跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宗憲
研究生(外文):LI, ZONG-SIAN
論文名稱:應用指數迴歸方法增強FMEA作為風險評估的能力
論文名稱(外文):Applying Exponential Regression Methods to Enhance FMEA as a Risk Assessment
指導教授:戴貞德戴貞德引用關係張桂琥張桂琥引用關係
指導教授(外文):DAY, JEN-DERCHANG, KUEI-HU
口試委員:戴貞德張桂琥蘇明鴻黃上晏
口試委員(外文):DAY, JEN-DERCHANG, KUEI-HUSHU, MING-HUNGHUANG, SHAN-YAN
口試日期:2021-05-27
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:49
中文關鍵詞:故障模式和失效原因風險優先數指數風險優先數指數加權幾何平均數指數迴歸風險優先數三角模糊數
外文關鍵詞:FMEARPNERPNEWGMRERPNTFN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
典型的故障模式和失效原因(Failure Modes and Effects Analysis, FMEA)是一種重要的風險評估工具及可靠性管理技術,廣泛用於各個行業,以保證系統運作、服務效率與項目的安全性及可靠性,普遍的應用典型風險優先數(Risk Priority Number, RPN)作為判斷失效模式對系統影響程度的準則依據。而典型風險優先數是通過嚴重度(Severity, S)、發生頻率(Occurrence, O)、偵測度(Detection, D)三項的數值各為1至10級指標的乘積計算所得之結果,乘積範圍為1到1000之間。典型FMEA存在一些缺點而引發學者眾多爭議,例如:典型RPN計算所得結果存在很多重複編號,且違反衡量尺度(Scale of measure)的原則,且嚴重度(S)、發生頻率(O)、偵測(D)三個參數的重要性均等,未遵守順序權重準則,上述問題將導致風險優先數大小排序將不符合。本研究藉由智能電網網絡物理系統案例的失效模式進行比較證實典型風險優先數、指數風險優先數(Exponent Risk Priority Number, ERPN)、指數加權幾何平均數(Exponent Weighted geometric mean, EWGM)及本研究所提指數迴歸風險優先數方法(Regression Exponent Risk Priority Number, RERPN)之間優缺點,比較研究結果新RERPN風險評估方法顯示除有效降低重覆編號及改善違反衡量尺度的原則,也因使用迴歸係數獲得客觀權重,使得解答更加合理性。本研究所提指數迴歸風險優先數RERPN方法,僅需使用 「Microsoft Office Excel」工具就能將RERPN完成計算,並提升決策者進行風險評估排序更具有效性及合理性。
Typical Failure Modes and Effects Analysis (FMEA) is an important risk assessment tool and reliability management technique widely used in various industries to ensure system operation, service efficiency and project safety and reliability. The Risk Priority Number (RPN) is commonly used as a criterion to determine the degree of impact of failure modes on the system. The typical risk priority number is calculated by multiplying the Severity (S), Occurrence (O), and Detection (D) values of each of the three indicators from 1 to 10 levels, and the product range is from 1 to 1000. For example, there are many duplicate numbers in the results of typical RPN calculation, and it is against the principle of Scale of measure, and the three parameters of Severity (S), Occurrence (O), and Detection (D) are of equal importance and do not follow the sequential weighting criterion. The ranking will not match. This study compares the failure modes of the physical systems of smart grid networks to confirm that the typical risk priority number, the Exponent Risk Priority Number (ERPN), the Exponent Weighted geometric mean (EWGM), and the exponential regression risk priority number (ERPN) are all equal. The new RERPN risk assessment method was found to be effective in reducing the number of repetitions and improving the principle of violating the measurement scale, as well as gaining objective weighting by using the regression coefficient. The results of the new RERPN risk assessment method show that it is effective in reducing the number of repetitions and improving the principle of violation measurement. This study proposes the RERPN method of regression risk priority, which can be calculated by using Microsoft Office Excel tool only, and enhances the effectiveness and rationality of risk assessment ranking by decision makers.
摘要 ii
Abstract iv
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 x
壹、緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究範圍與限制 6
1.4 研究流程 7
貳、文獻探討 9
2.1 故障模式和失效原因(FMEA) 9
2.2 指數風險優先級(ERPN) 12
2.3 迴歸分析(Regression Analysis) 12
2.4 三角模糊數(Triangular Fuzzy Number) 13
參、研究方法 15
3.1 研究方法的規劃 15
3.2 計算方法的步驟 16
肆、數據驗證 18
4.1 智能電網網絡物理系統案例概述(Braglia et al., 2020) 18
4.2 典型RPN方法計算驗證實例求解. 21
4.3 ERPN方法計算驗證實例的求解 23
4.4 典型EWGM方法計算驗證實例求解 25
4.5 RERPN方法計算驗證實例求解 27
4.6 比較討論 31
伍、結論 35
參考文獻 37

AL Mashaqbeh, S., Munive-Hernandez, J.E., Khurshid Khan, M. (2019). Using EWGM method to optimise the FMEA as a risk assessment methodology. Concurrent Engineering-Research and Applications, 27(2), 144-154. https://doi.org/10.1177/1063293X19844302.
Boral, S., Howard, I., Chaturvedi, S.K., McKee, K. (2020). An integrated approach for fuzzy failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA. Engineering Failure Analysis, 108. https://doi.org/10.1016/j.engfailanal.2019.104195.
Bowles, J. B. (2003). An assessment of RPN prioritization in a failure modes effects and criticality analysis. Institute of Electrical and Electronics Engineers, 380-386. doi:10.1109/RAMS.2003.1182019.
Braglia, M., Gabbrielli, R., Marrazzini, L. (2020). Risk failure deployment: A novel integrated tool to prioritize corrective actions in failure mode and effects analysis. Quality and Reliability Engineering International. 37(2), 433-422. https://doi.org/10.1002/qre.2742.
Chang, K.H., Chang, Y.C., Lai., P.T. (2014). Applying the concept of exponential approach to enhance the assessment capability of FMEA. Journal of Intelligent Manufacturing, 25(6), 1413-1427. https://doi.org/10.1007/s10845-013-0747-9.
Daimler Chrysler, Ford, & General. (1993). Potential Failure Mode and Effects Analysis (FMEA): Reference Manual. USA: Daimler Chrysler Corporation, Ford Motor Company, General Motors Corporation.
Gilchrist, W. (1993). Modelling failure modes and effects analysis. International Journal of Quality & Reliability Management, 10(5). https://doi.org/10.1108/02656719310040105.
Jia Huang., Jian-Xin You., Hu-Chen Liu., Ming-Shun Song., (2020). Failure mode and effect analysis improvement: A systematic literature review and future research agenda. Reliability Engineering & System Safety, 199. https://doi.org/10.1016/j.ress.2020.106885.
J M Juran. (1951). Quality Control Handbook. New York: McGraw-Hill. https://www.worldcat.org/title/quality-control-handbook/oclc/1220529.
Sheng‐Hsien Teng & hin‐Yann Ho. (1996). Failure mode and effects analysis: an integrated approach for product design and process control. International Journal of Quality & Reliability Management, 13(5), 8-26. https://doi.org/10.1108/02656719610118151.
C A Kulp., & John W Hall. (1968). Casualty insurance. New York: Ronald Press Co, https://www.worldcat.org/title/casualty-insurance/oclc/67884463.
De Hierro, AFRL., Martinez-Moreno, J., Pena, C A., De Hierro, C R L. (2016). A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models, Mathematics and Computers in Simulation, 128, 13-25. https://doi.org/10.1016/j.matcom.2016.03.012.
De Hierro, AFRL., Martinez-Moreno, J., Pena, C A., De Hierro, C R L. (2016). Estimation of a fuzzy regression model using fuzzy distances, IEEE Transactions on Fuzzy Systems, 24(2), 344-359. https://doi.org/10.1109/tfuzz.2015.2455533.
Slovic, P. (1987). Perception of risk. Science, 236(4799), 280-285. https://doi.org/10.1126/science.3563507.
Zadeh, L. A. (1965), Fuzzy sets, Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.
Zadeh, L. A. (1975), The concept of a linguistic variable and its application to approximate reasoning. Information Science, 8(3), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5
Zuniga, A.A., Baleia, A., Fernandes, J., Branco, P.J.D. (2020). Classical failure modes and effects analysis in the context of smart grid cyber-physical systems. Energies, 13(5). https://doi.org/10.3390/en13051215.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top