumoto, M., Stern, D., & Schmidt, A. M. (1996). The receptor for advanced glycation end-products has a central role in mediating the effects of advanced glycation end-products on the development of vascular disease in diabetes mellitus. Nephrol Dial Transplant, 11 Suppl 5, 13-16. doi:10.1093/ndt/11.supp5.13
Hsiao, Y.-P., Shen, C.-C., Huang, C.-H., Lin, Y.-C., & Jan, T.-R. (2018). Iron oxide nanoparticles attenuate T helper 17 cell responses in vitro and in vivo. International Immunopharmacology, 58, 32-39. doi:https://doi.org/10.1016/j.intimp.2018.03.007
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. J. J. o. h. m. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. 211, 317-331.
Hussein, T., Puustinen, A., Aalto, P. P., Mäkelä, J. M., Hämeri, K., & Kulmala, M. (2004). Urban aerosol number size distributions.
IARC. (2018). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In Welding, molybdenum trioxide, and indium tin oxide. Lyon (FR): International Agency for Research on Cancer
© International Agency for Research on Cancer, 2018. For more information contact publications@iarc.fr.
Ihedioha, J. N., Okoye, C. O. B., & Onyechi, U. A. (2014). Health risk assessment of zinc, chromium, and nickel from cow meat consumption in an urban Nigerian population. International journal of occupational and environmental health, 20(4), 281-288. doi:10.1179/2049396714Y.0000000075
InternationalLabourOffice. (1998). Encyclopaedia of occupational health and safety, 4th edition.
Jahangiry, L., Farhangi, M. A., & Rezaei, F. (2017). Framingham risk score for estimation of 10-years of cardiovascular diseases risk in patients with metabolic syndrome. Journal of health, population, and nutrition, 36(1), 36-36. doi:10.1186/s41043-017-0114-0
Jenkins, N., & Eagar, T. J. W. J.-N. Y.-. (2005). Chemical analysis of welding fume particles. 84(6), 87.
Jimenez, L. A., Thompson, J., Brown, D. A., Rahman, I., Antonicelli, F., Duffin, R., . . . MacNee, W. (2000). Activation of NF-κB by PM10 occurs via an iron-mediated mechanism in the absence of IκB degradation. Toxicology and Applied Pharmacology, 166(2), 101-110.
Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2), 65-87. doi:https://doi.org/10.1016/j.tox.2011.03.001
Jud, P., & Sourij, H. (2019). Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Res Clin Pract, 148, 54-63. doi:10.1016/j.diabres.2018.11.016
Kajikawa, M., Nakashima, A., Fujimura, N., Maruhashi, T., Iwamoto, Y., Iwamoto, A., . . . Kihara, Y. J. D. C. (2015). Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function. 38(1), 119-125.
Karlsson, H. L., Gustafsson, J., Cronholm, P., & Möller, L. (2009). Size-dependent toxicity of metal oxide particles--a comparison between nano- and micrometer size. Toxicol Lett, 188(2), 112-118. doi:10.1016/j.toxlet.2009.03.014
Kawamura, S. I. (1983). Seventy years of the Maillard reaction. In: ACS Publications.
Keane, M., Siert, A., Stone, S., Chen, B., Slaven, J., Cumpston, A., & Antonini, J. (2012). Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding: Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium in stainless steel welding fumes. Welding journal, 91(9), 241s-246s.
Khan, M. S., Tabrez, S., Rabbani, N., & Shah, A. (2015). Oxidative Stress Mediated Cytotoxicity of Glycated Albumin: Comparative Analysis of Glycation by Glucose Metabolites. J Fluoresc, 25(6), 1721-1726. doi:10.1007/s10895-015-1658-2
Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environ Int, 74, 136-143. doi:10.1016/j.envint.2014.10.005
Kioumourtzoglou, M.-A., Spiegelman, D., Szpiro, A. A., Sheppard, L., Kaufman, J. D., Yanosky, J. D., . . . Suh, H. (2014). Exposure measurement error in PM 2.5 health effects studies: a pooled analysis of eight personal exposure validation studies. Environmental Health, 13(1), 2.
Kornberg, T. G., Stueckle, T. A., Antonini, J. A., Rojanasakul, Y., Castranova, V., Yang, Y., & Wang, L. (2017). Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. Nanomaterials (Basel, Switzerland), 7(10), 307. doi:10.3390/nano7100307
Kosmopoulos, M., Drekolias, D., Zavras, P. D., Piperi, C., & Papavassiliou, A. G. (2019). Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1865(3), 611-619. doi:https://doi.org/10.1016/j.bbadis.2019.01.006
Kosnett, M. J., Wedeen, R. P., Rothenberg, S. J., Hipkins, K. L., Materna, B. L., Schwartz, B. S., . . . Woolf, A. J. E. h. p. (2007). Recommendations for medical management of adult lead exposure. 115(3), 463-471.
Kreyling, W., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., . . . Environmental Health, P. A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. 65(20), 1513-1530.
Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., . . . Ziesenis, A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health, Part A, 65(20), 1513-1530.
Kumagai, Y., Pi, J. J. T., & pharmacology, a. (2004). Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction. 198(3), 450-457.
Lamas, B., Martins Breyner, N., & Houdeau, E. (2020). Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Particle and fibre toxicology, 17(1), 19-19. doi:10.1186/s12989-020-00349-z
Lehnert, M., Pesch, B., Lotz, A., Pelzer, J., Kendzia, B., Gawrych, K., . . . Weldox Study, G. (2012). Exposure to inhalable, respirable, and ultrafine particles in welding fume. The Annals of occupational hygiene, 56(5), 557-567. doi:10.1093/annhyg/mes025
Lei, P., Bai, T., & Sun, Y. J. F. i. p. (2019). Mechanisms of ferroptosis and relations with regulated cell death: a review. 10, 139.
Li, M., Al-Jamal, K. T., Kostarelos, K., & Reineke, J. (2010). Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano, 4(11), 6303-6317. doi:10.1021/nn1018818
Li, M., Zhang, C., Wang, D., Zhou, L., Wellmann, D., & Tian, Y. (2019). Friction Stir Spot Welding of Aluminum and Copper: A Review. Materials (Basel, Switzerland), 13(1), 156. doi:10.3390/ma13010156
Li, Q., & Engelhardt, J. F. (2006). Interleukin-1beta induction of NFkappaB is partially regulated by H2O2-mediated activation of NFkappaB-inducing kinase. J Biol Chem, 281(3), 1495-1505. doi:10.1074/jbc.M511153200
Li, S. Y., Sigmon, V. K., Babcock, S. A., & Ren, J. (2007). Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci, 80(11), 1051-1056. doi:10.1016/j.lfs.2006.11.035
Lighty, J. S., Veranth, J. M., Sarofim, A. F. J. J. o. t. A., & Association, W. M. (2000). Combustion aerosols: factors governing their size and composition and implications to human health. 50(9), 1565-1618.
Lloyd-Jones, D. M., Wilson, P. W. F., Larson, M. G., Beiser, A., Leip, E. P., D'Agostino, R. B., & Levy, D. (2004). Framingham risk score and prediction of lifetime risk for coronary heart disease. The American Journal of Cardiology, 94(1), 20-24. doi:https://doi.org/10.1016/j.amjcard.2004.03.023
Lockey, J. E., Schenker, M. B., Howden, D. G., Desmeules, M. J., Saracci, R., Sprince, N. L., & Harber, P. I. (1988). Current issues in occupational lung disease. American Review of Respiratory Disease, 138(4), 1047-1050.
Longmire, M., Choyke, P. L., & Kobayashi, H. (2008). Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond), 3(5), 703-717. doi:10.2217/17435889.3.5.703
Lou, B., Hu, Y., Lu, X., Zhang, X., Li, Y., Pi, J., & Xu, Y. (2020). Long-isoform NRF1 protects against arsenic cytotoxicity in mouse bone marrow-derived mesenchymal stem cells by suppressing mitochondrial ROS and facilitating arsenic efflux. Toxicology and Applied Pharmacology, 407, 115251. doi:https://doi.org/10.1016/j.taap.2020.115251
Lu, F. C. (2002). Kacew S. Lu’s basic toxicology. In: London: Taylor and Francis.
Marques, C. M. S., Nunes, E. A., Lago, L., Pedron, C. N., Manieri, T. M., Sato, R. H., . . . Cerchiaro, G. (2017). Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 824, 42-51. doi:https://doi.org/10.1016/j.mrgentox.2017.10.005
Maynard, A. D., & Kuempel, E. D. (2005). Airborne Nanostructured Particles and Occupational Health. Journal of Nanoparticle Research, 7(6), 587-614. doi:10.1007/s11051-005-6770-9
McNair, E. D., Wells, C. R., Qureshi, A. M., Basran, R. S., Pearce, C., Orvold, J., . . . Prasad, K. (2009). Low levels of soluble receptor for advanced glycation end products in non-ST elevation myocardial infarction patients. Int J Angiol, 18(4), 187-192. doi:10.1055/s-0031-1278352
Meier-Ewert, H. K., Ridker, P. M., Rifai, N., Price, N., Dinges, D. F., & Mullington, J. M. (2001). Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects. Clin Chem, 47(3), 426-430.
Meng, F. G., & Zhang, Z. Y. (2013). Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical. Biochim Biophys Acta, 1834(1), 464-469. doi:10.1016/j.bbapap.2012.06.018
Mills, N. L., Donaldson, K., Hadoke, P. W., Boon, N. A., MacNee, W., Cassee, F. R., . . . Newby, D. E. (2009). Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med, 6(1), 36-44. doi:10.1038/ncpcardio1399
Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N., & Valsami-Jones, E. J. S. o. t. t. e. (2012). The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. 438, 225-232.
Montoro Bustos, A. R., Purushotham, K. P., Possolo, A., Farkas, N., Vladár, A. E., Murphy, K. E., & Winchester, M. R. (2018). Validation of Single Particle ICP-MS for Routine Measurements of Nanoparticle Size and Number Size Distribution. Anal Chem, 90(24), 14376-14386. doi:10.1021/acs.analchem.8b03871
Mozaffari, M. S., Baban, B., Abdelsayed, R., Liu, J. Y., Wimborne, H., Rodriguez, N., & Abebe, W. (2012). Renal and glycemic effects of high-dose chromium picolinate in db/db mice: assessment of DNA damage. The Journal of nutritional biochemistry, 23(8), 977-985. doi:10.1016/j.jnutbio.2011.05.004
Mukai, H., Svedberg, O., Lindholm, B., Dai, L., Heimbürger, O., Barany, P., . . . Qureshi, A. R. (2019). Skin autofluorescence, arterial stiffness and Framingham risk score as predictors of clinical outcome in chronic kidney disease patients: a cohort study. Nephrology Dialysis Transplantation, 34(3), 442-448. doi:10.1093/ndt/gfx371
Nakhaie, M. R., Koor, B. E., Salehi, S. O., & Karimpour, F. (2018). Prediction of cardiovascular disease risk using framingham risk score among office workers, Iran, 2017. Saudi J Kidney Dis Transpl, 29(3), 608-614. doi:10.4103/1319-2442.235179
Napoli, E., Taroni, F., Cortopassi, G. A. J. A., & signaling, r. (2006). Frataxin, iron–sulfur clusters, heme, ROS, and aging. 8(3-4), 506-516.
Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., . . . Shaw, A. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem, 267(21), 14998-15004.
Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622-627. doi:10.1126/science.1114397
Nemery, B., & Demedts, M. J. E. R. J. (1991). Respiratory involvement in metal fume fever. 4(6), 764-765.
O'Brien, J., & Morrissey, P. A. (1989). Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit Rev Food Sci Nutr, 28(3), 211-248. doi:10.1080/10408398909527499
Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113(7), 823-839. doi:10.1289/ehp.7339
Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113(7), 823-839. doi:10.1289/ehp.7339
OBERDÖRSTER, G. J. P. S., & Technology. (1996). Significance of particle parameters in the evaluation of exposure-dose response relationships of inhaled particles. 14(2), 135-151.
Okuno, T., Ojima, J., & Saito, H. (2010). Blue-light hazard from CO2 arc welding of mild steel. Ann Occup Hyg, 54(3), 293-298. doi:10.1093/annhyg/mep090
Oprya, M., Kiro, S., Worobiec, A., Horemans, B., Darchuk, L., Novakovic, V., . . . Van Grieken, R. (2012). Size distribution and chemical properties of welding fumes of inhalable particles. Journal of Aerosol Science, 45, 50-57. doi:https://doi.org/10.1016/j.jaerosci.2011.10.004
Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biology, 2, 411-429. doi:https://doi.org/10.1016/j.redox.2013.12.016
Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biol, 2, 411-429. doi:10.1016/j.redox.2013.12.016
Pandurangan, M., & Kim, D. H. J. J. o. N. R. (2015). In vitro toxicity of zinc oxide nanoparticles: a review. 17(3), 158.
Park, E.-J., Sim, J., Kim, Y., Han, B. S., Yoon, C., Lee, S., . . . Kim, J.-H. (2015). A 13-week repeated-dose oral toxicity and bioaccumulation of aluminum oxide nanoparticles in mice. Arch Toxicol, 89(3), 371-379. doi:10.1007/s00204-014-1256-0
Patrushev, N., Seidel-Rogol, B., & Salazar, G. J. P. o. (2012). Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. 7(3), e33211.
Pearson, T. A., Mensah, G. A., Alexander, R. W., Anderson, J. L., Cannon, R. O., 3rd, Criqui, M., . . . Vinicor, F. (2003). Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation, 107(3), 499-511. doi:10.1161/01.cir.0000052939.59093.45
Peters, A., Döring, A., Wichmann, H. E., & Koenig, W. (1997). Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet, 349(9065), 1582-1587. doi:10.1016/s0140-6736(97)01211-7
Peters, A., Wichmann, H. E., Tuch, T., Heinrich, J., & Heyder, J. (1997). Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med, 155(4), 1376-1383. doi:10.1164/ajrccm.155.4.9105082
Peyroux, J., & Sternberg, M. J. P. B. (2006). Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. 54(7), 405-419.
Pope, C. A., 3rd, Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109(1), 71-77. doi:10.1161/01.Cir.0000108927.80044.7f
Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association, 56(6), 709-742.
Powell, J. J., Bruggraber, S. F. A., Faria, N., Poots, L. K., Hondow, N., Pennycook, T. J., . . . Pereira, D. I. A. (2014). A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity. Nanomedicine: Nanotechnology, Biology and Medicine, 10(7), 1529-1538. doi:https://doi.org/10.1016/j.nano.2013.12.011
Prasad, A., Bekker, P., & Tsimikas, S. (2012). Advanced glycation end products and diabetic cardiovascular disease. Cardiol Rev, 20(4), 177-183. doi:10.1097/CRD.0b013e318244e57c
Prasad, A. S., Bao, B., Beck, F. W., Sarkar, F. H. J. J. o. L., & Medicine, C. (2001). Zinc activates NF-κB in HUT-78 cells. 138(4), 250-256.
Ramasamy, R., Yan, S. F., & Schmidt, A. M. (2009). RAGE: therapeutic target and biomarker of the inflammatory response--the evidence mounts. J Leukoc Biol, 86(3), 505-512. doi:10.1189/jlb.0409230
Ridker, P. M., Glynn, R. J., & Hennekens, C. H. (1998). C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation, 97(20), 2007-2011. doi:10.1161/01.cir.97.20.2007
Roels, H., Meiers, G., Delos, M., Ortega, I., Lauwerys, R., Buchet, J. P., & Lison, D. (1997). Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch Toxicol, 71(4), 223-230. doi:10.1007/s002040050380
Rojas, A., Mercadal, E., Figueroa, H., & Morales, M. A. (2008). Advanced Glycation and ROS: a link between diabetes and heart failure. Curr Vasc Pharmacol, 6(1), 44-51. doi:10.2174/157016108783331312
ROSSMAN, M. D., KERN, J. A., ELIAS, J. A., CULLEN, M. R., EPSTEIN, P. E., PREUSS, O. P., . . . DANIELE, R. P. J. A. o. I. M. (1988). Proliferative response of bronchoalveolar lymphocytes to beryllium: a test for chronic beryllium disease. 108(5), 687-693.
Sadauskas, E., Danscher, G., Stoltenberg, M., Vogel, U., Larsen, A., & Wallin, H. (2009). Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine: Nanotechnology, Biology and Medicine, 5(2), 162-169. doi:https://doi.org/10.1016/j.nano.2008.11.002
Sama, P., Long, T. C., Hester, S., Tajuba, J., Parker, J., Chen, L. C., & Veronesi, B. (2007). The cellular and genomic response of an immortalized microglia cell line (BV2) to concentrated ambient particulate matter. Inhal Toxicol, 19(13), 1079-1087. doi:10.1080/08958370701628721
Schmidt, A. M., Yan, S. D., Wautier, J. L., & Stern, D. (1999). Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res, 84(5), 489-497. doi:10.1161/01.res.84.5.489
Schwartz, J., & Dockery, D. W. (1992). Increased mortality in Philadelphia associated with daily air pollution concentrations. Am Rev Respir Dis, 145(3), 600-604. doi:10.1164/ajrccm/145.3.600
Severin, F. F., Feniouk, B. A., & Skulachev, V. P. (2013). Advanced glycation of cellular proteins as a possible basic component of the "master biological clock". Biochemistry (Mosc), 78(9), 1043-1047. doi:10.1134/s0006297913090101
Sferlazza, S. J., & Beckett, W. S. (1991). The Respiratory Health of Welders1–3. Am Rev Respir Dis, 143, 1134-1148.
Shafie, E. H., Keshavarz, S. A., Kefayati, M. E., Taheri, F., Sarbakhsh, P., & Vafa, M. R. (2016). The Effects of Nanoparticles Containing Iron on Blood and Inflammatory Markers in Comparison to Ferrous Sulfate in Anemic Rats. International journal of preventive medicine, 7, 117-117. doi:10.4103/2008-7802.193092
Shah, S. V., & Alam, M. G. J. A. j. o. k. d. (2003). Role of iron in atherosclerosis. 41(3), S80-S83.
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. J. E. i. (2005). Chromium toxicity in plants. 31(5), 739-753.
Shefa, S. T., & Héroux, P. (2017). Both physiology and epidemiology support zero tolerable blood lead levels. Toxicology letters, 280, 232-237. doi:https://doi.org/10.1016/j.toxlet.2017.08.015
Shen, X., Xia, L., Liu, L., Jiang, H., Shannahan, J., Du, Y., & Zheng, W. (2020). Altered clearance of beta-amyloid from the cerebrospinal fluid following subchronic lead exposure in rats: Roles of RAGE and LRP1 in the choroid plexus. Journal of Trace Elements in Medicine and Biology, 61, 126520. doi:https://doi.org/10.1016/j.jtemb.2020.126520
Siddiqui, M. A., Alhadlaq, H. A., Ahmad, J., Al-Khedhairy, A. A., Musarrat, J., & Ahamed, M. J. P. o. (2013). Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. 8(8), e69534.
Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: a review. Diabetologia, 44(2), 129-146. doi:10.1007/s001250051591
Sohn, C., Kim, J., & Bae, W. (2012). The framingham risk score, diet, and inflammatory markers in Korean men with metabolic syndrome. Nutr Res Pract, 6(3), 246-253. doi:10.4162/nrp.2012.6.3.246
Song, X., Fiati Kenston, S. S., Kong, L., & Zhao, J. (2017). Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology, 392, 47-54. doi:https://doi.org/10.1016/j.tox.2017.10.006
SPEAR, J. (2017). Industrial-Hygiene-Exposure Assessments.
Spear, J. E. (2011). Exposure_Assessment_Protect your company and your employees.
Spiegel-Ciobanu, V.-E. (2009). Matrix zur Beurteilung der Schadstoffbelastung durch Schweissrauche: Shaker.
Stanislawska, M., Janasik, B., Kuras, R., Malachowska, B., Halatek, T., & Wasowicz, W. (2020). Assessment of occupational exposure to stainless steel welding fumes - A human biomonitoring study. Toxicol Lett, 329, 47-55. doi:10.1016/j.toxlet.2020.04.019
Stark, M., Zubareb, J., Jacovovitz, R., Schwartz, Y., Lerman, Y., Grinberg, N., & Fireman, E. (2009). HO-1 and VEGF gene expressions are time dependant during exposure to welding fumes. Cytokine, 46(2), 290-295. doi:https://doi.org/10.1016/j.cyto.2009.02.012
Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free radical biology and medicine, 18(2), 321-336.
Sturm, R. (2012). Theoretical models of carcinogenic particle deposition and clearance in children's lungs. J Thorac Dis, 4(4), 368-376. doi:10.3978/j.issn.2072-1439.2012.08.03
Taira, M., Sakakibara, K., Saeki, K., Ohira, S. I., & Toda, K. (2020). Determination of oxoanions and water-soluble species of arsenic, selenium, antimony, vanadium, and chromium eluted in water from airborne fine particles (PM(2.5)): effect of acid and transition metal content of particles on heavy metal elution. Environ Sci Process Impacts, 22(7), 1514-1524. doi:10.1039/d0em00135j
Takahashi, M., Suzuki, K., Ikeda, Y., & Taniguchi, N. (2007). 4.28 - Glycation and Disease. In H. Kamerling (Ed.), Comprehensive Glycoscience (pp. 515-532). Oxford: Elsevier.
Toyokuni, S. (1996). Iron-induced carcinogenesis: the role of redox regulation. Free radical biology and medicine, 20(4), 553-566.
Tsave, O., Petanidis, S., Kioseoglou, E., Yavropoulou, M. P., Yovos, J. G., Anestakis, D., . . . Salifoglou, A. (2016). Role of Vanadium in Cellular and Molecular Immunology: Association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms. Oxidative medicine and cellular longevity, 2016, 4013639-4013639. doi:10.1155/2016/4013639
Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., . . . Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc, 110(6), 911-916.e912. doi:10.1016/j.jada.2010.03.018
Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Curr Med Chem, 12(10), 1161-1208. doi:10.2174/0929867053764635
Waalkes, M. P. (2003). Cadmium carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 533(1), 107-120. doi:https://doi.org/10.1016/j.mrfmmm.2003.07.011
Wang, D., Lin, Z., Wang, T., Yao, Z., Qin, M., Zheng, S., & Lu, W. (2016). Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? Journal of Hazardous Materials, 308, 328-334. doi:https://doi.org/10.1016/j.jhazmat.2016.01.066
Wannamethee, S. G., Shaper, A. G., Lennon, L., & Morris, R. W. (2005). Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med, 165(22), 2644-2650. doi:10.1001/archinte.165.22.2644
Wehmas, L. C., Anders, C., Chess, J., Punnoose, A., Pereira, C. B., Greenwood, J. A., & Tanguay, R. L. J. T. r. (2015). Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. 2, 702-715.
Wenning, R., & Kirsch, N. J. H. o. T. o. I. C. M. D., eds. New York: Seiler-Sigel-Sigel. (1988). Vanadium. 749-765.
Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., & Stone, V. (2002). Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol, 184(3), 172-179. doi:10.1006/taap.2002.9501
Wu, W.-T., Li, L.-A., Tsou, T.-C., Wang, S.-L., Lee, H.-L., Shih, T.-S., & Liou, S.-H. (2019). Longitudinal follow-up of health effects among workers handling engineered nanomaterials: a panel study. Environmental Health, 18(1), 107.
Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., . . . Nel, A. E. (2006). Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Letters, 6(8), 1794-1807. doi:10.1021/nl061025k
Xie, Y., Bagby, T. R., Cohen, M. S., & Forrest, M. L. J. E. o. o. d. d. (2009). Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. 6(8), 785-792.
Xu, M. X., Zhu, Y. F., Chang, H. F., & Liang, Y. (2016). Nanoceria restrains PM2.5-induced metabolic disorder and hypothalamus inflammation by inhibition of astrocytes activation related NF-κB pathway in Nrf2 deficient mice. Free Radic Biol Med, 99, 259-272. doi:10.1016/j.freeradbiomed.2016.08.021
Yamagishi, S.-i., Fujimori, H., Yonekura, H., Tanaka, N., Yamamoto, H. J. B., & communications, b. r. (1999). Advanced glycation endproducts accelerate calcification in microvascular pericytes. 258(2), 353-357.
Yamagishi, S.-i., & Matsui, T. J. A. o. v. d. (2018). Role of hyperglycemia-induced advanced glycation end product (age) accumulation in atherosclerosis. ra. 18-00070.
Yang, P.-S., Kim, T.-h., Uhm, J.-S., Park, S., Joung, B., Lee, M.-H., & Pak, H.-N. (2016). High plasma level of soluble RAGE is independently associated with a low recurrence of atrial fibrillation after catheter ablation in diabetic patient. EP Europace, 18(11), 1711-1718. doi:10.1093/europace/euv449
Yang, S.-Y., Lin, J.-M., Lin, W.-Y., & Chang, C.-W. (2018). Cancer risk assessment for occupational exposure to chromium and nickel in welding fumes from pipeline construction, pressure container manufacturing, and shipyard building in Taiwan. Journal of occupational health, 60(6), 515-524. doi:10.1539/joh.2018-0075-FS
Yang, S. Y., Lin, J. M., Young, L. H., & Chang, C. W. (2018). Mass-size distribution and concentration of metals from personal exposure to arc welding fume in pipeline construction: a case report. Industrial health, 56(4), 356-363. doi:10.2486/indhealth.2017-0197
Yu, I. J., Kim, K. J., Chang, H. K., Song, K. S., Han, K. T., Han, J. H., . . . Chung, K. H. (2000). Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague–Dawley rats exposed to a novel welding fume generating system. Toxicology letters, 116(1-2), 103-111.
Zalk, D. M., Paik, S. Y., & Swuste, P. (2009). Evaluating the Control Banding Nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. Journal of Nanoparticle Research, 11(7), 1685. doi:10.1007/s11051-009-9678-y
Zhang, H., Ji, Z., Xia, T., Meng, H., Low-Kam, C., Liu, R., . . . Liao, Y.-P. J. A. n. (2012). Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. 6(5), 4349-4368.
Zhu, W., Li, W., & Silverstein, R. L. (2012). Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36. Blood, 119(25), 6136-6144. doi:10.1182/blood-2011-10-387506
Zhuang, X., Pang, X., Zhang, W., Wu, W., Zhao, J., Yang, H., & Qu, W. J. L. s. (2012). Effects of zinc and manganese on advanced glycation end products (AGEs) formation and AGEs-mediated endothelial cell dysfunction. 90(3-4), 131-139.
Zieman, S. J., & Kass, D. A. (2004). Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs, 64(5), 459-470. doi:10.2165/00003495-200464050-00001
中華民國環境工程學會. (2018). 奈米污染物及環境奈米分析技術-單顆粒式感應耦合電漿質譜儀簡介.
世筌企業(股)公司. (2019). 防有機氣體口罩. doi:https://www.ceachain.com.tw/product.aspx?ccno=aa-138
李聯雄、闕妙如. (2009). 化學性危害暴露作業環境測定指引及落實執行之研究.
李聯雄、鐘順輝. (2009). 作業環境數據處理統計模式建立之研究.
徐嘉吟, & 方信智. (2006). 心血管疾病的新指標-高敏感性C-反應蛋白(hs-CRP). 基層醫學, 21(3), 63-67. doi:10.6965/pmcfm.200603.0063
國緯興業有限公司. (2020). KD-411防塵口罩1005RR型. doi:https://www.kaoshan.com.tw/product/safe/breathing/41.html
莊凱任、莊校奇、潘致弘. (2014). 奈米金屬微粒引發健康危害之動物實驗研究. 1-2.
莊凱任、潘致弘. (2014). 奈米金屬對勞工心血管與細胞毒性效應評估研究.
勞動部職業安全衛生署. (2016). 化學品評估及分級管理.
潘致弘、莊凱任. (2015). 奈米金屬微粒引發健康危害之動物實驗研究.
衛生福利部. (2020). 108年死因統計結果分析.
鄭尊仁. (2007). 奈米微粒與健康風險. 科儀新知, 10-14.
電子全文 電子全文(網際網路公開日期:20260728)
第一頁 上一頁 下一頁 最後一頁 top