跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 18:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊博盛
研究生(外文):JHUANG, BO-SHENG
論文名稱:應用高溶氧水注入之生物刺激法進行化工污染場址整治之模場試驗
論文名稱(外文):Injection of Oxygen-Supersaturated Water to Enhance Bioremediation of Monoaromatics in the Contaminated Site
指導教授:陳士賢陳士賢引用關係
指導教授(外文):Colin S. Chen
口試委員:田倩蓉陳世裕
口試委員(外文):Chien-Jung TienChih-Yu Chen
口試日期:2021-01-12
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:98
中文關鍵詞:奈米氣泡高溶氧水現地生物復育
外文關鍵詞:NanobubblesOxygen-Supersaturated WaterIn-Situ Bioremediation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究係以氧氣做為奈米氣泡(Nanobubbles, NBs)產生源,開發新穎現地好氧生物整治技術;以NBs顆粒小、持久性高之特性,使其能擴散至傳統現地曝氣方式較難抵達之土壤孔隙中,營造適合地下好氧微生物生存之環境,促進降解污染物之效率。由模場試驗觀察現地環境微生物菌群變化及污染物降解率,評估技術可行性。
實驗室試驗利用玻璃管柱填入石英砂介質,模擬高溶氧水於地下環境觀察時間推移溶氧(Dissolved oxygen, DO)的變化量;根據管柱試驗結果顯示高溶氧水滯留於介質中24小時便下降至原溶氧濃度之33 %-37 %,而後衰退量趨緩。砂箱試驗以一長方箱體模擬地下環境,結果發現NBs因傳輸過程中撞擊介質而消散,能夠得知在介質中溶氧濃度受距離及滯留時間所影響。
模場試驗建置於一石化業場址,共設置2口監測井(MW1、MW2)及3口灌注井(GW1、GW2、GW3),於每週進行一次水質參數監測,每個月進行一次採樣分析目標污染物(苯、甲苯、乙苯、苯乙烯),灌注初期微生物菌群半年分析一次,爾後每月一次。高溶氧水灌注頻率試驗分別為8 hr/day、12 hr/day及24 hr/day,每個頻率執行約一個月,溶氧提升效果以24 hr/day較佳,平均能使監測井溶氧濃度上升至12.6 mg/L-14.2 mg/L,其次則為12 hr/day及8 hr/day,其中,溶氧提升效果主要取決灌注高溶氧水之體積及監測井與灌注井之間的距離。但研究過程發現24 hr/day灌注頻率可能稀釋或干擾微生物生長、設備所需電力及氧氣成本提高,根據實驗室試驗中高溶氧水在24小時後溶氧濃度才會大幅下降,故後續油品分解菌添加試驗使用12 hr/day之頻率灌注,以維持地下好氧環境。執行高溶氧水灌注試驗後,各口井之微生物種類數均呈上升趨勢,其中Pseudomonas、Cloacibacterium、Sphingobium、Enterobacter、Magnetospirillum之菌屬,根據前人文獻資料顯示在上述模場中所鑑別出來的菌屬皆有降解油品能力,故灌注高溶氧水能顯著改變地下環境,促進好氧微生物菌群生長。比對背景調查及灌注一年後採樣分析結果顯示,土壤苯之去除率為59.2 %-99.9 %,乙苯為77.4 %-99.8 %;地下水苯之去除率為93.9 %-100 %,乙苯為84.5 %-99.9 %,其濃度大幅下降,顯現灌注高溶氧水的成效。
Nanobubble (NBs)technologies have drawn great attention due to their wide applications in watertreatment, biomedical engineering, and nanomaterials in recent years. Use ofoxygen saturated NBs would have great potential implication in soil andgroundwater remediation due to their extremely high bioactivity and masstransfer efficiency. The objective of this study is to develop the use of NBsin petroleum hydrocarbon contaminated site to enhance bioremediation. 
Laboratory experimentswere conducted to investigate flow of discrete microbubbles through awater-saturated porous medium by column and sand box experiments in this study.NBs was release from a diffuser, move upward through a column filled withpacked soil. Outflowing bubbles were collected for flux measurements. Theresults of column experiments indicated that loss of dissolved oxygen (DO) inair-saturated water was about 1 mg/L after 72 hours. After 120 hour ofretention time in the packed column, loss of DO in air-saturated water wasabout 1.90 mg/L. Vertical columns tended to retain oxygen for longer time thanthe horizontal setting. Dissolved oxygen was measured to be 40.9 mg/L afternano-scale oxygen bubble was produced for 30 min. Longer exposure time did notsignificantly increase the level of DO. Dramatic depletion of DO from 27 mg/Lto 10 mg/L was observed in the first 24 hours of the column experiment. Afterthe time period, the depletion was slow down. After 120 hours, DO wasmaintained higher than saturated water of room temperature. Forty percent of DOdepletion was observed after 96 hours in the sand box experiment. However, thedepletion tended to be slower between 4 to 16 days. 
Test zone with injectionand extraction wells were designed and employed in a petroleum hydrocarboncontaminated site in Kaohsiung. Injection of NBs was conducted in the test zonewith three injection wells and two monitoring wells. Injection of oxygen-supersaturatedwater was 8 hours per day in the first month. It was increased to 12 hours perday in the second months. Finally, continuous injection of 24 hours wasperformed. After the long term practice, injection of oxygen-supersaturatedwater of 12 hours was recommended because the whole day injection of oxygen-supersaturatedwater may potentially dilute the dissolved phase contaminants and dilute thepopulations of microorganisms in the subsurface environment. 
Groundwater monitoringof pH, dissolved oxygen, nutrients and change of population/diversity ofmicroorganisms was performed. Retention time of NBs, concentration of dissolvedoxygen, and change of petroleum degrading bacteria species was observedmonthly. 
After the one yearinjection practice of oxygen-supersaturated water, the apparent concentrationsof target contaminants were declined. Benzene was reduced from 198 to 266 mg/Lto not detectable to 15.1 mg/L. Though concentration of ethylbenzene ingroundwater decreased from 5398 mg/L to 1.25 639 mg/L, it remained the majorcontaminant. The degradation mechanism is unclear due to potential impact ofdilution of groundwater by injection or high rate of biodegradation. 
It was anticipated thatfunctions of enhanced bioremediation can be achieved through injection andcirculation of NBs by field practices. The results of microorganism diversityindicated that bacteria species tended to increase with long term injection of oxygen-supersaturatedwater. Petroleum-degrading bacteria (Enterobactertabaci) was applied in the site for enhanced bioremediation. Theconcentrations of target contaminants were decreased. This study served forfuture investigations to employ nanobubbles in the field of soil andgroundwater remediation.
第一章前言1
1.1 研究動機1
1.2 研究目的3
第二章文獻回顧4
2.1 目標污染物於地下環境中之特性4
2.2 生物整治技術7
2.2.1 整治方法介紹7
2.2.2 影響生物整治之環境因子10
2.3 微生物降解油品碳氫化合物之途徑12
2.4 奈米氣泡14
2.4.1 奈米氣泡之特性14
2.4.2 奈米氣泡之產生原理14
2.4.3 奈米氣泡之應用16
第三章材料方法18
3.1 研究架構18
3.2 實驗材料19
3.2.1 供試藥品19
3.2.2 試驗添加菌種20
3.3 實驗設備及分析方法21
3.3.1 高溶氧水製造設備21
3.3.2 水質參數量測22
3.3.3 目標污染物分析22
3.3.4 營養鹽分析23
3.3.5 微生物菌群分析23
3.3.6 地下水採樣方法24
3.3.7 土壤採樣方法24
3.4 實驗品保/品管25
3.5 實驗室試驗27
3.5.1 管柱試驗27
3.5.2 砂箱試驗27
3.6 場址介紹及模場規劃30
3.6.1 場址現況及環境特性30
3.6.2 場址水文資訊30
3.6.3 場址地質資訊31
3.6.4 模場試驗33
3.6.5 高溶氧水頻率灌注試驗34
3.6.6 油品分解菌添加試驗34
3.6.7 地下水水質監測及土壤地下水採樣頻率35
3.7 土壤地下水背景資料建立36
第四章結果與討論43
4.1 溶氧水之管柱試驗43
4.1.1 飽和溶氧水之溶氧變化43
4.1.2 高溶氧水之溶氧變化45
4.2 高溶氧水之砂箱試驗47
4.3 模場試驗之高溶氧水灌注頻率試驗50
4.3.1 地下水溶氧濃度及氧化還原電位變化50
4.3.2 地下水pH值變化53
4.3.3 地下水導電度變化55
4.3.4 地下水營養鹽濃度變化56
4.3.5 地下水目標污染物濃度變化58
4.3.6 地下水微生物菌群變化62
4.4 油品分解菌添加試驗65
4.4.1 地下水微生物菌群變化65
4.4.2 地下水溶氧濃度及氧化還原電位變化72
4.4.3 地下水pH值變化74
4.4.4 地下水導電度變化75
4.4.5 地下水營養鹽濃度變化76
4.4.6 地下水目標污染物濃度變化78
4.5 土壤目標污染物濃度變化82
4.6 高溶氧水成效評估85
4.6.1 實驗室試驗85
4.6.2 高溶氧水灌注頻率試驗85
4.6.3 油品分解菌添加試驗86
第五章結論與建議87
5.1 結論87
5.2 建議88
參考文獻89


圖 2 1 生物通氣法示意圖8
圖 2 2 土耕法示意圖9
圖 2 3 生物堆法示意圖9
圖 2 4 苯環降解途徑示意圖13
圖 2 5 氣泡、微米氣泡及奈米氣泡於水體環境中之變化15
圖 2 6 溶氧提升能力比較16
圖 3 1 實驗架構圖18
圖 3 2 菌種鑑定報告20
圖 3 3 高濃度氣體溶解裝置21
圖 3 4 管柱試驗示意圖29
圖 3 5 砂箱示意圖29
圖 3 6 場址平面圖31
圖 3 7 場址壤心剖面圖32
圖 3 8 模場試驗井場示意圖33
圖 3 9 Group A與Group B地下水中菌種同異之文氏圖40
圖 3 10 土壤背景調查採樣佈點位置(第一次土壤採樣)41
圖 4 1 溶氧在滯留管柱中不同時間之變化44
圖 4 2 溶氧在滯留管柱中不同時間之變化46
圖 4 3 高溶氧水傳輸於砂箱中濃度變化及衰退率48
圖 4 4 溶氧在砂箱中濃度變化48
圖 4 5 高溶氧水滯留於砂箱中溶氧濃度之衰退率49
圖 4 6 灌注頻率試驗期間之模場地下水溶氧濃度及氧化還原電位變化52
圖 4 7 灌注頻率試驗期間之模場地下水pH值變化54
圖 4 8 灌注頻率試驗期間之模場地下水導電度變化55
圖 4 9 灌注頻率試驗期間之模場地下水營養鹽及氧化還原電位變化57
圖 4 10 灌注頻率試驗期間之模場地下水苯濃度變化60
圖 4 11 灌注頻率試驗期間之模場地下水甲苯濃度變化60
圖 4 12 灌注頻率試驗期間之模場地下水乙苯濃度變化61
圖 4 13 灌注頻率試驗期間之模場地下水苯乙烯濃度變化61
圖 4 14 油品分解菌添加試驗期間之模場地下水溶氧濃度及氧化還原電位變化73
圖 4 15 油品分解菌添加試驗期間之模場地下水pH值變化74
圖 4 16 油品分解菌添加試驗期間之模場地下水導電度變化75
圖 4 17 油品分解菌添加試驗期間之模場地下水位變化及日降雨量76
圖 4 18 油品分解菌添加試驗期間之模場地下水營養鹽及氧化還原電位變化77
圖 4 19 油品分解菌添加試驗期間之模場地下水苯濃度變化79
圖 4 20 油品分解菌添加試驗期間之模場地下水甲苯濃度變化80
圖 4 21 油品分解菌添加試驗期間之模場地下水乙苯濃度變化80
圖 4 22 油品分解菌添加試驗期間之模場地下水苯乙烯濃度變化81
圖 4 23 第一次及第二次土壤採樣佈點位置83


表 2 1 國內土壤及地下水污染監測及管制標準值5
表 2 2 目標化合物之物化特性6
表 3 1 灌注井及監測井基本資料34
表 3 2 地下水背景調查資料37
表 3 3 模場地下水微生物菌群背景調查資料38
表 3 4 土壤背景調查資料42
表 4 1 灌注頻率試驗期間之模場地下水微生物菌群分析資料64
表 4 2 油品分解菌添加試驗期間之模場地下水微生物菌群分析資料67
表 4 3 第二次土壤採樣目標污染物分析結果84
王志哲,2000,陰離子及複合(陰離子/中性)界面活性劑系統對BTEX污染土壤復育效率之研究,國立中山大學環境工程研究所碩士論文。高雄。
行政院環保署,2000,土壤及地下水污染整治法之土壤及地下水管制標準。
行政院環保署,2020a,土壤及地下水污染潛勢環境場址評估(phase II)調查計畫。
行政院環保署,2020b,運作中高污染潛勢工廠土壤及地下水污染潛勢調查計畫。
行政院環保署環境檢驗所,2015,土壤採樣方法,NIEA S102.63B。
行政院環保署環境檢驗所,2019,監測井地下水採樣方法,NIEA W103.55B。
吳春生,2002,以生物曝氣法整治受地下儲槽洩漏之石化系有機污染物模場研究,國立中山大學環境工程研究所碩士論文。高雄。
陳士賢,2012,屏東縣九如鄉九清段1340地號生物整治現地試驗,行政院環境保護署。
陳士賢,2019,以超高溶氧奈米氣泡水強化現地生物整治技術試驗計畫,行政院環境保護署。
詹凱帆,2010,以生物反應槽進行甲基第三丁基醚(MTBE)生物分解之研究,國立高雄師範大學生物科技研究所碩士論文。高雄。
盧志人,1998,地下水的污染整治,國立編譯館。
賴鴻裕、劉程煒及陳柏青,2011,農業上的氮,科學發展467,40-45。
謝昶毅,以PCR-DGGE技術分析石油碳氫化合物污染地下水之微生物相,國立中山大學生物科學學系(研究所)碩士論文。高雄。
Agarwal,A., Ng, W. J., and Liu, Y. 2011. Principle and applications of microbubble andnanobubble technology for water treatment. Chemosphere, 84, 1175-1180.
Agencyfor Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological profilefor benzene.
Agencyfor Toxic Substances and Disease Registry (ATSDR). 2010. Toxicological profilefor ethylbenzene.
Agencyfor Toxic Substances and Disease Registry (ATSDR). 2010. Toxicological profilefor styrene.
Agencyfor Toxic Substances and Disease Registry (ATSDR). 2017. Toxicological profilefor toluene.
Alheshibri,M., Qian, J., Jehannin, M., and Craig, V.S.J. 2016. A History of Nanobubbles.Langmuir, 32, 43, 11086-11100.
Allen,T.D., Lawson, P.A., Collins, M.D., Falsen, E., and Tanner, R.S. 2006. Cloacibacterium normanense gen. nov.,sp. nov., a novel bacterium in the family Flavobacteriaceaeisolated from municipal wastewater. International Journal of Systematic andEvolutionary Microbiology, 56, 1311-1316.
Alvarez,P.J.J., and Illman, W.A. In Schnoor, J.L., and Zehnder A. Eds., 2005. Bioremediation and Natural Attenuation:Process Fundamentals and Mathematical Models, John Wiley & Sons, NewJersey, NJ.
Atlas,R.M. 1981. Microbial Degradation of Petroleum Hydrocarbons: an EnvironmentalPerspective. Microbiological Reviews,180-209.
Baughn,A.D., and Malamy, M.H. 2004. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolarconcentrations of oxygen. Nature, 427, 441-444.
Borden,R.C., Gomez, C.A., and Becker, M.T. 1995. Geochemical Indicators of IntrinsicBioremediation. Ground Water, 33, 2,180-198.
Bossert,I., Bartha, R. In Atlas, R.M., Ed., 1984.Petroleum Microbiology, MacmillanPublishing Company, New York, NY, 435-476.
Cerniglia,C.E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351-368.
Chaineau,C.H., Morel, J.L. and Oudot, J. 1996. Land Treatment of Oil-Based DrillCuttings in an Agricultural Soil. Journalof Environmental Quality, 25, 4, 858-867.
Chen,K.F., Kao, C.M., Chen, C.W., Surampalli, R.Y., and Lee, M.S. 2010. Control ofpetroleum-hydrocarbon contaminated groundwater by intrinsic and enhancedbioremediation. Journal of Environmental Sciences, 22, 864-871.
Chen,S.C., Chen, C.S., Zhan, K.V., Yang, K.H., Chien, C.C., Shieh, B.S., and Chen,W.M. 2011. Biodegradation of methyl tert-butyl ether (MTBE) by Enterobacter sp. NKNU02. Journal ofHazardous Materials, 186, 1744-1750.
Deeb,R.A., Scow, K.M., and Alvarez-Cohen, L. 2000. Aerobic MTBE biodegradation: anexamination of past studies, current challenges and future research directions.Biodegradation, 11, 171-186.
Deeb,R.A., Hu, H.Y., Hanson, J.R., Scow, K.M., and Alvarez-Cohen, L. 2001. SubstrateInteractions in BTEX and MTBE Mixtures by an MTBE-Degrading Isolate. Enivironmental science & technology,35, 312-317.
Dugan,P.R., Stoner, D.L., and Pickrum, H.M. InBalows A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. Eds., 1992.The Prokaryotes, Springer Science+Business Media, New York, NY,  p.3952-3964.

Ebina,K., Shi, K., Hirao, M., Hashimoto, J., Kawato, Y., Kaneshiro, S., Morimoto, T.,Koizumi, K., and Yoshikawa, H. 2013. Oxygen and Air Nanobubble Water SolutionPromote the Growth of Plants, Fishes, and Mice. PLOS ONE, 8, 6, e65339.
El-Nass,M.H., Acio, J.A., and El Telib, A.E. 2014. Aerobic biodegradation of BTEX:Progresses and Prospects. Journal ofEnvironmental Chemical Engineering 2, 1104-1122.
Fan,W., Zhang Y., Liu, S., Li, X., and Li, J. 2020. Alleviation of copper toxicityin Daphnia magna by hydrogennanobubble water. Journal of HazardousMaterials, 389, 122155.
Farkas,M., Tancsics, A., Kriszt, B., Benedek, T., Toth, E.M., Keki, Z., Veres P. G.,and Szoboszlay, S. 2015. Zoogloeaoleivorans sp. nov., a floc-forming, petroleum hydrocarbon-degrading bacteriumisolated from biofilm. International Journal of Systematic and EvolutionaryMicrobiology, 65, 274-279.
Gibson,T.L., Abdul, A.S., and Chalmer, P.D. 1998. Enhancement of In SituBioremediation of BTEX-Contaminated Ground Water by Oxygen Diffusion fromSilicone Tubing. Groundwater Monitoring& Remediation, 93-104.
Goto,T., Yamashita, A., Hirakawa, H., Matsutani, M., Todo, K., Ohsima, K., Toh, H.,Miyamoto, K., Kuhara, S., Hattori, M., Shimizu, T., and Akimoto, S. 2008.Complete Genome Sequence of Finegoldia magna, an Anaerobic OpportunisticPathogen. DNA RESEARCH, 15, 39-47.
Heyen,U., and Schuler, D. 2003. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in anoxygen-controlled fermentor. AppliedMicrobiology and Biotechnology, 61, 536-544.
Jindrova,E., Chocova, M., Demnerova, K., and Brenner, V. 2002. Bacterial AerobicDegradation of Benzene, Toluene, Ethylbenzene and Xylene. Folia Microbiologica, 47, 83-93.

Johnson,C., Albrecht, G., Ketterings, Q., Beckman, J., and Stockin, K. 2005. Nitrogen Basics – The Nitrogen Cycle,Cornell University Cooperative Extension.
Jones,D.L., and Oburger, E. 2011. In Bunemann,E.K., and Oberson A.F.E. Eds., Phosphorusin Action, Springer-Verlag Berlin Heidelberg, Heidelberg, BW, p.169-198.
Ladino-Orjuela,G.L., Gomes, E., Silva, R.D., Salt, C. and Parsons, J.R. In Voogt, P., Ed.,2015. Reviews of EnvironmentalContamination and Toxicology. Springer International Publishing Switzerland.Zug, ZG, 237, p.105-121.
Li, h.,Liu, Y.H., Luo, N., Zhang, X.Y., Luan, T.G., Hu, J.M., Wang, Z.Y., Wu, P.C.,Chen, M.J., and Lu, J.Q. 2006. Biodegradation of benzene and its derivatives bya psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22. Researchin Microbiology, 157, 629-636.
Liu,R.M., Chen, J.C., and Zang, L.H. InChen P., Ed., 2015. Material Science and Environmental Engineering, CRC Press, Wuhan, HB,  p.139-143.
Mahasri,G., Saskia, A., Apandi, P.S., Dewi, N.N., Rozi, and Usuman, N.M.  2018. Development of an aquaculture systemusing nanobubble technology for the optimation of dissolved oxygen in culturemedia for nile tilapia (Oreochromisniloticus). IOP Conference, Universitas Airlangga, Campus C.
Mathur,A.K., and Majumder, C.B. 2010. Kinetics Modelling of the Biodegradation ofBenzene, Toluene and Phenol as Single Substrate and Mixed Substrate by Using Pseudomonas putida. Chemical and Biochemical Engineering Quarterly, 24, 1, 101-109.

Margesin,R., and Schinner, F. 2001. Biodegradation and bioremediation of hydrocarbons inextreme environments. Appl MicrobiolBiotechnol, 56, 650-663.
Minamikawa,K., and Makino, T. 2020. Oxidation of flooded paddy soil through irrigationwith water containing bulk oxygen nanobubbles. Science of the Total Environment, 709, 136323.
Mikesell,M.D., Kukor, J.J., and Olsen, R.H. 1993. Metabolic diversity of aromatichydrocarbon-degrading bacteria from a petroleum-contaminated aquifer. Biodegradation,4, 249-259.
Mohan,S.V., Kisa, T., Ohkuma, T., Kanaly, R.A., and Shimizu, Y. 2006. Bioremediationtechnologies for treatment of PAH-contaminated soil and strategies to enhanceprocess efficiency. Reviews inEnvironmental Science and Bio/Technology, 5, 347-374.
Mylona,P., Pawlowski, K., and Bisseling, T. 1995. Symbiotic Nitrogen Fixation. ThePlant Cell, 7, 869-885.
NationalInstitutes of Health. 2018. Toxicology Data Network.https://toxnet.nlm.nih.gov/. USA.
Neue,H.U. 1993. Wetland rice fields may make a major contribution to global warming. BioScience, 43, 7, 466-73.
Nguyen,T.M., and Kim, J. 2019. Sphingobiumaromaticivastans sp. nov., a novel aniline- and benzenedegrading, andantimicrobial compound producing bacterium. Archives of Microbiology,201, 155-161.
Nirmalkar,N., Pacek, A.W., and Barigou, M. 2018. On the Existence and Stability of BulkNanobubbles. Langmuir, 34,10964-10973.
Ohgaki,K., Khanh, N.Q., Joden, Y., Tsuji, A., and Nakagawa, T. 2010. Physicochemicalapproach to nanobubble solutions. Chemical Engineering Science, 65,1296-1300.

Olapade,O.A. 2015. Phylogenetic Characterization and Community Diversity ofHydrocarbon-Utilizing Bacteria in Soil Microcosms Enriched with AromaticHydrocarbons. Journal of Bioremediation & Biodegradation, 6, 4,1000305.
Philipp,B., and Schink, B. 2012. Different strategies in anaerobic biodegradation of aromaticcompounds: nitrate reducers versus strict anaerobes. Environmental Microbiology Reports. 469-478.
Poi,G., Shahsavari, E., Aburto-Medina, A., Mok, P.C., and Ball, A. S. 2018. Largescale treatment of total petroleum-hydrocarbon contaminated groundwater usingbioaugmentation. Journal of EnvironmentalManagement, 214, 157-163.
Providenti,M.A., Lee, H., and Trevors, J.T. 1993. Selected factors limiting the microbialdegradation of recalcitrant compounds. Journalof Industrial Microbiology, 12, 379-395.
Rabus,R., Kube, M., Beck, A., Widdel, F., and Reinhardt, R. 2002. Genes involved inthe anaerobic degradation of ethylbenzene in a denitrifying bacterium, strainEbN1. Archives of Microbiology, 178, 506-516.
Saito,T., Brdjanovic, D., and Loosdrecht, M.C.M. 2004. Effect of nitrite on phosphateuptake by phosphate accumulatingorganisms. Water Research, 38,3760-3768.
Shinoda,Y., Akagi, J., Uchihashi, Y., Hiraishi, A., Yukama, H., Yurimoto, H., Yurimoto,H., Sakai, Y., and Kato, N. 2005. Anaerobic Degradation of Aromatic Compoundsby Magnetospirillum Strains:Isolation and Degradation Genes. Bioscience, Biotechnology, and Biochemistry,69,8, 1483-1491.

Sleat,R., Mah, R.A., and Robinson, R. 1985. Acetoanaerobiumnoterae gen. nov., sp. nov.: an Anaerobic Bacterium That Forms Acetate fromH2 and CO2. International Journal of SystematicBacteriology, 35, 1,  10-15.
Slobodkina,G.B., Kolganova, T.V., Kostrikina, N.A., Bonch-Osmolovskaya, E.A., andSlobodkin, A.I. 2012. Caloribacteriumcisternae gen. nov., sp. nov., ananaerobic thermophilic bacterium from an underground gas storage reservoir. InternationalJournal of Systematic and Evolutionary Microbiology, 62, 1543-1547.
Souza,E.C., Vessoni-Penna, T.C., and Oliveira, R.P.S. 2014. Biosurfactant-enhancedhydrocarbon bioremediation: An overview. International Biodeterioration& Biodegradation, 89, 88-94.
Speight,J.G. 2019. Natural Water Remediation: Chemistry and Technology.Butterworth-Heinemann, Oxford.
Spormann,A.M., and Widdel, F. 2000. Metabolism of alkylbenzenes, alkanes, and otherhydrocarbons in anaerobic bacteria. Biodegradation, 11, 85-105.
Suthersan,S. S., Horst, J., Schnobrich, M., Welty, N., McDonugh, J. 1996. Remediation Engineering: Design Concepts. CRC Press, Inc. Washington, DC.
Tanaka,M., Girard, G., Davis, R., Peuto, A., and Bignell, N. 2001. Recommended tablefor the density of water between 0 °C and 40 °C based on recent experimentalreports. Metrologia, 38, 301-309.
Taylor,L.T., and Jones, D.M. 2001. Bioremediation of coal tar PAH in soils usingbiodiesel. Chemosphere, 44,1131-1136.
Ulatowski,K., and Sobieszuk, P. 2020. Gas nanobubble dispersions as the important agentin environmental processes-generation methods review. Water and Environment Journal, 1-19.

U.S. Environmental Protection Agency.1996. Technical protocol forevaluating natural attenuation of chlorinated solvents in ground Water,EPA/600/R-98/128, Washington, DC.
U.S.Environmental Protection Agency. 2002. Toxicological review of benzene. EPA/635/R-02/001F,Washington, DC.
U.S.Environmental Protection Agency. 2010. Green Remediation Best ManagementPractices: Bioremediation, Office ofSolid Waste and Emergency Response, EPA 542-F-10-006, Washington, DC.
U.S.Environmental Protection Agency. 2013. Introduction to in situ bioremediationof groundwater, Office of Solid Wasteand Emergency Response, 542-R-13-018, Washington, DC.
U.S. EnvironmentalProtection Agency. 2017.How To EvaluateAlternative Cleanup Technologies For UndergroundStorage Tank Sites, EPA 510-B-17-003.
Ushikubo,F.Y., Furukawa, T., Nakagawa, R., Enari, M., Makino, Y., Kawagoe, Y., Shiina,Takeo., and Oshita, S. 2010. Evidence of the existence and the stability ofnano-bubbles in water. Colloids andSurfaces A: Physicochemical and Engineering Aspects, 361, 31-37.
Venosa,A.D., Zhu, X. 2003. Biodegradation of Crude Oil Contaminating Marine Shorelinesand Freshwater Wetlands. Spill Science& Technology Bulletin, 8, 2, 163-178.
Waigi,M.G., Kang, F., Goikavi, C., Ling, W., and Gao, Y. 2015. Phenanthrenebiodegradation by sphingomonads and its application in the contaminated soilsand sediments: A review. International Biodeterioration & Biodegradation,104, 333-349.

Yeh,C.H., Lin, C.W., and Wu, C.H. 2010. A permeable reactive barrier for thebioremediation of BTEX-contaminated groundwater: Microbial communitydistribution and removal efficiencies. Journal of Hazardous Materials,178, 74–80.
Young,C.C., Ho, M.J., Arun, A.B., Chen, W.M., Lai, W.A., Shen, F.T.,  Rekha, P.D., and Yassin, A.F. 2007. Sphingobium olei sp. nov., isolated fromoil-contaminated soil. International Journal of Systematic and EvolutionaryMicrobiology, 57, 2613-2617.
電子全文 電子全文(網際網路公開日期:20230217)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top