跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉書宏
研究生(外文):YEH,SHU-HUNG
論文名稱:後勁溪水體重金屬質通量及底泥污染分佈探討與企業再生水廠運作之影響
論文名稱(外文):Investigation of Houjing River heavy metal mass flux and the characterization of sediment contamination and the effects of reclaimed water coorporate strategy
指導教授:林啟燦林啟燦引用關係
指導教授(外文):LIN, CHI-TSAN
口試委員:沈建全楊磊胡憲倫李家偉
口試委員(外文):SHERN, JIAN-CHUANYANG, LEIHU, HSIEN-LUNLEE, CHIA-WEI
口試日期:2021-05-20
學位類別:博士
校院名稱:國立高雄科技大學
系所名稱:海事學院海事科技產學合作博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:129
中文關鍵詞:污染防治策略重金屬污染重金屬污染指數(HPI)污染程度指數(DC)再生廢水源頭貢獻
外文關鍵詞:pollution preventing strategyheavy metal pollutionheavy metal pollution index (HPI)degree of contamination index (DC)reclaimed wastewatersource contribution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
重金屬污染在世界和台灣都備受關注,近年來,河川的污染修復已成為環境改善的主要目標。對河川水質評價是一項對環境進行良好管理的基礎。從相關媒體報導中知道後勁溪受汙染嚴重,急需要進行管理。雖先前有些後勁溪相關研究文獻,但缺長期且連續性的研究報告,也欠缺近期的水體重金屬質通量及底泥污染分佈探討資訊,之前所得的研究參數與實際恐有明顯差異,因此需要對後勁溪進行更深入的研究,以便掌握且推動有效的環境改善措施。
本研究調查了後勁溪五年內的基本水質項目(溶氧、導電度、鹽度、pH和溫度)和水體八種重金屬(As, Cd, Cr, Cu, Hg, Ni, Pb, Zn)的質通量(2015-2019)及探討底泥重金屬污染分佈。評估重金屬污染指數(HPI),污染程度指數(DC),污染因子(CF),地質累積指數(Igeo),重金屬污染指數(HPI)和污染程度指數(DC)分別根據水體和沈積底泥中的重金屬濃度計算得出。每年從五個採樣地點採樣4次地面水體及底泥:上游監測點(經建橋, H1和仁武橋, H2),工業廢水排放監測點(德民橋下匯流口, H3和區外匯流口, H4)和下游監測點(德惠橋, H5)。在研究期間,發現部分基本水質項目參數得到了改善,尤其是溶氧,平均值為5.09±3.09 mg/L。但是某些參數(例如導電度(EC)平均值1152.50±414.21 µS/cm)仍高於台灣農業灌溉水質標準。重金屬總質通量的空間變化從上游到下游逐漸增加,H5測點的總質通量最高,為74.1 kg/d。而在採樣點附近的德民橋下匯流口和區外匯流口(H3和H4)底泥中重金屬濃度高於其測點,接收來自楠梓加工區(NEPZ)(2021.3.28更名為楠梓科技產業園區,NTIP)廢水,NEPZ有許多與金屬表面處理有關的工廠。
H5與所有上游測站貢獻的總和之間的差異歸因於未知來源。未知污染源,可能包括地下工廠排放和底泥沈積物中重金屬的解析。底泥中的金屬濃度在春季和夏季較高,在秋季和冬季較低,與水體中的重金屬污染相反。HPI全年平均值為128.5,高於臨界指標限值100,說明後勁溪水質不佳。DC的平均值為21.3,判斷底泥中受8種金屬協同污染程度(synergistic pollution level)有相當程度的污染。計算CF和Igeo,發現Zn,Cu和Cd是造成底泥沉積物中重金屬污染的三種主要金屬。對H5的大部分水體重金屬通量貢獻來自H2,其次是H3 + H4,最後是H1。在採樣點中,H2貢獻了最多的Ni, Cr, Pb, Zn, Hg通量,H2水體總質通量為33.7 kg/d。這可能是由於H2周圍內幾個與金屬相關的產業所貢獻。在NEPZ廢水排放的監測點H3 與 H4貢獻了最高的Cu(28%)。未知來源佔有As(88%)和Cd(85%)的質通量。H5靠近一個以前的垃圾掩埋場(現在是高雄市立都會公園),這可能是未知的來源之一。
本項研究觀察到研究期間溫度和pH值保持穩定,後勁溪的溫度平均值為27.63±3.90 oC,pH平均值7.63±0.3。在過去的五年中,流量和溶氧增加,而鹽度和導電度降低。後勁溪在採樣期間,流量1.78±1.51 m3/s,顯示流量變化很大,河流的流量有所增加,這可能是由於2018年和2019年的降雨量較高。後勁溪的鹽度很低(0.66 ± 0.30 ‰),可知後勁溪沒有受到潮汐作用影響。導電度相較Lin et al. 2010報告中後勁溪2004年至2006年導電度值低達40%,水質有所改善,說明多年來溶解固體減少了。溶氧從2015年的4.5 mg/L逐漸增加到2017年的5.9 mg/L,呈現出後勁溪水質有得到改善。
本研究概述後勁溪重金屬協同污染程度,也探討企業的再生水廠運作對後勁溪的影響,企業在再生水廠設置後降低自來水用量19,250 ton/day,降低達55%。降低原水導電度270 µS/cm,降低達60%。降低COD排放量104,400 kg/yr,降低達87%。降低放流水排放量3,015,000 ton/yr,降低達55%。再生水廠明顯的效益,可以作為未來高科技半導體相關產業學習的典範。本研究由一整個實驗室團隊合作,採專案管理,收集相關文獻,長時間現地調查與採樣分析,遵照政府機關公告的檢驗方法與QA/QC,統計分析所得到的成果,提供未來後勁溪的污染控制和管理計劃,以及廢水回收再利用的參考。

Heavy metal pollution has attracted much attention in the world and in Taiwan. In recent years, river pollution restoration has become the main goal of environmental improvement. Evaluation of river water quality is a basis for good environmental management. According to relevant media reports, the Houjing River is seriously polluted and urgently needs to be managed. Although there are some previous research literatures related to Houjing River, there is a lack of long-term and continuous research reports, as well as recent information on the distribution of water heavy metal fluxes and sediment pollution, maybe the research parameters obtained before are obviously different from the actual ones, so it is necessary to conduct a more in-depth study in order to grasp and promote effective environmental improvement measures.
This study investigated the basic water quality items (dissolved oxygen, conductivity, salinity, pH and temperature) and the eight kinds of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the water body within five years. Mass flux (2015-2019) and discuss the distribution of heavy metal pollution in sediments. Assessment of heavy metal pollution index (HPI), pollution degree index (DC), pollution factor (CF), geological accumulation index (Igeo), heavy metal pollution index (HPI) and pollution degree index (DC) are based on the water and sedimentation sediment. The concentration of heavy metals is calculated. Surface water bodies and sediments are sampled 4 times a year from five sampling locations: upstream monitoring points (Jingjian, H1 and Renwu, H2), industrial wastewater discharge monitoring points (Demin, H3 and Chuwai, H4) and downstream monitoring points (Dehuei, H5). During our research, we found that some basic water quality project parameters have been improved, especially the dissolved oxygen, with an average value of 5.09±3.09 mg/L. However, some parameters (such as the average value of electrical conductivity (EC) 1152.50±414.21 µS/cm) are still higher than Taiwan's agricultural irrigation water quality standards. The spatial variation of the total mass flux of heavy metals gradually increased from upstream to downstream, and the total mass flux of H5 was the highest at 74.1 kg/d. The concentration of heavy metals in the sediments at the confluence under the Demin bridge and the Chuwai (H3 and H4) near the sampling point is higher than that of other points, which are received from Nanzi Processing Zone (NEPZ) (renamed Nanzi Technology Industry on March 28, 2020, Nanzih Technology Industrial Park, NTIP) wastewater, NEPZ has many factories related to metal surface treatment.
The difference between H5 and the sum of contributions from all upstream stations is due to unknown sources. Unknown pollution sources, which may include underground factory emissions and the analysis of heavy metals in sediments. The concentration of metals in sediments is higher in spring and summer, and lower in autumn and winter, which is contrary to heavy metal pollution in water. The annual average HPI is 128.5, which is higher than the critical index limit of 100, indicating that the water quality of Houjing River is not suitable for drinking. The average value of DC is 21.3, and it is judged that there is a considerable degree of pollution in the bottom sludge by the synergistic pollution level of 8 metals. Calculating CF and Igeo, it is found that Zn, Cu and Cd are the three main metals that cause heavy metal pollution in sediments. Most of the water flux contribution to H5 comes from H2, followed by H3 + H4, and finally H1. Among the sampling points, H2 contributed the most Ni, Cr, Pb, Zn and Hg fluxes, and the total mass flux of H2 water was 33.7 kg/d. This may be due to the contribution of several metal-related industries around H2. At the monitoring points of NEPZ wastewater discharge, H3 and H4 contributed the highest Cu (28%). Unknown sources occupy the mass flux of As (88%) and Cd (85%). H5 is close to a former landfill (now Kaohsiung Metropolitan Park), which may be one of the unknown sources.
In this study, it was observed that the temperature and pH remained stable during the study period. The average temperature of Houjing River was 27.63±3.90 oC, and the average pH was 7.63±0.3. In the past five years, the flow rate and dissolved oxygen have increased, while the salinity and conductivity have decreased. During the sampling period, the flow velocity of Houjing River was 1.78±1.51 m3/s, indicating that the flow velocity has changed greatly and the flow of the river has increased. This may be due to the higher rainfall in 2018 and 2019. The salinity of Houjing River is very low (0.66 ± 0.30 ‰), and it can be seen that Houjing River is not affected by tidal action. Compared with Lin et al. 2010, the conductivity of Houjing River was 40% lower than that of Houjing River from 2004 to 2006. The water quality has improved, indicating that the dissolved solids from these sources have decreased over the years. Dissolved oxygen gradually increased from 4.5 mg/L in 2015 to 5.9 mg/L in 2017, showing that the water quality of Houjing River has improved.
This study outlines the degree of co-pollution of heavy metals in Houjing River, and also explores the impact of the operation of the company's reclaimed water plant on Houjing River. After the establishment of the reclaimed water plant, the company reduced its tap water consumption by 19,250 ton/day, a reduction of 55%. Reduce the conductivity of raw water by 270 µS/cm by up to 60%. Reduce COD emissions by 104,400 kg/yr, a reduction of 87%. Reduce the discharge of discharge water by 3,015,000 ton/yr, a reduction of 55%. The obvious benefits of the reclaimed water plant can be used as a model for learning in the future high-tech semiconductor-related industries. This research is coordinated by an entire laboratory team, adopts project management, collects relevant literature, long-term on-site investigation and sampling analysis, and follows the inspection methods and QA/QC announced by government agencies. The results of statistical analysis provide future pollution control and management plans for Houjing River, as well as references for waste water recycling and reuse.

摘要 i
Abstract iii
誌謝 vii
目錄 viii
表目錄 x
圖目錄 xi
第一章 緒論 1
第二章 文獻回顧 3
2.1 後勁溪研究場地 3
2.2 研究區域及後勁溪重金屬廢水來源 5
2.3 台灣地區金屬元素管制標準 6
2.4 台灣地區水體管制標準 7
2.5 底泥重金屬管制標準 8
2.6 再生水廠運用實務--中水回收 9
2.6.1 中水回收廠重要單元 10
2.6.2 中水回收廠管理規定 12
第三章 研究方法與材料設備 13
3.1 研究架構 13
3.2 採樣地點 14
3.3 材料與研究設備 15
3.3.1 材料 15
3.3.2 儀器設備 15
3.4 水文量測、基本水質項目監測、水體重金屬、底泥分析方法 16
3.4.1 水文量測及基本水質項目分析 17
3.4.2 水體重金屬及底泥分析方法與評估指標 17
3.4.3 底泥年代與重金屬垂直分佈調查分析 24
3.4.4 抽樣與統計分析方法 28
3.5 流量計算與貢獻度 29
3.6 污染貢獻度責任分配 30
3.7 QA/QC 31
第四章 結果與討論 32
4.1 水文監測 32
4.2 基本水質項目監測 38
4.2.1 水溫 38
4.2.2 鹽度 41
4.2.3 溶氧 44
4.2.4 pH值 47
4.2.5 濁度 50
4.2.6 導電度 53
4.3 水體重金屬與底泥重金屬討論 57
4.4 底泥年代及重金屬垂直討論 65
4.5 水文改善情形(5年的水文條件變化) 66
4.6 後勁溪流域重金屬之貢獻度及責任分攤比例 68
4.7 後勁溪與高雄市其他河川之比較與其差異探討 72
4.8 再生水作為水源管理的解決方案 74
4.9 綜合討論 75
第五章 結論與建議 96
5.1 結論 96
5.2 建議 98
參考文獻 99
附錄 103
附錄一 水體重金屬偵測極限 (單位: mg/L) 103
附錄二 2015~2019年後勁溪水體各季重金屬分析 104
附錄三 空拍照片 113

Addy K, Green L, Herron E (2004) pH and Alkalinity. Coastal Institute, Kingston, Rhode Island
Ahmadi A, Yang W, Jones S, Wu T (2018) Separation-free Al-Mg/ graphene oxide composites for enhancement of urban stormwater runoff quality. Adv Compos Hybrid Mater 1:591–601
ASE (2019): Sustainability Report (2020,06). Advanced Semiconductor Engineering, INC., Kaohsiung, Taiwan
Benson NU, Adedapo AE, Fred-Ahmadu OH, Williams AB, Udosen ED, Ayejuyo OO, Olajire AA (2018) New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: a case study of the Gulf of Guinea. Reg Stud Mar Sci 18:44–56
Brady JP, Ayoko GA, Martens WN, Goonetilleke A (2015) Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ Monit Assess 187:306
Chandrasekaran A, Mukesh M, Chidambaram S, Singarasubramanian S, Rajendran S, Muthukumarasamy R, Tamilselvi M (2015) Assess of heavy metal distribution pattern in the sediments of Tamirabarani river and estuary, east coast of Tamil Nadu, India. Environ Earth Sci 73:2441–2452
Cengiz MF, Kilic S, Yalcin F, Kilic M, Yalcin MG (2017) Evaluation of heavy metal risk potential in Bogacayi River water (Antalya, Turkey). Environ Monit Assess 189:248
Chen C-W, Kao C-M, Chen C-F, Dong C-D (2007) Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66:1431–1440
Chen M-H, Wu H-T (1995) Copper, cadmium and lead in sediments from the Kaohsiung River and its harbour area, Taiwan. Mar Pollut Bull 30:879–884
Chen WH (2016) Court revokes ASE pollution fine. Taipei Times, Mar 24, 2016, p.3. Taiwan. http://www.taipeitimes.com/News/taiwan/ print/2016/03/24/2003642322
Chiu YT (2013) ASE faces possible halt due to water pollution. Tech Taiwan, December 11, 2013. Taiwan http://www.zdnet.com/article/ ase-faces-possible-halt-due-to-water-pollution/
Ghosh A, Mukiibi M, Sáez AE, Ela WP (2006) Leaching of arsenic from granular ferric hydroxide residuals under mature landfill conditions. Environ Science & Technology 40:6070–6075
Guo H, Wen D, Liu Z, Jia Y, Guo Q (2014) A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes. Applied Geochemistry 41:196– 217
Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001
Haque MM, Niloy NM, Nayna OK, Fatema KJ, Quraishi SB, Park J-H, Kim K-W, Tareq SM (2020) Variability of water quality and metal pollution index in the Ganges River, Bangladesh. Environ Science and Pollution Research 27:42582–42599
He Z, Li F, Dominech S, Wen X, Yang S (2019) Heavy metals of surface sediments in the Changjiang (Yangtze River) Estuary: distribution, speciation and environ risks. J Geochem Explor 198:18–28
Hoang HG, Lin C, Tran HT, Chiang CF, Bui XT, Cheruiyot NK, Shern CC, Lee CW (2020): Heavy metal contamination trends in surface water and sediments of a river in a highly-industrialized region. Environ Technol Innovation 20:101043
Hu L, Nie Z, Wang W, Zhang D, Long Y, Fang C (2020) Arsenic transformation behavior mediated by arsenic functional genes in landfills. J Hazardous Materials 403:123687
Huang W, Hung W, Vu CT, Chen W, Lai J, Lin C (2016) Green and Sustainable Remediation (GSR) evaluation: framework, standards and tool. A case study in Taiwan. Journal Environ Sci Pollut R 23: 21712–21725
Huang YD, Chu CP, Liu SR (2016) The current status of wastewater reclamation/reuse in Taiwan, 12th International Conference on Hydroscience & Engineering. Hydro-Science & Engineering for Environ Resilience, Tainan
Hussain MI, Qureshi AS (2020) Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environ Science and Pollution Research 27:11213–11226
Islam, MS, Ahmed, MK, Habibullah-Al-Mamun, M., Hoque, MF, 2015a. Preliminary assess of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci. 73 (4), 1837–1848.
Islam, MS, Ahmed, MK, Raknuzzaman, M., -Al-, Habibullah, Mamun, M., Islam, MK, 2015b. Heavy metal pollution in surface water and sediment: a preliminary assess ment of an urban river in a developing country. Ecol. Indic. 48, 282–291
Ji H, Li H, Zhang Y, Ding H, Gao Y, Xing Y (2018) Distribution and risk assess of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. J Soils Sediments 18:624–639
Kaewlaoyoong A, Vu CT, Lin C, Liao CS, Chen JR (2018) Occurrence of phthalate esters around the major plastic industrial area in southern Taiwan. Environ Earth Sciences 77:457
KEPB 2006: The Houjing River pollution and total load control program of the Kaohsiung City, Kaohsiung City
Khadse G, Patni P, Kelkar P, Devotta S (2008) Qualitative evaluation of Kanhan river and its tributaries flowing over central Indian plateau. Environ Monit Assess 147:83–92
Lan CC, Yu HS, Ko YC (2011) Chronic arsenic exposure and its adverse health effects in Taiwan: a paradigm for management of a global environ problem. Kaohsiung J Med Sci 27:411–416
Le V-G, Vu C-T, Shih Y-J, Huang Y-H (2019) Highly efficient recovery of ruthenium from integrated circuit (IC) manufacturing wastewater by Al reduction and cementation. RSC Advances 9:25303–25308
Le V-G, Vu C-T, Shih Y-J, Bui X-T, Liao C-H, Huang Y-H (2020) Phosphorus and Potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chem Eng J 384:123282
Lee IC (2013) Second company caught polluting Houjing River. Taipei Times, Dec16, 2013. Taipei, Taiwan http://www.taipeitimes.com/ News/front/archives/2013/12/16/2003579121. Accessed 26 Mar 2017
Lee ST, Vu CT, Lin C, Chen KS (2018) High occurrence of BTEX around major industrial plants in Kaohsiung, Taiwan. Environ Forensics 19:206–216
Lin CE, Kao CM, Jou CJ, Lai YC, Wu CY, Liang SH (2010) Preliminary identification of watershed management strategies for the Houjing River in Taiwan. Water Science Technol 62:1667–1675
Lin C, Nguyen KA, Vu CT, Senoro D, Villanueva MC (2017) Contamination levels and potential sources of organic pollution in an Asian river. Water Sci Technol 76:2434–2444
Lin C, Vu CT, Senoro D, Villanueva MC (2016) The investigation of volatile and semi-volatile organic contaminations in Houjing river, Kaohsiung city, southern Taiwan. ASM Science Journal Special Issue 1(ICT-BIO):74–81
Manoj K, Padhy PK (2014) Distribution, enrichment and ecological risk assess of six elements in bed sediments of a tropical river, Chottanagpur Plateau: a spatial and temporal appraisal. J Environ Prot 5:1419
Mohan SV, Nithila P, Reddy SJ (1996) Estimation of heavy metals in drinking water and development of heavy metal pollution index. J Environ Sci Health A: Environ Sci Eng Toxicol 31:283–289
Muller G (1979) Schwermetalle in den sediments des Rheins-Veranderngren seitt. 1971. Umschan 79:778–783
Özkan YE (2012) A new assess of heavy metal contaminations in an eutrophicated bay (Inner Izmir Bay, Turkey). Turk J Fish Aquat Sci 12:135–147
Patel P, Raju NJ, Reddy BSR, Suresh U, Sankar D, Reddy T (2018) Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assess and environ implications. Environ Geochem Health 40:609–623
Ponthieu M, Pinel Raffaitin P, Le Hecho I, Mazeas L, Amouroux D, Donard OF, Potin-Gautier M (2007) Speciation analysis of arsenic in landfill leachate. Water research 41:3177–3185
Prasad B, Sangita K (2008) Heavy metal pollution index of ground water of an abandoned open cast mine filled with fly ash: a case study. Mine Water Environ 27:265–267
Renner R (2006) Arsenic and old landfills. Environ Sci Technol 40:5–6
Rusydi AF (2018): Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conference Series: Earth and Environ Science 118
Saeedi M, Jamshidi-Zanjani A (2015) Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments. Ecol Indic 58:235–243
Saleem M, Iqbal J, Shah MH (2015) Geochemical speciation, anthropogenic contamination, risk assess and source identification of selected metals in freshwater sediments—a case study from Mangla Lake, Pakistan. Environ Nanotechnol Monito Manag 4: 27–36
TEPA (1999) Water Pollution Act. Taiwan Environ Protection, Administration, Taipei, Taiwan
TEPA (2000) Industrial wastewater management strategy. Taiwan Environ Protection Administration, Taipei, Taiwan
Tessier A, Campbell P (1987) Partitioning of trace metals in sediments: relationships with bioavailability, Ecological Effects of In Situ Sediment Contaminants. Springer, pp 43–52
Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192
UNESCO 2019: Leaving no one behind, France Unuofin JO (2020) Garbage in garbage out: the contribution of our industrial advancement to wastewater degeneration. Environ Sci Pollution Res 27:22319–22335
Ustaoğlu F, Tepe Y, Aydin H (2020) Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: contamination and ecological risk assess. Environ Forensics 21:145–156
Vu CT, Lin C, Nguyen KA, Shern CC, Kuo YM (2018) Ecological risk assess of heavy metals sampled in sediments and water of the Houjing River, Taiwan. Environ Earth Sci 77:388
Vu CT, Lin C, Shern CC, Yeh G, Le VG, Tran HT (2017a) Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators 82:32–42
Vu CT, Lin C, Yeh G, Villanueva MC (2017b) Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: assess and possible human health implications. Environ Science and Pollution Research 24:19422–19434
Vu CT, Wu T (2019) Engineered multifunctional sand for enhanced removal of stormwater runoff contaminants in fixed-bed column systems. Chemosphere 224:852–86
Xiao J, Jin Z, Wang J (2014) Geochemistry of trace elements and water quality assess of natural water within the Tarim River Basin in the extreme arid region, NW China. Journal of Geochemical Exploration 136:118–126
Yeh G, Hoang HG, Lin C, Bu XT, Tran HT, Shern CC, Vu CT (2020) Assess of heavy metal contamination and adverse biological effects of an industrially affected river. Environ Sci Pollution Research 27:34770–34780
Yuan G-L, Liu C, Chen L, Yang Z (2011) Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. J Hazard Mater 185:336–345
Zhang Y, Santos IR, Li H, Wang Q, Xiao K, Guo H, Wang X (2020) Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales. Geochimica et Cosmochimica Acta 290:201–215
Zhu F, Qu L, Fan W, Wang A, Hao H, Li X, Yao S (2015) Study on heavy metal levels and its health risk assess in some edible fishes from Nansi Lake, China. Environ Monit Assess 187:161
林曉武(2001),淡水河系底泥重金屬之沉降通量與垂直變化-底泥重金屬之調查及管制策略研析,行政院環境保護署。
傅子龍(2016),台灣大漢溪底泥重金屬含量調查與可能污染源之探討,國立臺灣大學碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top