跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林育呈
研究生(外文):LIN, YU-CHENG
論文名稱:膠態電解質與電吸附染料在染料敏化太陽能電池之研究
論文名稱(外文):Investigation of Gel Electrolytes and Electrical Dye-adsorption Method for Dye-sensitized Solar Cell Application
指導教授:王修璇王修璇引用關係
指導教授(外文):Wang, Hsiou-Hsuan
口試委員:李文仁蘇昭瑾
口試委員(外文):LI, WEN-RENSU, ZHAO-JIN
口試日期:2021-01-20
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:106
中文關鍵詞:鈦箔奈米顆粒膠態電解質電吸附染料敏化太陽能電池
外文關鍵詞:Titanium foil,nanoparticlegel electrolyteelectrical adsorptiondye-sensitized solar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本研究添加二氧化鈦奈米顆粒(TiO2)於電解質,形成膠態電解質,應用在導電玻璃基材上,進行伏安法中的線性掃描伏安法(LSV)測量,得知F-L擴散係數為3.95×10-14 cm2 s-1,F-P2515擴散係數為3.36×10-13 cm2 s-1,說明加入奈米顆粒於電解質中,能提高離子擴散係數,探究其原因為電解質中發生電雙層效應,使使電解質中的I-吸附在TiO2表面形成第一吸附層,使其表面帶負電荷,會吸引電解質中陽離子(Li+、DMPI+),達到電荷平衡,形成相反離子層,電解質中陽離子濃度降低,減少I3 的靜電吸引力,加速I-與I3 的離子擴散,進而加速電子傳遞速度,於是將膠態電解質應用在鈦箔基材上,並透過雙氧水及電泳方式進行鈦箔基材的前處理,以X光繞射分析儀(XRD)分析電泳前處理後,鈦箔基材上有二氧化鈦銳鈦礦晶相,有助於提高二氧化鈦的鍵結性,降低邊界能障;以掃描式電子顯微鏡(SEM)觀察電泳前處理後,鈦箔基材表面上生成一維二氧化鈦奈米管柱,能提供電子的傳輸路徑,進而加快電子傳遞,將其進一步封裝成電池,透過光電轉換效率分析儀(IV-Curve)及電化學阻抗頻譜儀(EIS)分析,液態電解質短路電流密度為20.26 mA/cm2,電阻為8.151 Ω,在T-E-P250.3其短路電流密度為24.00 mA/cm2,電阻為5.06 Ω,說明添加膠態電解質,能降低電阻,增加短路電流密度,探討其原因為電解質中穩定的電雙層,阻礙I3 與TiO2表面接觸,有效地抑制再結合效應,本實驗最優化條件為T-E-P250.3,短路電流密度增加了18.5 %,光電轉換效率從9.57 %提升了8.89 %,達到10.42 %,此外,將工作電極浸漬於(cyclic voltammetry)CV裝置,利用電吸附方法,以紫外光-可見光光譜儀(UV-Vis)分析在6小時內,FV1H6染料吸附度為0.071 μmole/cm2,FH6染料吸附度為0.029 μmole/cm2,探討其原因為電吸附方法,利用電壓產生電場方向,使染料離子快速堆積在二氧化鈦薄膜上,本實驗最優化條件為FV1H6短路電流為10.70 mA/cm2,光電轉換效率達到5.56 %,說明電吸附方法能減少染料敏化太陽能電池製程中染料浸漬的時間。
In this study, titanium dioxide nanoparticles (TiO2) were added to the electrolyte, which was applied on a FTO. the F-L diffusion coefficient was 3.95×10-14 cm2 s-1 for LSV, the diffusion coefficient of F-P2515 is 3.36×10-13 cm2 s-1, indicating electric double layer effect in the electrolyte.Make the I- in the electrolyte adsorb on the surface of TiO2 and make the surface negatively charged, which will attract the cations (Li+, DMPI+), and accelerate the electron transfer speed, so the gel electrolyte is applied to the titanium foil substrate,After analyzing XRD, there is anatase crystal phase which helps to improve the bonding of titanium dioxide and reduce the boundary energy barrier; with SEM, one-dimensional nanotube columns are formed on the surface which can provide a transmission path for electrons through a IV-Curve and EIS analysis, Jsc is 20.26 mA/cm2, the resistance is 8.151 Ω, in T-E-P250.3 its Jsc is 24.00 mA/cm2, the resistance is 5.06 Ω, indicating gel electrolyte can reduce the resistance and increase the Jsc. The stable electric double layer in the electrolyte prevents the contact between I3-and the TiO2 surface and inhibits the recombination effect. The optimal condition of this experiment is T-E-P250.3, the Jsc is 18.5 %, and the photoelectric conversion efficiency is 10.42 %. In addition, the working electrode is immersed in a CV device, and the electro-absorption method is used with UV-Vis analysis that the dye adsorption of FV1H6 was 0.071 μmole/cm2, and the dye adsorption of FH6 was 0.029 μmole/cm2 within 6 hours. The reason is the electro-adsorption method, which uses voltage to generate the electric field direction to make the dye Ions quickly accumulate on the film.The optimal conditions of this experiment are FV1H6 Jsc is 10.70 mA/cm2 and photoelectric conversion efficiency of 5.56 %, indicating that the electro-adsorption method can reduce the dye immersion time in the process of dye-sensitized solar cells.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究方向 3
第二章 文獻回顧與基礎理論 4
2.1 染料敏化太陽能電池文獻回顧 4
2.1.1 染料敏化太陽能電池電解質之文獻回顧 4
2.1.2 染料敏化太陽能電池之染料吸附方法文獻回顧 14
2.2 染料敏化太陽能電池基礎理論 26
2.2.1 染料敏化太陽能電池之工作原理 26
2.2.2 染料敏化太陽能電池結構組成 27
2.2.2.1 光陽極 27
2.2.2.2 光敏化劑 29
2.2.2.3 電解質 30
第三章 實驗部分 32
3.1 實驗藥品及儀器 32
3.2 染料敏化太陽能電池之製備 35
3.2.1 工作電極基材製備 35
3.2.1.1 鈦箔基材 35
3.2.1.2 FTO導電玻璃 36
3.2.2 二氧化鈦鍍膜液製備 36
3.2.3 染料(N719)溶液製備 38
3.2.3.1 工作電極浸漬N719溶液以一般方法之製備 38
3.2.3.2 工作電極浸漬N719溶液以電吸附方法之製備 38
3.2.4 電解質製備 40
3.2.4.1 液態電解質製備 40
3.2.4.2 膠態電解質製備 41
3.3染料敏化太陽能電池之組裝 43
3.3.1二氧化鈦薄膜工作電極之製備 43
3.3.2 鉑金屬對電極之製備 44
3.3.3 染料敏化太陽能電池之封裝 45
3.4 儀器操作原理 46
3.4.1 X光繞射分析儀(XRD) 46
3.4.2 掃描式電子顯微鏡(SEM) 47
3.4.3 表面輪廓儀(Surface Profilers) 48
3.4.4 紫外光-可見光吸收光譜儀(UV-Vis) 49
3.4.5 電化學阻抗頻譜儀(EIS) 51
3.4.6 伏安法分析儀(CV) 54
3.4.7 光電轉換效率分析儀(IV-Curve) 56
第四章 結果與討論 58
4.1 膠態電解質添加不同成份二氧化鈦光電效能 58
4.1.1 膠態電解質添加不同成份二氧化鈦之X光繞射分析 59
4.1.2 膠態電解質添加不同成份二氧化鈦之掃描電子顯微鏡分析 60
4.1.3 膠態電解質添加不同成份二氧化鈦之光電轉換效能分析 61
4.1.4 膠態電解質添加不同成份二氧化鈦之電化學阻抗分析 62
4.1.5 膠態電解質添加不同成份二氧化鈦之紫外光可見光譜分析 63
4.1.6結論 64
4.2 不同比例膠態電解質對FTO光陽極光電效能 65
4.2.1 不同比例膠態電解質對FTO光陽極之掃描電子顯微鏡分析 66
4.2.2 不同比例膠態電解質對FTO光陽極之光電轉換效能分析 67
4.2.3 不同比例膠態電解質對FTO光陽極之電化學阻抗分析 68
4.2.4 不同比例膠態電解質對FTO光陽極之伏安法分析 69
4.2.5 不同比例膠態電解質對FTO光陽極之紫外光可見光譜分析 71
4.2.6 膠態電解質對FTO光陽極之長效性測試 72
4.2.7結論 75
4.3膠態電解質對雙氧水鈦箔光陽極光電效能 76
4.3.1 雙氧水前處理對鈦箔基材光陽極之性質分析 77
4.3.2 膠態電解質對雙氧水鈦箔光陽極之掃描電子顯微鏡分析 79
4.3.3 膠態電解質對雙氧水鈦箔光陽極之光電轉換效能分析 80
4.3.4 膠態電解質對雙氧水鈦箔光陽極之電化學阻抗分析 81
4.3.5 膠態電解質對雙氧水鈦箔光陽極之紫外光可見光譜分析 82
4.4 膠態電解質對電泳鈦箔光陽極光電效能 83
4.4.1 電泳前處理對鈦箔基材光陽極之性質分析 84
4.4.2 膠態電解質對電泳鈦箔光陽極之掃描電子顯微鏡分析 86
4.4.3 膠態電解質對電泳鈦箔光陽極之光電轉換效能分析 87
4.4.4 膠態電解質對電泳鈦箔光陽極之電化學阻抗分析 88
4.4.5 膠態電解質對電泳鈦箔光陽極之伏安法分析 90
4.4.6 膠態電解質對電泳鈦箔光陽極之紫外光可見光譜分析 91
4.5膠態電解質對鈦基材光陽極之結論 92
4.6 電吸附染料對DSSCs光電效能 94
4.6.1 電吸附染料之紫外光可見光譜分析 95
4.6.2 電吸附染料之電化學阻抗分析 96
4.6.3 電吸附染料之光電轉換效能分析 97
4.6.4 電吸附染料之最優化 99
第五章 結論與建議 100
參考文獻 102
自述 106
著作發表 106

[1]B. O’Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, p. 737, 1991.
[2]何文岳, "離子液體在染料敏化太陽能電池電解液之應用," 化工, vol. 56, no. 2, pp. 68-75, 2009.
[3]H. Shibl, H. Hafez, R. Rifai, and M. A. Mottaleb, "Environmental friendly, low cost quasi solid state dye sensitized solar cell: polymer electrolyte introduction," Journal of Inorganic and Organometallic Polymers and Materials, vol. 23, no. 4, pp. 944-949, 2013.
[4]E. Aram, M. Ehsani, and H. A. Khonakdar, "Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte," Thermochimica Acta, vol. 615, pp. 61-67, 2015/09/10/ 2015.
[5]L. Jin, T. Liu, and C. Wang, "Ionic gel electrolytes composite with SiO 2 nanoparticles for quasi-solid-state dye-sensitized solar cells," Applied Physics A, vol. 122, no. 6, p. 606, 2016.
[6]W.-C. Yu, L.-Y. Lin, W.-C. Chang, S.-H. Zhong, and C.-C. J. J. o. P. S. Su, "Iodine-free nanocomposite gel electrolytes for quasi-solid-state dye-sensitized solar cells," Journal of Power Sources, vol. 403, pp. 157-166, 2018.
[7]I.-P. Liu, L.-W. Wang, M.-H. Tsai, Y.-Y. Chen, H. Teng, and Y.-L. J. J. o. P. S. Lee, "A new mechanism for interpreting the effect of TiO2 nanofillers in quasi-solid-state dye-sensitized solar cells," Journal of Power Sources, vol. 433, p. 226693, 2019.
[8]J.-W. Lee et al., "Photocurrent–Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cells Influenced by N719 Dye Adsorption Properties," Journal of Nanoscience and Nanotechnology, vol. 7, no. 11, pp. 3717-3721, 2007.
[9]H. Seo et al., "Faster dye-adsorption of dye-sensitized solar cells by applying an electric field," Electrochimica Acta, vol. 55, no. 13, pp. 4120-4123, 2010/05/01/ 2010.
[10]W. D. Jheng and C. C. Chen, "The absorption of TiO2 nanotube-dye sensitization solar cells by thermo-compression systems in dye molecules," in Advanced Materials Research, vol. 148, pp. 1710-1716, 2011.
[11]T. Yuasa et al., "Dye adsorption for dye-sensitized solar cell," Solar Energy Materials and Solar Cells, vol. 102, pp. 2-7, 2012.
[12]Y. Seo, J. H. J. J. o. I. Kim, and E. Chemistry, "Rapid dye adsorption for dye-sensitized solar cells using a simple ultrasonication method," Journal of Industrial and Engineering Chemistry, vol. 19, pp. 488-492, 2013.
[13]M.-H. Yu, C.-L. Yang, Y.-C. Huang, and I.-C. Hsieh, "A fast dye sucking method for dye-sensitized solar cell fabrication," in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp 2761-2763: IEEE. 2013.
[14]H. Seo, M.-K. Son, H.-J. Kim, and M. Shiratani, "The enhancement of dye adsorption in dye-sensitized solar module by an electrical adsorption method," Thin Solid Films, vol. 554, pp. 118-121, 2014/03/03/ 2014.
[15]R. Kawano et al., "High performance dye-sensitized solar cells using ionic liquids as their electrolytes," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1-3, pp. 87-92, 2004.
[16]D. Saikia, C. C. Han, and Y. W. Chen-Yang, "Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P(VdF-HFP)-based gel polymer electrolyte," Journal of Power Sources, vol. 185, no. 1, pp. 570-576, 2008/10/15/ 2008.
[17]J. Zhang et al., "Enhanced efficiency with CDCA co-adsorption for dye-sensitized solar cells based on metallosalophen complexes," vol. 209, pp. 316-324, 2020.
[18]吳春桂, "染料敏化太陽能電池," 興大工程學刊, vol. 25, no. 1, pp. 15-26, 2014.
[19]M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145-153, 2003/10/31/ 2003.
[20]M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1, pp. 3-14, 2004/06/01/ 2004.
[21]J. Zhang, P. Zhou, J. Liu, and J. J. P. C. C. P. Yu, "New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2," Physical Chemistry Chemical Physics, vol. 16, no. 38, pp. 20382-20386, 2014.
[22]D. Dambournet, I. Belharouak, and K. Amine, "Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties," Chemistry of materials, vol. 22, no. 3, pp. 1173-1179, 2010.
[23]M. C. Hidalgo, M. Aguilar, M. Maicu, J. A. Navío, and G. Colón, "Hydrothermal preparation of highly photoactive TiO2 nanoparticles," Catalysis Today, vol. 129, no. 1, pp. 50-58, 2007/11/15/ 2007.
[24]A. Jaroenworaluck, D. Regonini, C. R. Bowen, R. Stevens, and D. J. J. o. m. s. Allsopp, "Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte," Journal of Materials Science, vol. 42, pp. 6729-6734, 2007.
[25]Y. Rui et al., "In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells," Applied Surface Science, vol. 380, pp. 210-217, 2016/09/01/ 2016.
[26]M. Wen, J.-F. Gu, G. Liu, Z.-B. Wang, and J. Lu, "Surface evolution of a gradient structured Ti in hydrogen peroxide solution," Applied Surface Science, vol. 254, no. 9, pp. 2905-2910, 2008/02/28/ 2008.
[27]Y. Qin and Q. J. I. J. o. P. Peng, "Ruthenium sensitizers and their applications in dye-sensitized solar cells," International Journal of Photoenergy, vol. 2012, 2012.
[28]J. Wu et al., "Electrolytes in dye-sensitized solar cells," Chemical Reviews, vol. 115, no. 5, pp. 2136-2173, 2015.
[29]J. Wu et al., "Progress on the electrolytes for dye-sensitized solar cells," Pure and Applied Chemistry, vol. 80, no. 11, pp. 2241-2258, 2008.
[30]W. Priani, F. Nurosyid, and R. Suryana, "The effect of Pt-counter electrode deposition methods on the efficiency of Dye-Sensitized Solar Cells," in Journal of Physics: Conference Series, 2019, vol. 1153, no. 1, p. 012095: IOP Publishing.
[31]J. Wu, Z. Tang, Y. Huang, M. Huang, H. Yu, and J. Lin, "A dye-sensitized solar cell based on platinum nanotube counter electrode with efficiency of 9.05%," Journal of Power Sources, vol. 257, pp. 84-89, 2014/07/01/ 2014.
[32]李可中, "多元醇法合成奈米銀線應用於透明導電薄膜與奈米銀線-二氧化鈦光陽極染敏太陽能電池之研究," 2018.
[33]K. Indira, U. K. Mudali, T. Nishimura, and N. J. J. o. b.-a. t.-c. Rajendran, "A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications," Journal of Bio- and Tribo-Corrosion, vol. 1, p. 28, 2015.
[34]Y. Ma, C. X. Zhao, L. L. Deng, H. Yan, S. S. Chen, and G. Xu, "Transition of pore-size dependence of ion diffusivity in dye-sensitized solar cells," Electrochimica Acta, vol. 102, pp. 127-132, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊