|
[1] D. Vinnikov and I. Roasto, “Quasi-Z-source-based isolated DC/DC converters for distributed power generation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 192–201, Jan. 2011. [2] Y.-P. Hsieh, J.-F. Chen, T.-J. Liang, and L.-S. Yang, “Novel high step-up DC–DC converter for distributed generation system,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1473–1482, Apr. 2013. [3] A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, “Cascaded DC–DC converter photovoltaic systems: power optimization issues,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 403–411, Feb. 2011. [4] M. Cacciato, A. Consoli, R. Attanasio, and F. Gennaro, “Soft-switching converter with HF transformer for grid-connected photovoltaic systems,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1678–1686, May 2010. [5] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859–1875, Aug. 2009. [6] J. L. Duarte, M. Hendrix, and M. G. Simoes, “Three-port bidirectional converter for hybrid fuel cell systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480–487, Mar. 2007. [7] Y. Zhang, Q. Liu, Y. Gao, J. Li, and M. Sumner, “Hybrid switched-capacitor/ switched-quasi-Z-source bidirectional DC–DC converter with a wide voltage gain range for hybrid energy sources EVs,” IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 2680–2690, Apr. 2019. [8] Y. Zhang, Y. Gao, L. Zhou, and M. Sumner, “A switched-capacitor bidirectional DC–DC converter with wide voltage gain range for electric vehicles with hybrid energy sources,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9459–9469, Nov. 2018. [9] Y. Zhang, Q. Liu, J. Li, and M. Sumner, “A common ground switched-quasi-Z-source bidirectional DC–DC converter with wide-voltage-gain range for EVs with hybrid energy sources,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 5188–5200, Jun. 2018. [10] M. Liserre, F. Blaabjerg, and R. Teodorescu, “Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 263–272, Jan. 2006. [11] H. Zhu, D. Zhang, H. S. Athab, B. Wu, and Y. Gu, “PV isolated three-port converter and energy-balancing control method for PV-battery power supply applications,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3595–3606, Jun. 2015. [12] H. Zhu, D. Zhang, B. Zhang, and Z. Zhou, “A nonisolated three-port DC–DC converter and three-domain control method for PV-battery power systems,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4937–4947, Aug. 2015. [13] Y.-M. Chen, A. Q. Huang, and X. Yu, “A high step-up three-port DC–DC converter for stand-alone PV/battery power systems,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5049–5062, Nov. 2013. [14] H. Moradisizkoohi, N. Elsayad, and O. A. Mohammed, ‘‘A family of three-port three-level converter based on asymmetrical bidirectional half-bridge topology for fuel cell electric vehicle applications,’’ IEEE Trans. Power Electron., vol. 34, no. 12, pp. 11706–11724, Dec. 2019. [15] G. Chen, Z. Jin, Y. Deng, X. He, and X. Qing, “Principle and topology synthesis of integrated single-input dual-output and dual-input single-output DC–DC converters,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3815–3825, May 2018. [16] U. R. Prasanna, A. Hintz, and K. Rajashekara, “Novel modular multiple-input bidirectional DC–DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163–3172, May 2015. [17] Y. Li, X. Ruan, D. Yang, F. Liu, and C. K. Tse, “Synthesis of multiple-input DC/DC converters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2372–2385, Sep. 2010. [18] Y.-C. Liu and Y.-M. Chen, “A systematic approach to synthesizing multi-input DC–DC converters” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 116–127, Jan. 2009. [19] Y. Yuanmao and K. W. E. Cheng, “Level-shifting multiple-input switched-capacitor voltage copier,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 828–837, Feb. 2012. [20] N. Zhang, D. Sutanto, and K. M. Muttaqi, “A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system,” Renew. Sust. Energ. Rev., vol. 56, pp. 388–401, Apr. 2016. [21] J. Deng, H. Wang, and M. Shang, “A ZVS three-port DC/DC converter for high-voltage bus-based photovoltaic systems,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10688–10699, Nov. 2019. [22] M. C. Mira, Z. Zhang, A. Knott, and M. A. E. Andersen, “Analysis, design, modeling, and control of an interleaved-boost full-bridge three-port converter for hybrid renewable energy systems,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1138–1155, Feb. 2017. [23] H. Wu, J. Zhang, X. Qin, T. Mu, and Y. Xing, “Secondary-side-regulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4847–4860, Jul. 2016. [24] H. Hu, S. Harb, X. Fang, D. Zhang, Q. Zhang, Z. J. Shen, and I. Batarseh, “A three-port flyback for PV microinverter applications with power pulsation decoupling capability,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3953–3964, Sep. 2012. [25] H. Wu, J. Zhang, and Y. Xing, “A family of multiport buck-boost converters based on DC-link-inductors (DLIs),” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 735–746, Feb. 2015. [26] T. Bhattacharya, V. S. Giri, K. Mathew, and L. Umanand, “Multiphase bidirectional flyback converter topology for hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 78–84, Jan. 2009. [27] F. Nejabatkhah, S. Danyali, S. Hosseini, M. Sabahi, and S. Niapour, “Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309–2324, May 2012. [28] H. Wu, K. Sun, S. Ding, and Y. Xing, “Topology derivation of nonisolated three-port DC–DC converters from DIC and DOC,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3297–3307, Jul. 2013. [29] H. Wu, K. Sun, R. Chen, H. Hu, and Y. Xing, “Full-bridge three-port converters with wide input voltage range for renewable power systems,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3965–3974, Sep. 2012. [30] Y.-M. Chen, A. Q. Huang, and X. Yu, “A high step-up three-port DC–DC converter for stand-alone PV/battery power systems,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5049–5062, Nov. 2013. [31] Z. Ding, C. Yang, Z. Zhang, C. Wang, and S. Xie, “A novel soft-switching multiport bidirectional DC–DC converter for hybrid energy storage system,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1595–1609, 2014. [32] L.-J. Chien, C.-C. Chen, J.-F. Chen, and Y.-P. Hsieh, “Novel three-port converter with high-voltage gain,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4693–4703, Sep. 2014. [33] W. Li, C. Xu, H. Luo, Y. Hu, X He, and C. Xia, “Decoupling-controlled triport composited DC/DC converter for multiple energy interface,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4504–4513, Jul. 2015. [34] Y. Hu, W. Xiao, W. Cao, B. Ji, and D. J. Morrow, “Three-port DC–DC converter for stand-alone photovoltaic systems,” IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3068–3076, Jun. 2015. [35] R.-J. Wai and J.-J. Liaw, “High-efficiency-isolated single-input multiple-output bidirectional converter,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4914–4930, Sep. 2015. [36] F. Wang, L. Li, Y. Zhong, and X. Shu, “Flyback-based three-port topologies for electrolytic capacitor-less LED drivers,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5818–5827, Jul. 2017. [37] R. Faraji and H. Farzanehfard, “Soft-switched nonisolated high step-up three-port DC–DC converter for hybrid energy systems,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10101–10111, Dec. 2018. [38] M. Uno, R. Oyama, and K. Sugiyama, “Partially-isolated single-magnetic multi-port converter based on integration of series-resonant converter and bidirectional PWM converter,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9575–9587, Nov. 2018. [39] S. Dobakhshari, S. H. Fathi, and J. Milimonfared, “A new soft-switched three-port DC/DC converter with high voltage gain and reduced number of semiconductors for hybrid energy applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3590–3600, Apr. 2020. [40] R. Faraji, H. Farzanehfard, G. Kampitsis, M. Mattavelli, E. Matioli, and M. Esteki, “Fully soft-switched high step-up nonisolated three-port DC–DC converter using GaN HEMTs,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8371–8380, Oct. 2020.
|