跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳珮慈
研究生(外文):WU, PEI-TZU
論文名稱:消費者零售科技接受度之跨市場比較
論文名稱(外文):Comparing Consumer Acceptance of Retail Technologies in a Multimarket Context
指導教授:邱彥婷邱彥婷引用關係
指導教授(外文):CHIU, YEN-TING
口試委員:楊景傅李世聰
口試委員(外文):YANG, JING-FUH
口試日期:2020-10-13
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:國際管理碩士學位學程
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:131
中文關鍵詞:零售創新科技接受整合性科技接受模型態度使用意圖感知風險新興市場
外文關鍵詞:technology acceptanceUTAUTattitudeusage intentionperceived riskemerging market
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
網路普及化和科技快速發展為人類生活帶來許多便利,消費者的購物習慣及消費期望也因此大幅改變。身為全球市場中最重要也最多變的產業之一,零售業採用了許多創新科技,期望改善消費者的購物品質及提高顧客滿意度。本研究延伸了整合性科技接受模型 (UTAUT),分析探討其四大要素(績效預期、努力預期、社群影響、便利條件)和感知風險對消費者使用創新零售科技的意圖影響,以及在不同市場環境下的比較。本研究透過問卷調查收集120份奧地利及123份台灣有效問卷並使用SPSS系統進行量化統計分析和假設驗證,分析方法包含回歸分析、獨立樣本t檢定以及調節效果分析。問卷研究結果顯示「績效預期」及「便利條件」正面且顯著影響已開發市場及新興市場之消費者對於創新零售科技的態度,而「社群影響」並無顯著影響作用。此外,台灣樣本的態度同時受到「努力預期」的影響。本研究結果顯示消費者對零售科技的態度正面影響其使用意圖,而「感知風險」對於消費者的態度及使用意圖並沒有顯著的調節作用,影響消費者對創新零售科技的態度因素因國家及地區發展不同而異。本研究作為國際市場營運者及投資者未來採用創新科技之參考。
The gaining popularity of internet and the rapid advancement of technology have brought convenience to human life. Consumers’ shopping habits and expectations have thus changed significantly. As one of the most important and fast-changing industries in the global market, the retail sector adopts innovative technologies with the intention to improve consumers’ shopping experience and increase customer satisfaction. With an extended model of the Unified Theory of Acceptance and Use of Technology (UTAUT) that contains perceived risk and the four constructs of UTAUT, i.e., performance expectancy, effort expectancy, social influence, and facilitating conditions, this research analyzes the factors that predict consumers’ intention to use retail innovation and how it differs within different market environments. A questionnaire survey was conducted, with the sample consisting of 120 Austrian and 123 Taiwanese respondents respectively. The data was analyzed and hypotheses were tested using SPSS software with regression analysis, independent samples T-test, and moderation test procedure. The findings of this study indicate that performance expectancy and facilitating conditions have a significant and positive impact on consumer’s attitudes toward retail innovation in both advanced and emerging markets, while social influence has no significant impact on consumers’ attitudes. Furthermore, this research confirms that the attitudes of Taiwanese samples are significantly affected by the effort expectancy. The result shows that consumers’ intention is positively influenced by their attitudes. However, there is no significant moderating effect of perceived risk on the relationship between consumers’ attitudes and usage intention. The findings emphasize that consumers’ attitudes toward retail innovations vary across countries. This research gives suggestions to the marketers who intend to apply innovative technologies in the future and invest in different market environments.
ABSTRACT..........................................................II
TABLE OF CONTENTS.................................................IV
LIST OF TABLES....................................................VII
LIST OF FIGURES...................................................IX
LIST OF ABBREVIATIONS.............................................X
CHAPTER 1 INTRODUCTION............................................1
1.1 Research Background...........................................1
1.2 Research Objective............................................3
1.3 Research Questions............................................5
1.4 Research Process and Structure................................5
CHAPTER 2 LITERATURE REVIEW.......................................6
2.1 Retail Industry Overview......................................6
2.2 Retail Technology.............................................9
2.2.1 Barcode scanner.............................................11
2.2.2 RFID tags...................................................11
2.2.3 Mobile payment..............................................12
2.2.4 Kiosks......................................................12
2.2.5 Self-Service Technology (SST)...............................13
2.2.6 Amazon Go...................................................14
2.3 Food and Grocery Retail Industry in Austria...................15
2.4 Food and Grocery Retail Industry in Taiwan....................17
2.5 Unified Theory of Acceptance and Use of Technology (UTAUT)....21
2.5.1 Performance expectancy......................................24
2.5.2 Effort expectancy...........................................26
2.5.3 Social influence............................................27
2.5.4 Facilitating conditions.....................................28
2.5.5 Intention to use............................................29
2.6 Attitude......................................................30
2.7 Perceived Risk................................................32
CHAPTER 3 RESEARCH METHODOLOGY....................................38
3.1 Research Framework............................................38
3.2 Hypotheses Development........................................39
3.3 Questionnaire Design and Data Collection......................43
3.3.1 Questionnaire design........................................43
3.3.2 Participants................................................43
3.4 Data Analysis.................................................44
3.4.1 Model Validation............................................44
3.4.2 Exploratory factor analysis.................................45
3.4.3 Descriptive analysis........................................45
3.4.4 Linear regression analysis..................................46
3.4.5 Moderator analysis..........................................46
3.4.6 T-test......................................................46
3.5 Measurement Instruments.......................................47
3.5.1 Performance expectancy......................................47
3.5.2 Effort expectancy...........................................47
3.5.3 Social influence............................................48
3.5.4 Facilitating conditions.....................................48
3.5.5 Perceived risk..............................................48
3.5.6 Attitude toward retail innovation...........................48
3.5.7 Intention to use............................................49
CHAPTER 4 DATA ANALYSIS...........................................52
4.1 Sample Descriptive Analysis...................................52
4.1.1 Gender......................................................52
4.1.2 Age.........................................................52
4.1.3 Educational level...........................................53
4.1.4 Monthly income..............................................53
4.1.5 Household...................................................53
4.1.6 Frequency of doing online shopping..........................53
4.1.7 Time spending on online shopping............................53
4.1.8 Frequency of doing grocery shopping.........................53
4.2 Reliability Analysis..........................................56
4.3 Exploratory Factor Analysis (EFA).............................58
4.4 Multiple Linear Regression Analysis...........................61
4.4.1 Hypothesis testing on Austrian samples......................61
4.4.2 Hypothesis testing on Taiwanese samples.....................62
4.5 Single Linear Regression......................................64
4.6 Moderator Analysis............................................66
4.7 T-test........................................................68
CHAPTER 5 CONCLUSION AND RECOMMENDATION...........................73
5.1 Discussion....................................................73
5.2 Implications for Practitioners................................77
5.3 Limitation and Recommendations for Future Research............79
REFERENCES........................................................81
APPENDICES........................................................107
Aggelidi, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. International Journal of Medical Informatics, 78(2), 115-126. doi:10.1016/j.ijmedinf.2008.06.006
Agrebi, S., & Jallais, J. (2015). Explain the intention to use smartphones for mobile shopping. Journal of Retailing and Consumer Services, 22, 16-23. doi:10.1016/j.jretconser.2014.09.003
Ahn, J.-H., Kim, M.-S., & Lee, D.-J. (2005). Learning from the failure: experiences in the Korean telecommunications market. Technovation, 25(1), 69-82. doi:10.1016/S0166-4972(03)00065-8
Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior. Prentice-Hall.
Al-Hujran, O., Al-Debei, M. M., Chatfield, A., & Migdadi, M. (2015). The imperative of influencing citizen attitude toward e-government adoption and use. Computers in Human Behavior, 53, 189-203. doi:10.1016/j.chb.2015.06.025
Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28-44. doi:10.1016/j.ijinfomgt.2019.04.008
Amazon Go. (2020). Retrieved March 2020, from Amzon.com: https://www.amazon.com/b/ref=s9_acss_bw_cg_agogo_2b1_w?node=20931384011&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=merchandised-search-20&pf_rd_r=0SRB9TQT9D130PRNTDKE&pf_rd_t=101&pf_rd_p=61471661-fe74-4d89-a256-c34937674bc3&pf_rd_i=20931384011
Ashraf, M. G., Rizwan, M., iqbal, A., & Khan, M. A. (2014). The promotional tools and situational factors’ impact on consumer buying behaviour and sales promotion. Journal of Public Administration and Governance, 4(2), 179-201. doi: 10.5296/ jpag.v4i2.5844
Austrian Embassy Washington. (n.d.). Facts & Figures. Retrieved March 2020, from Austrian Embassy Washington: https://www.austria.org/economy
Austrian Top 100 Retailers. (2019). Retrieved March 2020, from Handelsverband Österreich: https://www.handelsverband.at/publikationen/studien/austrian-top-100-retailers/
Babu, S. H. (2012). SWOT Analysis for opening of FDI in Indian Retailing. European Journal of Business and Management, 4(3), 55-65.
Bäckström, K., & Johansson, U. (2006). Creating and consuming experiences in retail store environments: Comparing retailer and consumer perspectives. Journal of Retailing and Consumer Services, 13(6), 417-430. doi:10.1016/j.jretconser.2006.02.005
Balaji , M. S., & Roy, S. K. (2017). Value co-creation with Internet of things technology in the retail industry. Journal of Marketing Management, 33(1-2), 7-31. doi:10.1080/0267257X.2016.1217914
Bashir, I., & Madhavaiah, C. (2015). Consumer attitude and behavioural intention towards Internet banking adoption in India. Journal of Indian Business Research, 7(1), 67-102. doi:10.1108/JIBR-02-2014-0013
Bauer, R. A. (1960). Consumer Behavior as Risk Taking. In: Hancock, R.S., Ed., Dynamic Marketing for a Changing World. Proceedings of the 43rd. Conference of the American Marketing Association, Chicago, IL, USA, 389-398.
Bettman, J. R. (1973). Perceived risk and its components: a model and empirical test. Journal of Marketing Research, 10(2), 184-190. doi:10.1177/002224377301000209
Boonsiritomachai, W., & Pitchayadejanant, K. (2019). Determinants affecting mobile banking adoption by generation Y based on the Unified Theory of Acceptance and Use of Technology Model modified by the Technology Acceptance Model concept. Kasetsart Journal of Social Sciences, 1, 1-10. doi:10.1016/j.kjss.2017.10.005
Botero, G. G., Questier, F., Cincinnato, S., He, T., & Zhu, C. (2018). Acceptance and usage of mobile assisted language learning by higher education students. Journal of Computing in Higher Education, 30, 426-451. doi:10.1007/s12528-018-9177-1
Burke, R. R. (2002). Technology and the Customer Interface: What Consumers Want in the Physical and Virtual Store. Journal of the Academy of Marketing Science, 30(4), 411-432. doi:10.1177/009207002236914
CASH-Handelsmagazin. (2016, March 10). Innovative technologies in the new Spar Digital Leadership Store. Retrieved June 2020, from CASH-Handelsmagazin: https://www.cash.at/industrie/digital/innovative-technologien-im-neuen-spar-digital-leadership-store-10603
Central Intelligence Agency. (2017). The World Fact Book. Retrieved December 2019, from Central Intelligence Agency: https://www.cia.gov/library/publications/the-world-factbook/rankorder/2095rank.html
Chan, Y. H. (2004). Biostatistics 201: Linear Regression Analysis. Singapore Medical Journal, 45(2), 55-61.
Chang, C. (2019). Taiwan Retail Foods Report. Taipei: USDA Foreign Agricultural Service. Retrieved from: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Taiwan%20Retail%20Foods%20Report_Taipei%20ATO_Taiwan_7-29-2019.pdf
Chang, H., Fu, C., Fang, P., & Cheng, Y.-C. (2016). The effects of relationship maintenance and relationship investment on self-service technology relationship performance. Information Technology & People, 29(3), 496-526. doi:10.1108/ITP-08-2014-0171
Chang, M., & Cheung, W. (2001). Determinants of the intention to use Internet/WWW at work: a confirmatory study. Information & Management, 39(1), 1-14. doi:10.1016/S0378-7206(01)00075-1
Chang, Y.-H., & Dawson, J. (2007). The acceptance and adaptation of a foreign retail format: the case of the convenience store in Taiwan in the 1980s and 1990s. International Journal of Entrepreneurship and Small Business, 4(1), 17-40. doi:10.1504/IJESB.2007.011429
Chen, C. (2013). Perceived risk, usage frequency of mobile banking services. Managing Service Quality, 23(5), 410-436. doi:10.1108/MSQ-10-2012-0137
Chen, L.-d., & Nath, R. (2008). Determinants of Mobile Payments: An Empirical Analysis. Journal of International Technology and Information Management, 17(1), 9-20.
Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic and utilitarian motivations for online retailshopping behavior. Journal of Retailing, 77(4), 511-535. doi:10.1016/S0022-4359(01)00056-2
Chinomona, R., & Sibanda, D. (2013). When Global Expansion Meets Local Realities in Retailing: Carrefour's Glocal Strategies in Taiwan. International Journal of Business and Management, 8(1), 44-59. doi:10.5539/ijbm.v8n1p44
Chiu, Y.-T. H., & Hofer, M. K. (2015). Service innovation and usage intention: a cross-market analysis. Journal of Service Management, 26(3), 516-538. doi:10.1108/JOSM-10-2014-0274
Chiu, Y.-T. H., Lee, W.-I., Liu, C.-C., & Liu, L.-Y. (2012). Internet Lottery Commerce: An Integrated View of Online Sport Lottery Adoption. Journal of Internet Commerce, 11(1), 68-80. doi:10.1080/15332861.2012.650990
Choe, J.-m. (2004). The consideration of cultural differences in the design of information systems. Information & Management, 41(5), 669-684. doi:10.1016/j.im.2003.08.003
Choi, H., Kim, Y., & Kim, J. (2010). An acceptance model for an Internet protocol television service in Korea with prior experience as a moderator. The Service Industries Journal, 30(11), 1883–1901. doi:10.1080/02642060802627178
Choudhary, R. (2018). Application of “independent t-test” by using SPSS for conducting physical education researches. International Journal of Physical Education, Sports and Health, 5(1), 237-241.
Cimperman, M., Brenčič, M. M., & Trkman, P. (2016). Analyzing older users’ home telehealth services acceptance behavior—applying an Extended UTAUT model. International Journal of Medical Informatics, 90, 22-31. doi:j.ijmedinf.2016.03.002
Claudy, M. C., Garcia, R., & O’Driscoll , A. (2015). Consumer resistance to innovation—a behavioral reasoning perspective. Journal of the Academy of Marketing Science, 43, 528–544. doi:10.1007/s11747-014-0399-0
Compeau, D. R., & Higgins, C. A. (1995). Application of Social Cognitive Theory to Training for Computer Skills. Information Systems Research, 6(2), 118-143. doi:10.1287/isre.6.2.118
Cox, D. F., & Rich, S. U. (1964). Perceived risk and consumer decision making—the case of telephone shopping. Journal of Marketing Research, 1(4), 32-39. doi:10.1177/002224376400100405
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297‐334. doi:10.1007/BF02310555
Cunningham, S. M. (1967). The Major Dimensions of Perceived Risk. In Risk Taking and Information Handling in Consumer Behavior, D. Cox (ed.), Harvard University Press, Boston, 82-108
Curran, J. M., & Meuter, M. L. (2005). Self‐service technology adoption: comparing three technologies. Journal of Services Marketing, 19(2), 103-113. doi:10.1108/08876040510591411
Curran, J. M., Meuter, M. L., & Surprenant, C. F. (2003). Intentions to Use Self-Service Technologies: A Confluence of Multiple Attitudes. Journal of Service Research, 5(3), 209-224. doi:10.1177/1094670502238916
Dabholkar, P. A. (1996). Consumer evaluations of new technology-based self-service options: An investigation of alternative models of service quality. International Journal of Research in Marketing, 13(1), 29-51. doi:10.1016/0167-8116(95)00027-5
Davis , F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. doi:10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982
Davis, F. D., Bazozzi, R., & Warshaw, P. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111-1132. doi:10.1111/j.1559-1816.1992.tb00945.x
de Kerviler, G., Demoulin, N. T., & Zidda, P. (2016). Adoption of in-store mobile payment: Are perceived risk and convenience the only drivers? Journal of Retailing and Consumer Services, 31, 334-344. doi:10.1016/j.jretconser.2016.04.011
de Moerloose, C., Antioco, M., Lindgreen, A., & Palmer, R. (2005). Information kiosks: the case of the Belgian retail sector. International Journal of Retail & Distribution Management, 33(6), 472-490. doi:10.1108/09590550510603651
de Ruyter, K., Wetzels, M., & Kleijnen, M. (2001). Customer adoption of e-service: an experimental study. International Journal of Service Industry Management, 12(2), 184-207. doi:10.1108/09564230110387542
Deloitte. (2019). Global Powers of Retailing 2019. Retrieved March 2020, from https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Consumer-Business/cons-global-powers-retailing-2019.pdf
Dholakia , U. M. (2001). A motivational process model of product involvement and consumer risk perception. European Journal of Marketing, 35(11/12), 1340-1362. doi:10.1108/EUM0000000006479
Dobernig, K., & Schanes, K. (2019). Domestic spaces and beyond: Consumer food waste in the context of shopping and storing routines. International Journal of Consumer Studies, 43(5), 480-489. doi:10.1111/ijcs.12527
Doolin, B., Dillon, S., Thompson, F., & Corner, J. L. (2005). Perceived Risk, the Internet Shopping Experience and Online Purchasing Behavior: A New Zealand Perspective. Journal of Global Information Management, 13(2), 66-88.
Dunne, P. M., Lusch , R. F., & Carver, J. R. (2013). Retailing. Cengage Learning.
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Information Systems Frontiers, 21(3), 719–734. doi: 10.1007/s10796-017-9774-y
Eagly, A. H., & Chaiken, S. (1998). Attitude structure and function. (D. T. Gilbert, S. T. Fiske, & G. Lindzey, Eds.) New York: Oxford Univeristy Press.
European Commission. (2014). The economic impact of modern retail on choice and innovation in the EU food sector. Luxembourg: Publications Office of the European Union. Retrived from https://ec.europa.eu/competition/sectors/agriculture/retail_study_report_en.pdf
Eurostat. (2020, April 16). Database. Retrieved April 2020, from Eurostat: https://ec.europa.eu/eurostat/data/database?node_code=tin00028
Everington, K. (2018, January 30). 7-Eleven Taiwan opens first unmanned 'X-Store'. Retrieved April 2020, from Taiwan News: https://www.taiwannews.com.tw/en/news/3352033
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. doi:10.1016/S1071-5819(03)00111-3
Fernandes, T., & Pedroso, R. (2017). The effect of self-checkout quality on customer satisfaction and repatronage in a retail context. Serv Bus, 11(1), 69-92. doi:10.1007/s11628-016-0302-9
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. MA: Addison-Wesley.
Flynn , L. R., Goldsmith, R. E., & Eastman, J. K. (1996). Opinion Leaders and Opinion Seekers: Two New Measurement Scales. Journal of the Academy of Marketing Science, 24(2), 137-147. doi:10.1177/0092070396242004
Ghazizadeh, M., Lee, J. D., & Boyle , L. N. (2012). Extending the Technology Acceptance Model to assess automation. Cognition, Technology & Work, 14(1), 39-49. doi:10.1007/s10111-011-0194-3
Gittenberger, E., Lienbacher, E., & Ziniel, W. (2013). Aktuelle Entwicklungen in ausgewählten Bereichen des Handels in Österreich. AWS Arbeitsgemeinschaft Wirtschaft und Schule. Retrieved from https://docplayer.org/44731705-Aktuelle-handel-2020-aktuelle-entwicklungen-in-ausgewaehlten-bereichen-des-handels-in-oesterreich-74-september-2013.html
Globe Newswire. (2020, March 18). IoT in the Global Retail Market, 2020-2025 - Analyzed by Platform, Hardware, Service, Application and Region. Retrieved June 2020, from Globe Newswire: https://www.globenewswire.com/news-release/2020/03/18/2002434/0/en/IoT-in-the-Global-Retail-Market-2020-2025-Analyzed-by-Platform-Hardware-Service-Application-and-Region.html
Gu, J.-C., Lee, S.-C., & Suh, Y.-H. (2009). Determinants of behavioral intention to mobile banking. Expert Systems with Applications, 36(9), 11605-11616. doi:10.1016/j.eswa.2009.03.024
Hair Jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (7th ed.). Pearson Education Limited.
Hamid, A. A., Razak, F. Z., Bakar, A. A., & Abdullah, W. S. (2016). The Effects Of Perceived Usefulness And Perceived Ease Of Use On Continuance Intention To Use E-Government. Procedia Economics and Finance , 35, pp. 644-649. doi:10.1016/S2212-5671(16)00079-4
Harridge‐March, S., Zhao, A. L., Hanmer-Lloyd, S., Ward, P., & Goode, M. M. (2008). Perceived risk and Chinese consumers' internet banking services adoption. International Journal of Bank Marketing, 26(7), 505-525. doi:10.1108/02652320810913864
Hashim, N., Saad, N., Sakaguchi, F., & Zakaria, Z. (2013). Barcode Recognition System. International Journal of Emerging Trends & Technology in Computer Science, 2(4), 278-283.
Hinton, P. R., Brownlow, C., McMurvay, I., & Cozens, B. (2004). SPSS explained East Sussex. Routledge Inc., England.
Hirunyawipada, T., & Paswan, A. K. (2006). Consumer innovativeness and perceived risk: implications for high technology product adoption. Journal of Consumer Marketing, 23(4), 182-198. doi:10.1108/07363760610674310
Hoffmann, N. A., & Schnedlitz, P. (2008). The Austrian Retail Market: A Profile. In D. Morschett, T. Rudolph, P. Schnedlitz, H. Schramm-Klein, & B. Swoboda, European Retail Research (Vol. 22). Gabler Verlag, Wiesbaden.
Hopping, D. (2000). Technology in Retail. Technology in Society, 22(1), 63-74. doi:10.1016/S0160-791X(99)00042-1
Huang, C.-W., & Huang, F. (2016, February 7). Taiwan convenience store density tops world; sales may grow in 2016. Retrieved April 2020, from Focus Taiwan: https://focustaiwan.tw/business/201607020016
Hwang, J., & Good, L. (2014). Intelligent sensor-based services success: the role of consumer characteristics and information. European Journal of Marketing, 48(3/4), 406-431. doi:10.1108/EJM-11-2011-0689
International Labor Organization. (2018). ILO Labour Force Estimates and Projections (LFEP) 2018. Retrieved June 2020, from International Labor Organization: https://www.ilo.org/ilostat-files/Documents/LFEPbrief.pdf
International Monetary Fund. (2019). World Economic Outlook. Retrieved December 2019, from International Monetary Fund: https://www.imf.org/external/datamapper/datasets/WEO
Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption Testing the UTAUT model. Information & Management, 48(1), 1-8. doi:10.1016/j.im.2010.09.001
Incisiv. (2019). Five Priorities Driving the Renaissance of the Store in 2019. Incisiv. Retrieved from https://www.incisiv.com/ebook-five-priorities-driving-the-renaissance-of-the-store-in-2019
Inman, J., & Nikolova, H. (2017). Shopper-Facing Retail Technology: A Retailer Adoption Decision Framework Incorporating Shopper Attitudes and Privacy Concerns. Journal of Retailing, 93(1), 7-28. doi:10.1016/j.jretai.2016.12.006
Jacoby, J., & Kaplan, L. B. (1972). The Components of Perceived Risk. Proceedings of the Third Annual Conference of the Association for Consumer Research, ACR Special Volumes, pp. 382-393.
Johnston, C. (2018, January 22). Amazon opens a supermarket with no checkouts. Retrieved April 2020, from BBC News: https://www.bbc.com/news/business-42769096
Jones, P., Clarke-Hill, C., Hillier, D., & Comfort, D. (2005). The benefits, challenges and impacts of radio frequency identification technology (RFID) for retailers in the UK. Marketing Intelligence & Planning, 23(4), 395-402. doi:10.1108/02634500510603492
José Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). Role of gender on acceptance of mobile payment. Industrial Management & Data Systems, 114(2), 220-240. doi:10.1108/IMDS-03-2013-0137
Jung, H. S. (2017, June). Development and Future of the Department Store Industry in Taiwan. In 2017 International Conference on Management, Education and Social Science (ICMESS 2017). Atlantis Press.
Karjaluoto, H., Koenig-Lewis, N., Palmer, A., & Moll, A. (2010). Predicting young consumers' take up of mobile banking services. International Journal of Bank Marketing, 28(5), 410-432. doi:10.1108/02652321011064917
Kent, T., & Omar, O. (2003). Retailing. New York: Palgrave Macmillan.
Kerviler, G. d., Demoulin, N. T., & Zidda, P. (2016). Adoption of in-store mobile payment: Are perceived risk and convenience the only drivers? Journal of Retailing and Consumer Services, 31(4), 334-344. doi:10.1016/j.jretconser.2016.04.011
Kijsanayotin, B., Pannarunothai, S., & Speedie, S. M. (2009). Factors influencing health information technology adoption in Thailand's community health centers: Applying the UTAUT model. International Journal of Medical Informatics, 78(6), 404-416. doi:10.1016/j.ijmedinf.2008.12.005
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322. doi:10.1016/j.chb.2009.10.013
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564. doi:10.1016/j.dss.2007.07.001
Kim, K., & Prabhakar, B. (2000). Initial Trust, Perceived Risk, and the Adoption of Internet Banking. ICIS 2000 Proceedings, 55, pp. 537-543.
Kim, M.-K., Chang, Y., Wong, S., & Park, M.-C. (2015). The effect of perceived risks and switching barriers on the intention to use smartphones among non-adopters in Korea. Information Development, 31(3), 258–269. doi:10.1177/0266666913513279
Kraemer, H., & Blasey, C. (2004). Centring in regression analyses: a strategy to prevent errors in statistical inference. International Journal of Methods in Psychiatric Research, 13(3), 141-151. doi:10.1002/mpr.170
Krautgartner, R. (2012). Retail Foods Austria 2012. Vienna: USDA Foreign Agricultural Service. Retrieved from https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Retail%20Foods_Vienna_Austria_12-20-2012.pdf
Kulviwat, S., Bruner, G., & Al-Shuridah, O. (2009). The role of social influence on adoption of high tech innovations: The moderating effect of public/private consumption. Journal of Business Research, 62(7), 706-712. doi:10.1016/j.jbusres.2007.04.014
Kryvinska, N., & Greguš, M. (Eds.). (2019). Data-Centric Business and Applications: Evolvements in Business Information Processing and Management (Vol. 2). Springer.
Lai, V. S., & Li, H. (2005). Technology acceptance model for internet banking: an invariance analysis. Information & Management, 42(2), 373-386. doi:10.1016/j.im.2004.01.007
Lall, S. (2000). The Technological structure and performance of developing country manufactured exports. Oxford Development Studies, 28(3), 337-369. doi:10.1080/713688318
Larson, M. G. (2006). Descriptive Statistics and Graphical Displays. Circulation, 114(1), 76-81. doi:10.1161/CIRCULATIONAHA.105.584474
Lawson shows off experimental automated convenience store. (2020, February 18). Retrieved June 2020, from The Japan Times: https://www.japantimes.co.jp/news/2020/02/18/business/tech/lawson-convenience-store/#.XujIa2oza3I
Le, N., Hill, S., & Troshani, I. (2020). Perceived Control and Perceived Risk in Selfservice Technology Recovery. Journal of Computer Information Systems, 60(3), 1-10. doi:10.1080/08874417.2020.1756533
Lee, H. J., Fairhurst, A. E., & Lee, M. Y. (2009). The importance of self‐service kiosks in developing consumers' retail patronage intentions. Managing Service Quality: An International Journal, 19(6), 687-701. doi:10.1108/09604520911005071
Lee, M.-C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141. doi:10.1016/j.elerap.2008.11.006
Lee, Y., Lee, J., & Lee, Z. (2006). Social influence on technology acceptance behavior: self-identity theory perspective. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 37(2-3), 60-75. doi:10.1145/1161345.1161355
Leong, L.-Y., Hew, T.-S., Tan, G. W.-H., & Ooi, K.-B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604-5620. doi:10.1016/j.eswa.2013.04.018
Lim, N. (2003). Consumers’ perceived risk: sources versus consequences. Electronic Commerce Research and Applications, 2(3), 216-228. doi:10.1016/S1567-4223(03)00025-5
Lin, J.-S. C., & Chang, H.-C. (2011). The role of technology readiness in self-service technology acceptance. Managing Service Quality, 21(4), 424-444. doi:10.1108/09604521111146289
Lo, C.-H., & Wang, Y.-W. (2019). Constructing an Evaluation Model for User Experience in an Unmanned Store. Sustainability, 11(18), 1-29. doi:10.3390/su11184965
Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2), 222-234. doi:10.1016/j.dss.2010.02.008
Madden, T. J., Ellen, P. S., & Ajzen, I. (1992). A Comparison of the Theory of Planned Behavior and the Theory of Reasoned Action. Personality and Social Psychology Bulletin, 18(1), 3-9. doi:10.1177/0146167292181001
Mahardika, H., Thomas, D., Ewing, M. T., & Japutra, A. (2018). Experience and facilitating conditions as impediments to consumers’ new technology adoption. The International Review of Retail, Distribution and Consumer Research, 29(1), 79-98. doi:10.1080/09593969.2018.1556181
Maruyama, M., & Trung, L. (2011). Modern Retailers in Transition Economies: The Case of Vietnam. Journal of Macromarketing, 32(1), 31-51. doi:10.1177/0276146711421932
Ministry of Foreign Affairs. (2019). 2019-2020 Taiwan at a Glance. Ministry of Foreign Affairs, Republic of China. Retrieved from http://multilingual.mofa.gov.tw/web/web_UTF-8/MOFA/glance2019-2020/English.pdf
Mitchell, V.-W. (1999). Consumer perceived risk: conceptualisations and models. European Journal of Marketing, 33(1/2), 163-195. doi:10.1108/03090569910249229
Mitchell, V.‐W. (1992). Understanding Consumers’ Behaviour: Can Perceived Risk Theory Help? Management Decision, 30(3), 26-31. doi:10.1108/00251749210013050
Moon, J.-W., & Kim , Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230. doi:10.1016/S0378-7206(00)00061-6
Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222. doi:10.1287/isre.2.3.192
Mortimer, G., Fazal e Hasan, S., Andrews, L., & Martin, J. (2016). Online grocery shopping: the impact of shopping frequency on perceived risk. The International Review of Retail, Distribution and Consumer Research, 26(2), 202-223. doi:10.1080/09593969.2015.1130737
Muk, A., & Chung, C. (2015). Applying the technology acceptance model in a two-country study of SMS advertising. Journal of Business Research, 68(1), 1-6. doi:10.1016/j.jbusres.2014.06.001
Müller-Seitz, G., Dautzenberg, K., Creusen, U., & Stromereder, C. (2009). Customer acceptance of RFID technology: Evidence from the German electronic retail sector. Journal of Retailing and Consumer Services, 16(1), 31-39. doi:10.1016/j.jretconser.2008.08.002
Naiyi , Y. (2004). Dimensions of Consumer’s Perceived Risk in Online Shopping. Journal of Electronic Science and Technology of China, 2(3), 177-182.
Nasser Al-Suqri, M. (2014). Perceived usefulness, perceived ease-of-use and faculty acceptance of electronic books: An empirical investigation of Sultan Qaboos University, Oman. Library Review, 63(4/5), 276-294. doi:10.1108/LR-05-2013-0062
Ngai, E., Poon, J., & Chan , Y. (2007). Empirical examination of the adoption of WebCT using TAM. Computers & Education, 48(2), 250-267. doi:10.1016/j.compedu.2004.11.007
Nielsen. (n.d.) Retrieved from https://www.nielsen.com/at/de/
Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: WhenUTAUT meets TTF and ITM. International Journal of Information Management, 34(5), doi:689-703. 10.1016/j.ijinfomgt.2014.06.004
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414. doi: 10.1016/j.chb.2016.03.030
Orel, F. D., & Kara, A. (2014). Supermarket self-checkout service quality, customer satisfaction, andloyalty: Empirical evidence from an emerging market. Journal of Retailing and Consumer Services, 21(2), 118-129. doi:10.1016/j.jretconser.2013.07.002
Ostrom, T. M. (1969). The relationship between the affective, behavioral, and cognitive components of attitude. Journal of Experimental Social Psychology, 5(1), 12-30. doi:10.1016/0022-1031(69)90003-1
Pantano, E. (2014). Innovation drivers in retail industry. International Journal of Information Management, 34(3), 344-350. doi:10.1016/j.ijinfomgt.2014.03.002
Pantano, E., & Di Pietro, L. (2012). Understanding Consumer's Acceptance of Technology-Based Innovations in Retailing. Journal of Technology Management & Innovation, 7(4), 1-19.
Pantano, E., & Timmermans, H. (2014). What is Smart for Retailing? Procedia Environmental Sciences, 22, 101-107. doi:10.1016/j.proenv.2014.11.010
Park, S. Y. (2009). An Analysis of the Technology Acceptance Model in Understanding University Students' Behavioral Intention to Use e-Learning. Journal of Educational Technology & Society, 12(3), 150-162.
Park, S., & Tussyadiah, I. P. (2017). Multidimensional Facets of Perceived Risk in Mobile Travel Booking. Journal of Travel Research, 56(7), 854–867. doi:10.1177/0047287516675062
Paul, K. J., Musa, M., & Nansubuga, A. K. (2015). Facilitating Condition for E-learning Adoption—Case of Ugandan Universities. Journal of Communication and Computer, 12(5), 244-249. doi:10.17265/1548-7709/2015.05.004
Porter, C. E., & Donthu, N. (2006). Using the technology acceptance model to explain how attitudes determineInternet usage: The role of perceived access barriers and demographics. Journal of Business Research, 59(9), 999-1007. doi:10.1016/j.jbusres.2006.06.003
Radial. (2019). The 2018-2019 Retail Technology Report: An Analysis of Trends, Buying Behaviors and Future Opportunities. Radial. Retrieved from https://www.mytotalretail.com/promo/2018-tr-tech-report/
Rekik, Y., Sahin, E., & Dallery, Y. (2008). Analysis of the impact of the RFID technology on reducing product misplacement errors at retail stores. International Journal of Production Economics, 112(1), 264-278. doi:10.1016/j.ijpe.2006.08.024
Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology in retailing: Consumers׳ and retailers׳ point of view. Journal of Retailing and Consumer Services, 21(5), 836-843. doi:10.1016/j.jretconser.2014.02.015
Renny, Guritno, S., & Siringoringo, H. (2013). Perceived Usefulness, Ease of use, and Attitude Towards Online Shopping Usefulness Towards Online Airlines Ticket Purchase. Procedia - Social and Behavioral Sciences, 81, 212-216. doi:10.1016/j.sbspro.2013.06.415
Research on Major Chain Convenience Stores in Taiwan. (2019, September 11). Retrieved April 2020, from The Fair Trade Commission: https://www.ftc.gov.tw/internet/main/doc/docDetail.aspx?uid=126&docid=16025
Rhodes, R. E., Jones, L. W., & Courneya, K. S. (2002). Extending the Theory of Planned Behavior in the Exercise Domain: A Comparison of Social Support and Subjective Norm. Research Quarterly for Exercise and Sport, 73(2), 193-199. doi:10.1080/02701367.2002.10609008
Rogers, E. M. (1983). Diffusion of Innovations (3rd Ed.). New York: The Free Press.
Rogers, E. M. (2002). Diffusion of preventive innovations. Everett M., 27, 989-993. doi:10.1016/S0306-4603(02)00300-3
Roselius, E. (1971). Consumer rankings of risk reduction methods. Journal of Marketing, 35(1), 56-61. doi:10.1177/002224297103500110
Rosen, L. D., Whaling, K., Carrier, L., Cheever, N., & Rokkum, J. (2013). The Media and Technology Usage and Attitudes Scale: An empirical investigation. Computers in Human Behavior, 29(6), 2501-2511. doi:10.1016/j.chb.2013.06.006
Roussos, G. (2006). Enabling RFID in retail. Computer, 39(3), 25-30. doi:10.1109/MC.2006.88
Rowley, J. (2000). Loyalty kiosks: making loyalty cards work. British Food Journal, 102(5/6), 390-397. doi:10.1108/00070700010329236
Roy, S. K., Balaji, M. S., Sadeque, S., Nguyen, B., & Melewar, T. C. (2017). Constituents and consequences of smart customer experience in retailing. Technological Forecasting & Social Change, 124, 257-270. doi:10.1016/j.techfore.2016.09.022
Roy, S. K., Balaji, M., Quazi, A., & Quaddus, M. (2018). Predictors of customer acceptance of and resistance to smart technologies inthe retail sector. Journal of Retailing and Consumer Services, 42, 147-160. doi:10.1016/j.jretconser.2018.02.005
Rusu, C., & Stix, H. (2017). Cash and card payments – recent results of the Austrian payment diary survey. Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), 1-35.
Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: Anempirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216. doi:10.1016/j.elerap.2009.07.005
Schmidthuber, L., Maresch, D., & Ginner, M. (2020). Disruptive technologies and abundance in the service sector - toward a refined technology acceptance model. Technological Forecasting and Social Change, 155, 119328. doi:10.1016/j.techfore.2018.06.017
Seber, G. A., & Lee, A. J. (2012). Linear Regression Analysis (Vol. 329). John Wiley & Sons.
Shankar, V. (2018). How Artificial Intelligence (AI) is Reshaping Retailing. Journal of Retailing, 94(4), vi-xi.
Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The Theory of Reasoned Action: A Meta-Analysis of Past Research with Recommendations for Modifications and Future Research. Journal of Consumer Research, 15(3), 325-343. doi:10.1086/209170
Shi, M., & Yan , X. (2017). Heterogeneous consumers, search and retail formats. Frontiers of Business Research in China, 11(4), 525-544. doi:10.1186/s11782-017-0017-3
Shih, H.-P. (2004). Extended technology acceptance model of Internet utilization behavior. Information & Management, 41(6), 719-729. doi:10.1016/j.im.2003.08.009
Sinik, N. (2018). Business Productivity and Data Analysis in the Austrian Supermarket Sector. 10th International Scientific Conference "New Challenges of Economic and Business Development – 2018: Productivity and Economic Growth" (pp. 625-638). Riga, Latvia: Faculty of Business, Management and Economics, University of Latvia.
Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). A cross-cultural validity of the E-learning Acceptance Measure (ElAM) in Lebanon and England: A confirmatory factor analysis. Psychology & Marketing, 32(8), 860-873. doi:10.1007/s10639-015-9381-9
Statistik Austria. (2020). Population. Retrieved April 2020, from Statistik Austria: https://www.statistik.at/web_en/statistics/PeopleSociety/population/index.html
Stone, R. N., & Grønhaug, K. (1993). Perceived Risk: Further Considerations for the Marketing Discipline. European Journal of Marketing, 27(3), 39-50. doi:10.1108/03090569310026637
Syed, H., & Malik, A. N. (2014). Comparative study of effect of culture on technology adoption in Pakistan and USA. The Business & Management Review, 5(1), 42-51.
Tan, G. W.-H., Ooi, K.-B., Chong, S.-C., & Hew, T.-S. (2014). NFC mobile credit card: The next frontier of mobile payment? Telematics and Informatics, 31(2), 292-307. doi:10.1016/j.tele.2013.06.002
Tarhini, A., Teo, T., & Tarhini, T. (2016). A cross-cultural validity of the E-learning Acceptance Measure (ElAM) in Lebanon and England: A confirmatory factor analysis. Education and Information Technologies, 21, 1269–1282. doi:10.1007/s10639-015-9381-9
Tate, M., Evermann, J., & Gable, G. (2015). An integrated framework for theories of individual attitudes towardtechnology. Information & Management, 52(6), 710-727. doi:10.1016/j.im.2015.06.005
Taylor, E. (2016). Mobile payment technologies in retail: a review of potential benefits and risks. International Journal of Retail & Distribution Management, 44(2), 159-177. doi:10.1108/IJRDM-05-2015-0065
Taylor, J. W. (1974). The Role of Risk in Consumer Behavior: A comprehensive and operational theory of risk taking in consumer behavior. Journal of Marketing, 38(2), 54-60. doi:10.1177/002224297403800211
Taylor, S., & Todd, P. (1995b). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4), 561-570. doi:10.2307/249633
Taylor, S., & Todd, P. A. (1995a). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), 144-176. doi:10.1287/isre.6.2.144
Tech. (2019). A World In Motion: Retail Digital Transformation Across The Globe, And The Technology Supporting It. Retail week, World Retail Congree. London: Tech.
Teo, T. (2009). Modelling technology acceptance in education: A study of pre-service teachers. Computers & Education, 52(2), 302-312. doi:10.1016/j.compedu.2008.08.006
Teo, T. (2010a). Examining the influence of subjective norm and facilitating conditions on the intention to use technology among pre-service teachers: a structural equation modeling of an extended technology acceptance model. Asia Pacific Education Review, 11(2), 253–262. doi:10.1007/s12564-009-9066-4
Teo, T. (2010b). A path analysis of pre-service teachers' attitudes to computer use: applying and extending the technology acceptance model in an educational context. Interactive Learning Environments, 18(1), 65-79. doi:10.1080/10494820802231327
Teo, T. (2011). Factors influencing teachers’ intention to use technology: Model development and test. Computers & Education, 57(4), doi:2432-2440. 10.1016/j.compedu.2011.06.008
Thakur, R., & Srivastava, M. (2014). Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Research, 24(3), 369-392. doi:10.1108/IntR-12-2012-0244
The World Bank. (2019). Databank. Retrieved December 2019, from The World Bank, DataBank: https://databank.worldbank.org/databases
The National Development Council. (2019). Survey on 2019 Individual/Household Digital Opportunity Survey in Taiwan. Retrieved from https://ws.ndc.gov.tw/001/administrator/11/relfile/5813/33668/01760447-c67c-4e49-a263-38805ccb5291.pdf
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), doi:125-143. 10.2307/249443
Trappey, C. V., & Lai, M. (1996). Retailing in Taiwan: modernization and the emergence of new formats. International Journal of Retail & Distribution Management, 24(8), 31–37. doi:10.1108/09590559610150366
Triandis, H. C. (1980). Values, attitudes, and interpersonal behavior. Nebraska Symposium on Motivation, 27, 195-259.
Tsai, M.-C., Lee, W., & Wu, H.-C. (2010). Determinants of RFID adoption intention: Evidence from Taiwanese retail chains. Information & Management, 47(5-6), 255-261. doi:10.1016/j.im.2010.05.001
Tu, J.-C., & Lee, Y.-L. (2018). Strategies for the Leftover Food Treatment Process: A Case Study of Convenience Store Deli-Style Food Products in Taiwan. International Journal of Automation Technology, 12(6), 853-860. doi:10.20965/ijat.2018.p0853
Ursachi, G., Horodnic, A. I., & Zait, A. (2015). How reliable are measurement scales? External factors with indirect influence on reliability estimators. Procedia Economics and Finance, 20, 679-686. doi:10.1016/S2212-5671(15)00123-9
Uusitalo, O. (2001). Consumer perceptions of grocery retail formats and brands. International Journal of Retail & Distribution Management, 29(5), 214-225. doi:10.1108/09590550110390995
Van, H.-T., Kim, B., Lee, S., & Gim, G. (2019). The Difference of Intention to Use E-government based on National Culture between Vietnam and Korea. 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), (pp. 409-420). doi:10.1109/SNPD.2019.8935770
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. doi:10.2307/30036540
Vijayasarathy, L. (2004). Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model. Information & Management, 41(6), 747-762. doi:10.1016/j.im.2003.08.011
Walker, R. H., & Johnson, L. W. (2006). Why consumers use and do not use technology-enabled services. Journal of Services Marketing, 20(2), 125–135. doi:10.1108/08876040610657057
Watson, B. C. (2011). Barcode Empires: Politics, Digital Technology, and Comparative Retail Firm Strategies. Journal of Industry, Competition and Trade, 11(2), 309–324. doi:10.1007/s10842-011-0109-2
Williams, M. D., Rana, N. P., & Dwivedi, Y. K. (2015). The unified theory of acceptance and use of technology (UTAUT): a literature review. Journal of Enterprise Information Management, 28(3), 443-488. doi:10.1108/JEIM-09-2014-0088
Wingfield, N. (2016, December 5). Amazon Moves to Cut Checkout Line, Promoting a Grab-and-Go Experience. Retrieved April 2020, from The New York Times: https://www.nytimes.com/2016/12/05/technology/amazon-moves-to-cut-checkout-line-promoting-a-grab-and-go-experience.html
Wu, J.-H., & Wang, S.-C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729. doi:10.1016/j.im.2004.07.001
Yang, C. H. (2006). Is innovation the story of Taiwan's economic growth? Journal of Asian Economics, 17(5), 867-878. doi: 10.1016/j.asieco.2006.08.007
Yang, K. (2010). Determinants of US consumer mobile shopping services adoption: implications for designing mobile shopping services. Journal of Consumer Marketing, 27(3), 262-270. doi:10.1108/07363761011038338
Yousafzai, S. Y., Foxall, G., & Pallister, J. G. (2010). Explaining Internet Banking Behavior: Theory of Reasoned Action, Theory of Planned Behavior, or Technology Acceptance Model? Jornal of Applied Social Psychology, 40(5), 1172-1202. doi:10.1111/j.1559-1816.2010.00615.x
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767. doi:10.1016/j.chb.2010.01.013
Zolnowski, A., Weiß, C., & Böhmann, T. (2014). Representing Service Business Models with the Service Business Model Canvas - The Case of a Mobile Payment Service in the Retail Industry. 47th Hawaii International Conference on System Sciences, 718-727. doi:10.1109/HICSS.2014.96
Zottler, M. (2019, December 24). Billa startet mit erster FilialeSteirische App-Lösung macht Einkaufen ohne Kassa möglich. Retrieved April 2020, from Kleine Zeitung: https://www.kleinezeitung.at/wirtschaft/5743186/Billa-startet-mit-erster-Filiale_Steirische-AppLoesung-macht


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊