跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 11:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃凱琳
研究生(外文):HUANG, KAI-LIN
論文名稱:利用四種生物指標推測Avastin對於卵巢癌的臨床療效及預後
論文名稱(外文):Prediction the Avastin treatment response and prognosis to four biomarkers in ovarian cancer
指導教授:趙載光趙載光引用關係
指導教授(外文):CHAO, TAI-KUANG
口試委員:高鴻偉王靖維趙載光
口試委員(外文):GAO, HONG-WEIWANG, CHING-WEICHAO, TAI-KUANG
口試日期:2021-05-21
學位類別:碩士
校院名稱:國防醫學院
系所名稱:病理及寄生蟲學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:91
中文關鍵詞:貝伐單抗
外文關鍵詞:Bevacizumab
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:
許多文獻表明在多種癌症中發現補體活化的跡象,以及發炎體與腫瘤發展有關,補體與發炎體作為先天性免疫系統效應機制,有可能在癌症中發揮重要作用。我們評估補體C3、C5和發炎體AIM2、NLRP3在卵巢癌病理組織晶片中的表現,並研究C3、C5、AIM2、NLRP3在卵巢癌病患對貝伐單抗(Avastin)治療中的預後價值。
方法:
以醫院為基礎的回顧性審查進行C3、C5、AIM2、NLRP3的免疫組織化學染色,將卵巢癌樣本製成的組織晶片根據染色強度、範圍以及對貝伐單抗(Avastin)的臨床療效,並以C3、C5、AIM2、NLRP3的免疫表現作評分。
結果:
發炎體(AIM2、NLRP3)和補體(C3)的表現在貝伐單抗治療無效組中明顯高於有效組(P<0.001,P=0.003,P=0.012)。AIM2、C3、NLRP3表現量高,其不復發存活率越低(分別為P=0.038,P<0.001,P=0.020);AIM2 high單變項分析為5.12 (95%信賴區間為2.31-11.31) (P<0.001),經過多變項分析矯正後AIM2 high危害比為6.02 (95%信賴區間為2.39-15.17) (P<0.001);以ROC分析得知AIM2的AUC達0.819 (P<0.001)。
結論:
AIM2、C3、NLRP3的表現可能當作預測卵巢癌對貝伐單抗臨床療效的生物標誌,AIM2的表現還可當作卵巢癌患者對貝伐單抗預後復發的生物指標。
關鍵詞:
上皮性卵巢癌,免疫組織化學染色,補體C3,補體C5,AIM2發炎體,NLRP3發炎體,貝伐單抗,組織晶片。

Aim:
Complement activation has been elucidated in various cancers, and inflammasome can promote and suppress tumor development. As an important innate immune system effector mechanism, complement and inflammasome are highly likely to play a substantial role in cancer immunity. We evaluated expression of C3, C5, AIM2 and NLRP3 in ovarian cancer, and investigated the prognostic value of C3, C5, AIM2, and NLRP3 to validate biomarkers for prediction of the Bevacizumab (BEV) treatment response in patients with epithelial ovarian cancer (EOC).
Methods:
We conducted a hospital-based retrospective review of C3, C5, AIM2, and NLRP3 distribution immunohistochemically in ovarian cancer from biopsy. C3, C5, AIM2, and NLRP3 immunoreactivity was scored the groups based upon the extent and intensity and prediction of the BEV treatment response of staining.
Results:
The expression of AIM2, NLRP3 and C3 in the bevacizumab treatment-invalid group was significantly higher than that in the effective group (P<0.001, P=0.003, P=0.012). The higher expression of AIM2, C3 and NLRP3 has the lower the recurrence-free survival (P=0.038, P<0.001, P=0.020). The hazard ratio of AIM2high was 5.12 (95% confidence interval , 2.31-11.31) from Univariate recurrence analysis, and the hazard ratio of AIM2high was 6.02 (95% confidence interval , 2.39-15.17) from multivariate recurrence analysis (P<0.001). The AUC of AIM2 is 0.819 (P<0.001).
Conclusions:
The expression of AIM2, C3 and NLRP3 can be used as a biomarker to predict the bevacizumab treatment response in ovarian cancer, and the expression of AIM2 can also be used as a biomarker for the prognostic recurrence rate of bevacizumab in patients with EOC.
Key words:
Epithelial ovarian cancer, Immunohistochemistry staining, C3, C5, AIM2, NLRP3, Bevacizumab and Tissue microarray.

表目錄………………………………………………………………………Ⅳ頁
圖目錄………………………………………………………………………Ⅴ
中文摘要……………………………………………………………………Ⅵ
英文摘要……………………………………………………………………Ⅷ
縮寫表………………………………………………………………………Ⅹ
第一章 緒論………………………………………………………………...1
第一節、 卵巢癌的致病機轉及風險因素……………………………...3
第二節、 上皮性卵巢癌的分子特徵與分期…………………………...5
第三節、 卵巢癌的治療………………………………………………...11
第四節、 VEGF與卵巢癌標靶治療Avastin的相關性……………….13
第五節、 Inflammasome發炎體與癌症的相關性……………………..14
第六節、 AIM2發炎體………………………………………………....16
第七節、 NLRP3發炎體………………………………....……………..18
第八節、 補體系統與癌症的相關性…………….……………………..21
第二章 研究目的與實驗設計
第一節、 研究目的……………………………………………...……...26
第二節、 實驗設計……………………………………………...……...26
第三章 材料與方法
第一節、 實驗材料……………………………………………………..27
壹、Biomarker……………………………………………………...27
貳、儀器設備、耗材……………………………………………....27
參、統計學………………………………………………………....28
第二節、 實驗方法……………………………………………………..29
壹、檢體收集……………………………………………………....29
貳、石蠟切片及蘇木紫與伊紅染色……………………………....29
參、組織晶片(Tissue microarray)………………………………....30
肆、免疫組織化學染色(Immunohistochemistry staining)………..30
伍、顯微鏡評估染色結果....……………………………………....31
陸、生物統計………………………………………………………32
第四章 結果
第一節、利用Tissue microarray觀察C3. C5. AIM2. NLRP3在卵
巢癌的染色情形及反應度……………………………...………...33
第二節、比較補體C3. C5在卵巢癌的染色表現與臨床病理特徵的
相關性……………………………………………………………..34
第三節、比較發炎體AIM2. NLRP3在卵巢癌的染色表現與臨床病
理特徵的相關性…………………………………………………..36
第四節、以Kaplan-Meier Method分析C3. C5. AIM2. NLRP3在卵
巢癌的不復發存活率……………………………………….……38
第五節、利用多變項分析C3. C5. AIM2. NLRP3在卵巢癌患者的復
發表現………………………………………………………....….39
第六節、以ROC曲線分析C3. C5. AIM2. NLRP3的復發能力值....41
第七節、以Kaplan-Meier Method分析C3. C5. AIM2. NLRP3在卵
巢癌患者的整體存活率……………………………………….…42
第五章 討論……………………………………………………………….43
第六章 結論……………………………………………………………….46
第七章 參考資料………………………………………………………….47

1.Lisio, M.A., et al., High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci, 2019. 20(4).
2.Berns, E.M. and D.D. Bowtell, The changing view of high-grade serous ovarian cancer. Cancer Res, 2012. 72(11): p. 2701-4.
3.Webb, P.M. and S.J. Jordan, Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol, 2017. 41: p. 3-14.
4.Rojas, V., et al., Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int J Mol Sci, 2016. 17(12).
5.Doubeni, C.A., A.R. Doubeni, and A.E. Myers, Diagnosis and Management of Ovarian Cancer. Am Fam Physician, 2016. 93(11): p. 937-44.
6.Chiang, Y.C., et al., Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. J Gynecol Oncol, 2013. 24(4): p. 342-51.
7.Wentzensen, N., et al., Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium. J Clin Oncol, 2016. 34(24): p. 2888-98.
8.Siddiqui, G.K., et al., Immunohistochemical expression of VEGF predicts response to platinum based chemotherapy in patients with epithelial ovarian cancer. Angiogenesis, 2011. 14(2): p. 155-61.
9.Shih Ie, M. and R.J. Kurman, Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol, 2004. 164(5): p. 1511-8.
10.Lee, Y., et al., A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol, 2007. 211(1): p. 26-35.
11.Matulonis, U.A., et al., Ovarian cancer. Nat Rev Dis Primers, 2016. 2: p. 16061.
12.McGuire, W.P., et al., Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med, 1996. 334(1): p. 1-6.
13.Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: the ICON3 randomised trial. Lancet, 2002. 360(9332): p. 505-15.
14.Muggia, F.M., et al., Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: a gynecologic oncology group study. J Clin Oncol, 2000. 18(1): p. 106-15.
15.du Bois, A., et al., A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst, 2003. 95(17): p. 1320-9.
16.Kumar, S., et al., Clinical trials and progress with paclitaxel in ovarian cancer. Int J Womens Health, 2010. 2: p. 411-27.
17.Piccart, M.J., et al., Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst, 2000. 92(9): p. 699-708.
18.Fathalla, M.F., Incessant ovulation--a factor in ovarian neoplasia? Lancet, 1971. 2(7716): p. 163.
19.Ramalingam, P., Morphologic, Immunophenotypic, and Molecular Features of Epithelial Ovarian Cancer. Oncology (Williston Park), 2016. 30(2): p. 166-76.
20.Ford, D., et al., Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet, 1998. 62(3): p. 676-89.
21.Boussios, S., et al., Wise Management of Ovarian Cancer: On the Cutting Edge. J Pers Med, 2020. 10(2).
22.Hentze, J.L., C.K. Høgdall, and E.V. Høgdall, Methylation and ovarian cancer: Can DNA methylation be of diagnostic use? Mol Clin Oncol, 2019. 10(3): p. 323-330.
23.Wu, Q., et al., DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Mol Cancer, 2007. 6: p. 45.
24.Banerjee, S. and S.B. Kaye, New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin Cancer Res, 2013. 19(5): p. 961-8.
25.Kurman, R.J. and M. Shih Ie, The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. Am J Pathol, 2016. 186(4): p. 733-47.
26.Karnezis, A.N., et al., The disparate origins of ovarian cancers: pathogenesis and prevention strategies. Nat Rev Cancer, 2017. 17(1): p. 65-74.
27.Kurman, R.J. and M. Shih Ie, Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum Pathol, 2011. 42(7): p. 918-31.
28.Cybulska, P., et al., Molecular profiling and molecular classification of endometrioid ovarian carcinomas. Gynecol Oncol, 2019. 154(3): p. 516-523.
29.Della Pepa, C., et al., Low Grade Serous Ovarian Carcinoma: from the molecular characterization to the best therapeutic strategy. Cancer Treat Rev, 2015. 41(2): p. 136-43.
30.O'Neill, C.J., et al., High-grade ovarian serous carcinoma exhibits significantly higher p16 expression than low-grade serous carcinoma and serous borderline tumour. Histopathology, 2007. 50(6): p. 773-9.
31.Fujiwara, K., D. Shintani, and T. Nishikawa, Clear-cell carcinoma of the ovary. Ann Oncol, 2016. 27 Suppl 1: p. i50-i52.
32.Mabuchi, S., T. Sugiyama, and T. Kimura, Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives. J Gynecol Oncol, 2016. 27(3): p. e31.
33.Tsuchiya, A., et al., Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol, 2003. 163(6): p. 2503-12.
34.Ricci, F., et al., Recent Insights into Mucinous Ovarian Carcinoma. Int J Mol Sci, 2018. 19(6).
35.Bassiouny, D., et al., Comprehensive Clinicopathologic and Updated Immunohistochemical Characterization of Primary Ovarian Mucinous Carcinoma. Int J Surg Pathol, 2018. 26(4): p. 306-317.
36.Crane, E.K. and J. Brown, Early stage mucinous ovarian cancer: A review. Gynecol Oncol, 2018. 149(3): p. 598-604.
37.Sarrió, D., et al., Expression of cadherins and catenins correlates with distinct histologic types of ovarian carcinomas. Hum Pathol, 2006. 37(8): p. 1042-9.
38.Pierson, W.E., et al., An integrated molecular profile of endometrioid ovarian cancer. Gynecol Oncol, 2020. 157(1): p. 55-61.
39.Seidman, J.D., et al., The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol, 2004. 23(1): p. 41-4.
40.Cont, N.T., et al., Medical treatment of early stage and rare histological variants of epithelial ovarian cancer. Ecancermedicalscience, 2015. 9: p. 584.
41.Kline, R.C., et al., Endometrioid carcinoma of the ovary: retrospective review of 145 cases. Gynecol Oncol, 1990. 39(3): p. 337-46.
42.Catasús, L., et al., Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol, 2004. 35(11): p. 1360-8.
43.Palacios, J. and C. Gamallo, Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res, 1998. 58(7): p. 1344-7.
44.Prat, J., FIGO's staging classification for cancer of the ovary, fallopian tube, and peritoneum: abridged republication. J Gynecol Oncol, 2015. 26(2): p. 87-9.
45.Heintz, A.P., et al., Carcinoma of the ovary. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet, 2006. 95 Suppl 1: p. S161-92.
46.O'Malley, D.M., et al., Addition of bevacizumab to weekly paclitaxel significantly improves progression-free survival in heavily pretreated recurrent epithelial ovarian cancer. Gynecol Oncol, 2011. 121(2): p. 269-72.
47.Friedlander, M.L., Prognostic factors in ovarian cancer. Semin Oncol, 1998. 25(3): p. 305-14.
48.Markman, M., Optimizing primary chemotherapy in ovarian cancer. Hematol Oncol Clin North Am, 2003. 17(4): p. 957-68, viii.
49.Vaughan, S., et al., Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer, 2011. 11(10): p. 719-25.
50.Papa, A., et al., Update on Poly-ADP-ribose polymerase inhibition for ovarian cancer treatment. J Transl Med, 2016. 14: p. 267.
51.Kaelin, W.G., Jr., The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer, 2005. 5(9): p. 689-98.
52.Mylona, E., et al., Lymphatic and blood vessel morphometry in invasive breast carcinomas: relation with proliferation and VEGF-C and -D proteins expression. Histol Histopathol, 2007. 22(8): p. 825-35.
53.Dang, D.T., et al., Hypoxia-inducible factor-1 target genes as indicators of tumor vessel response to vascular endothelial growth factor inhibition. Cancer Res, 2008. 68(6): p. 1872-80.
54.Caunt, M., et al., Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell, 2008. 13(4): p. 331-42.
55.Neuhaus, T., et al., Inhibition of the vascular-endothelial growth factor-induced intracellular signaling and mitogenesis of human endothelial cells by epigallocatechin-3 gallate. Eur J Pharmacol, 2004. 483(2-3): p. 223-7.
56.Battegay, E.J., Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med (Berl), 1995. 73(7): p. 333-46.
57.Boxer, G.M., et al., Immunohistochemical expression of vascular endothelial growth factor and microvessel counting as prognostic indicators in node-negative colorectal cancer. Tumour Biol, 2005. 26(1): p. 1-8.
58.Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1995. 1(1): p. 27-31.
59.Burger, R.A., et al., Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J Clin Oncol, 2007. 25(33): p. 5165-71.
60.Yoneda, J., et al., Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst, 1998. 90(6): p. 447-54.
61.Burger, R.A., Experience with bevacizumab in the management of epithelial ovarian cancer. J Clin Oncol, 2007. 25(20): p. 2902-8.
62.Chen, H., et al., VEGF, VEGFRs expressions and activated STATs in ovarian epithelial carcinoma. Gynecol Oncol, 2004. 94(3): p. 630-5.
63.Price, D.J., et al., Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ, 2001. 12(3): p. 129-35.
64.Fan, F., et al., Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene, 2005. 24(16): p. 2647-53.
65.Randall, L.M. and B.J. Monk, Bevacizumab toxicities and their management in ovarian cancer. Gynecol Oncol, 2010. 117(3): p. 497-504.
66.Han, E.S. and B.J. Monk, Bevacizumab in the treatment of ovarian cancer. Expert Rev Anticancer Ther, 2007. 7(10): p. 1339-45.
67.Richardson, D.L., et al., Which factors predict bowel complications in patients with recurrent epithelial ovarian cancer being treated with bevacizumab? Gynecol Oncol, 2010. 118(1): p. 47-51.
68.Xu, S., et al., Inflammasome inhibitors: promising therapeutic approaches against cancer. J Hematol Oncol, 2019. 12(1): p. 64.
69.Balkwill, F. and L.M. Coussens, Cancer: an inflammatory link. Nature, 2004. 431(7007): p. 405-6.
70.Medzhitov, R., Origin and physiological roles of inflammation. Nature, 2008. 454(7203): p. 428-35.
71.Takeuchi, O. and S. Akira, Pattern recognition receptors and inflammation. Cell, 2010. 140(6): p. 805-20.
72.Lu, A., et al., Crystal structure of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED interactions. J Mol Biol, 2014. 426(7): p. 1420-7.
73.Janeway, C.A., Jr., The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today, 1992. 13(1): p. 11-6.
74.Abderrazak, A., et al., NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol, 2015. 4: p. 296-307.
75.Matzinger, P., The danger model: a renewed sense of self. Science, 2002. 296(5566): p. 301-5.
76.Sharma, B.R., R. Karki, and T.D. Kanneganti, Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol, 2019. 49(11): p. 1998-2011.
77.Seo, G.J., et al., TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun, 2018. 9(1): p. 613.
78.Moossavi, M., et al., Role of the NLRP3 inflammasome in cancer. Mol Cancer, 2018. 17(1): p. 158.
79.Martinon, F., K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 2002. 10(2): p. 417-26.
80.Kantono, M. and B. Guo, Inflammasomes and Cancer: The Dynamic Role of the Inflammasome in Tumor Development. Front Immunol, 2017. 8: p. 1132.
81.Strowig, T., et al., Inflammasomes in health and disease. Nature, 2012. 481(7381): p. 278-86.
82.Dinarello, C.A., IL-1: discoveries, controversies and future directions. Eur J Immunol, 2010. 40(3): p. 599-606.
83.Martinon, F. and J. Tschopp, Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ, 2007. 14(1): p. 10-22.
84.Guo, B., et al., Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep, 2016. 6: p. 36107.
85.Kolb, R., et al., Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun, 2016. 7: p. 13007.
86.Zhong, F.L., et al., Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation. Cell, 2016. 167(1): p. 187-202.e17.
87.Dupaul-Chicoine, J., et al., Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity, 2010. 32(3): p. 367-78.
88.Zaki, M.H., M. Lamkanfi, and T.D. Kanneganti, The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol, 2011. 32(4): p. 171-9.
89.Chen, G.Y. and G. Núñez, Inflammasomes in intestinal inflammation and cancer. Gastroenterology, 2011. 141(6): p. 1986-99.
90.Allen, I.C., et al., The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med, 2010. 207(5): p. 1045-56.
91.Dupaul-Chicoine, J., et al., The Nlrp3 Inflammasome Suppresses Colorectal Cancer Metastatic Growth in the Liver by Promoting Natural Killer Cell Tumoricidal Activity. Immunity, 2015. 43(4): p. 751-63.
92.Ozaki, E., M. Campbell, and S.L. Doyle, Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res, 2015. 8: p. 15-27.
93.Jin, T., et al., Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity, 2012. 36(4): p. 561-71.
94.Man, S.M., R. Karki, and T.D. Kanneganti, AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol, 2016. 46(2): p. 269-80.
95.Hornung, V., et al., AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009. 458(7237): p. 514-8.
96.Fernandes-Alnemri, T., et al., The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol, 2010. 11(5): p. 385-93.
97.Man, S.M., et al., The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol, 2015. 16(5): p. 467-75.
98.Wilson, J.E., et al., Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med, 2015. 21(8): p. 906-13.
99.Man, S.M., et al., Critical Role for the DNA Sensor AIM2 in Stem Cell Proliferation and Cancer. Cell, 2015. 162(1): p. 45-58.
100.Karki, R. and T.D. Kanneganti, Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer, 2019. 19(4): p. 197-214.
101.Ponomareva, L., et al., AIM2, an IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer. Mol Cancer Res, 2013. 11(10): p. 1193-202.
102.Paulin, N., et al., Double-Strand DNA Sensing Aim2 Inflammasome Regulates Atherosclerotic Plaque Vulnerability. Circulation, 2018. 138(3): p. 321-323.
103.Hakimi, M., et al., Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. J Vasc Surg, 2014. 59(3): p. 794-803.
104.Komada, T., et al., Macrophage Uptake of Necrotic Cell DNA Activates the AIM2 Inflammasome to Regulate a Proinflammatory Phenotype in CKD. J Am Soc Nephrol, 2018. 29(4): p. 1165-1181.
105.Lozano-Ruiz, B., et al., Absent in melanoma 2 triggers a heightened inflammasome response in ascitic fluid macrophages of patients with cirrhosis. J Hepatol, 2015. 62(1): p. 64-71.
106.Denes, A., et al., AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci U S A, 2015. 112(13): p. 4050-5.
107.Hoffman, H.M., et al., Identification of a locus on chromosome 1q44 for familial cold urticaria. Am J Hum Genet, 2000. 66(5): p. 1693-8.
108.Mariathasan, S., et al., Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006. 440(7081): p. 228-32.
109.Dostert, C., et al., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008. 320(5876): p. 674-7.
110.Pétrilli, V., et al., Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ, 2007. 14(9): p. 1583-9.
111.Martinon, F., et al., Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006. 440(7081): p. 237-41.
112.Tanaka, N., et al., High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum, 2011. 63(11): p. 3625-32.
113.So, A., et al., Targeting inflammasomes in rheumatic diseases. Nat Rev Rheumatol, 2013. 9(7): p. 391-9.
114.Hornung, V., et al., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol, 2008. 9(8): p. 847-56.
115.Gross, O., et al., The inflammasome: an integrated view. Immunol Rev, 2011. 243(1): p. 136-51.
116.Sagoo, P., et al., In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity. Nat Med, 2016. 22(1): p. 64-71.
117.Keller, M., et al., Active caspase-1 is a regulator of unconventional protein secretion. Cell, 2008. 132(5): p. 818-31.
118.Zhou, R., et al., Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 2010. 11(2): p. 136-40.
119.van de Veerdonk, F.L., et al., Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci U S A, 2010. 107(7): p. 3030-3.
120.Broz, P. and V.M. Dixit, Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol, 2016. 16(7): p. 407-20.
121.Kanneganti, T.D., et al., Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity, 2007. 26(4): p. 433-43.
122.Muñoz-Planillo, R., et al., K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013. 38(6): p. 1142-53.
123.Bai, H., et al., Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Exp Cell Res, 2018. 362(1): p. 180-187.
124.Halle, A., et al., The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol, 2008. 9(8): p. 857-65.
125.Boon, T., et al., Tumor antigens recognized by T lymphocytes. Annu Rev Immunol, 1994. 12: p. 337-65.
126.Lakshmi Narendra, B., et al., Immune system: a double-edged sword in cancer. Inflamm Res, 2013. 62(9): p. 823-34.
127.Pagès, F., et al., Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 2010. 29(8): p. 1093-102.
128.Papaioannou, N.E., et al., Harnessing the immune system to improve cancer therapy. Ann Transl Med, 2016. 4(14): p. 261.
129.Bareke, H. and J. Akbuga, Complement system's role in cancer and its therapeutic potential in ovarian cancer. Scand J Immunol, 2018. 88(1): p. e12672.
130.Mamidi, S., S. Höne, and M. Kirschfink, The complement system in cancer: Ambivalence between tumour destruction and promotion. Immunobiology, 2017. 222(1): p. 45-54.
131.Carroll, M.C., The complement system in regulation of adaptive immunity. Nat Immunol, 2004. 5(10): p. 981-6.
132.Kemper, C. and J.P. Atkinson, T-cell regulation: with complements from innate immunity. Nat Rev Immunol, 2007. 7(1): p. 9-18.
133.Macor, P. and F. Tedesco, Complement as effector system in cancer immunotherapy. Immunol Lett, 2007. 111(1): p. 6-13.
134.Sayegh, E.T., O. Bloch, and A.T. Parsa, Complement anaphylatoxins as immune regulators in cancer. Cancer Med, 2014. 3(4): p. 747-58.
135.Walport, M.J., Complement. Second of two parts. N Engl J Med, 2001. 344(15): p. 1140-4.
136.Meyer, S., J.H. Leusen, and P. Boross, Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer. MAbs, 2014. 6(5): p. 1133-44.
137.Rogers, L.M., S. Veeramani, and G.J. Weiner, Complement in monoclonal antibody therapy of cancer. Immunol Res, 2014. 59(1-3): p. 203-10.
138.Dunkelberger, J.R. and W.C. Song, Complement and its role in innate and adaptive immune responses. Cell Res, 2010. 20(1): p. 34-50.
139.Niculescu, F., et al., Persistent complement activation on tumor cells in breast cancer. Am J Pathol, 1992. 140(5): p. 1039-43.
140.Lucas, S.D., et al., Tumor-specific deposition of immunoglobulin G and complement in papillary thyroid carcinoma. Hum Pathol, 1996. 27(12): p. 1329-35.
141.McLean, K. and G. Mehta, Tumor Microenvironment and Models of Ovarian Cancer: The 11th Biennial Rivkin Center Ovarian Cancer Research Symposium. Int J Gynecol Cancer, 2017. 27(9S Suppl 5): p. S2-s9.
142.Gaboriaud, C., et al., Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol, 2004. 25(7): p. 368-73.
143.Markiewski, M.M. and J.D. Lambris, The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol, 2007. 171(3): p. 715-27.
144.Dudley, D.J., The immune system in health and disease. Baillieres Clin Obstet Gynaecol, 1992. 6(3): p. 393-416.
145.Walport, M.J., Complement. First of two parts. N Engl J Med, 2001. 344(14): p. 1058-66.
146.Bottazzi, B., et al., Multimer formation and ligand recognition by the long pentraxin PTX3. Similarities and differences with the short pentraxins C-reactive protein and serum amyloid P component. J Biol Chem, 1997. 272(52): p. 32817-23.
147.Deban, L., et al., Binding of the long pentraxin PTX3 to factor H: interacting domains and function in the regulation of complement activation. J Immunol, 2008. 181(12): p. 8433-40.
148.Zhang, R., et al., Role of the complement system in the tumor microenvironment. Cancer Cell Int, 2019. 19: p. 300.

電子全文 電子全文(網際網路公開日期:20260526)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文