|
[1] A. Abkar, S. Ghods, A. Azizi, Coupled best proximity point theorems for proximally g-Meir- Keeler type mappings in partially ordered metric spaces, Fixed Point Theory A., 2015 (2015) 1-16. [2] S.S. Basha, Best proximity point theorems: An exploration of a common solution to ap- proximation and optimization problems, Applied Mathematics and Computation 218 (2012) 9773-9780. [3] S.S. Basha, N. Shahzed, R. Jeyaraj, Best proxmity point theorems: exposition of a signicant non-linear porgramming porblem, Journal of Optimization Theory and Applications 56 (2013) 1699-1705. [4] N. Bilgili, E. Karapinar, K. Sadarangani, A generalization for the best proximity point of Geraghty-contractions, Journal of Inequalities and Applications 2013, 2013:286. [5] W.-S. Du, On coincidence point and xed point theorems for nonlinear multivalued maps, Topology and its Applications 159 (2012) 49-56. [6] W.-S. Du, H. Lakzian, Nonlinear conditions for the existence of best proximity points, Journal of Inequalities and Applications, 2012, 2012:206 doi:10.1186/1029-242X-2012-206. [7] W.-S. Du, E. Karapinar, A note on Caristi-type cyclic maps: related results and applications, Fixed Point Theory and Applications 2013, 2013:344. [8] W.-S. Du, Y.-L. Liu, New nonlinear conditions for approximate sequences and new best prox- imity point theorems, Applied Mathematical Sciences 11(49) (2017) 2447-2457. [9] W.-S. Du, M.-C. Yen, New best proximity point theorems for a pair of nonlinear non-self mappings in metric spaces, Nonlinear Analysis and Dierential Equations 5(6) (2017) 261-270.
[10] A.A. Eldered, P. Veeramani, Convergence and existence for best proximity points, Journal of Mathematical Analysis Applications 323 (2006) 1001-1006. [11] H. Lakzian, I.-J. Lin, Best proximity points for weak MT -cyclic Kannan contractions, Fun- damental Journal of Mathematics and Applications, 1(1) (2018) 43-48. [12] E. Karapinar, Best proximity points of cyclic mappings, Applied Mathematics Letters 25 (2012) 1761-1766. [13] W.A. Kirk, P. S. Srinavasan, P. Veeramani, Fixed points for mapping satisfying cyclical con- tractive conditions, Fixed Point Theory 4 (2003) 79-89. [14] I.-J. Lin, H. Lakzian, Y. Chou, On best proximity point theorems for new cyclic maps, Inter- national Mathematical Forum 7(37) (2012) 1839-1849. [15] I.-J. Lin, H. Lakzian, Y. Chou, On convergence theorems for nonlinear mappings satisfying MT -C conditions, Applied Mathematical Sciences, 6(67) (2012) 3329-3337. [16] I.-J. Lin, Y.-L. Chang, Some new generalizations of Karapinar's theorems, International Jour- nal of Mathematic Analysis 8 (2014) 957-966. [17] I.-J. Lin, W.-S. Du, Y.-W. Wu, C.-H. Hsu, The existence of best proximity points and xed points for new nonlinear mappings on quasiordered metric spaces, Bangmod International Journal of Mathematical & Computational Science 1(1)(2015) 112-121. [18] I.-J. Lin, C.-H. Chang, The study of generalizations of Lin-Chang's convergence theorems, International Journal of Mathematical Analysis 9(54) (2015) 2649 - 2658. [19] I.-J. Lin, Y.-J. Lin, S.-D. Hou, Some new best proximity point theorems and convergence theorems for MT -functions, Nonlinear Analysis and Dierential Equations 4(4) (2016) 189 -198.
[20] I.-J. Lin, Y.-W. Wu, Some new convergence theorems for new nonlinear cyclic mappings on metric spaces, Nonlinear Analysis and Dierential Equations 5(5) (2017) 217-227. [21] I.-J. Lin, Y.-C. Cheng, Some new convergence theorems under nonlinear conditions on metric spaces, International Mathematical Forum 13(5) (2018) 233 - 250. [22] I.-J. Lin, W.-T. Chou, The study of convergence theorems for nonlinear cyclic mappings, Nonlinear Analysis and Dierential Equations 6(1) (2018) 1-14. [23] C. Mongkolkeha, Y. J. Cho, P. Kumam, Best proximity points for generalized proximal C- contraction mappings in metric spaces with partial orders, J. Inequal. Appl. 2013 (2013), 12 [24] B. Zlatanov, A variational principle and coupled fixed points, Journal of Fixed Point Theory and Applications 21 (2019) 1-13
|