跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 02:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊京銘
研究生(外文):YANG, CHING-MING
論文名稱:具漏感能量回收功能之隔離型三埠雙向直流–直流轉換器
論文名稱(外文):An Isolated Three-Port Bidirectional DC–DC Converter with Leakage Energy Recycling
指導教授:沈志隆沈志隆引用關係
指導教授(外文):SHEN, CHIH-LUNG
口試委員:梁財春蔡政道張健軒曾聖有沈志隆
口試委員(外文):LIANG, TSAI-CHUNTSAI, CHENG-TAOCHANG, CHIEN-HSUANTSENG, SHENG-YUSHEN, CHIH-LUNG
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:105
中文關鍵詞:雙向電氣隔離混合型發電系統漏感能量回收三埠轉換器
外文關鍵詞:Bidirectional energy conversiongalvanic isolationhybrid power generation systemleakage energy recyclingthree-port converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一具漏感能量回收功能之隔離型三埠雙向直流–直流轉換器,並將其應用在混合型 (hybrid) 太陽能發電系統。混合型太陽能發電系統是結合獨立型 (stand-alone) 與併聯型 (grid-connected) 兩種型式之優點,當日照充足時,採用太陽能發電來供應負載;當日照不足時,則由市電提供電力;當遇意外停電時,白天太陽能發電,多餘電力還能儲存於儲能設備,以供晚間或陽光不足時使用。
所提之轉換器一次側是由Flyback架構衍生而來,二次側結合Buck-Boost架構,該轉換器具有漏感能量回收功能,可降低功率元件之電壓應力,使得整體轉換效率提高,且有高升壓、電氣隔離、雙向能量轉換功能等特點。
最後,在本論文中對所提之轉換器進行理論分析、公式推導及動作原理分析。並且透過模擬軟體與硬體實作,驗證所提出轉換器架構之正確性與可行性。

In this thesis, an isolated three-port bidirectional DC–DC converter with leakage energy recycling is presented. The proposed structure can be applied to hybrid power generation systems. The main advantage of this system is that it can operate in either stand-alone or grid-connected mode. While the generation system works in stand-alone mode, the PV power of the generation system not only can supply loads but also charges battery bank in the case of high illumination. But in low illumination, the load energy demand will be both fed from PV panel and battery banks. As for grid-connected mode, the utility is able to perform power conditioning to supply power to the generation system or to absorb energy from the system, depending on the condition of solar energy.
The proposed converter is derived from Flyback-type converter at primary side and based on Buck-Boost at the secondary. It is capable of recycling the energy of leakage inductance, therefore which can lower voltage stresses of semi-conductor elements and the overall efficiency can be thus improved. Additionally, the generation system can achieve high voltage ratio and possesses the features of galvanic isolation and bidirectional energy conversion.
The proposed circuit is validated by simulations and practical results measured from a prototype. In addition, converter operation, theoretical analysis, and parameter determination are comprehensively included in this thesis.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 內容大綱 8
第二章 三埠電能轉換器簡介 9
2.1 三埠直流–直流轉換器簡介 9
2.2 三埠電能轉換器 12
第三章 具漏感回收功能之隔離型三埠雙向轉換器 20
3.1 所提出轉換器之介紹 20
3.2 動作原理與操作模式 21
3.2.1 SISO (PV) 模式 22
3.2.2 SISO (Battery) 模式 24
3.2.3 DISO模式 26
3.2.4 SIDO模式 29
3.2.5 SOSI模式 32
3.3 穩態分析 33
3.3.1 電壓增益 33
3.3.2 元件電壓與電流應力 49
3.3.3 電感分析 54
3.4 設計注意事項 59
3.4.1 SISO (PV) 模式 59
3.4.2 SISO (Battery) 模式 60
3.4.3 DISO模式 61
3.4.4 SIDO模式 62
3.4.5 SOSI模式 64
第四章 軟體模擬與實驗結果 65
4.1 模擬與實驗波形 65
4.1.1 SISO (PV) 模式 66
4.1.2 SISO (Battery) 模式 72
4.1.3 DISO模式 77
4.1.4 SIDO模式 83
4.1.5 SOSI模式 89
4.2 轉換器效率 94
4.3 3D模型 95
4.4 實體電路 96
4.5 性能比較 97
第五章 結論與未來研究方向 99
5.1 結論 99
5.2 未來研究方向  99
參考文獻 100
附錄一 104
[1] D. Vinnikov and I. Roasto, “Quasi-Z-source-based isolated DC/DC converters for distributed power generation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 192–201, Jan. 2011.
[2] Y.-P. Hsieh, J.-F. Chen, T.-J. Liang, and L.-S. Yang, “Novel high step-up DC–DC converter for distributed generation system,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1473–1482, Apr. 2013.
[3] A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, “Cascaded DC–DC converter photovoltaic systems: power optimization issues,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 403–411, Feb. 2011.
[4] M. Cacciato, A. Consoli, R. Attanasio, and F. Gennaro, “Soft-switching converter with HF transformer for grid-connected photovoltaic systems,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1678–1686, May 2010.
[5] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859–1875, Aug. 2009.
[6] J. L. Duarte, M. Hendrix, and M. G. Simoes, “Three-port bidirectional converter for hybrid fuel cell systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480–487, Mar. 2007.
[7] Y. Zhang, Q. Liu, Y. Gao, J. Li, and M. Sumner, “Hybrid switched-capacitor/ switched-quasi-Z-source bidirectional DC–DC converter with a wide voltage gain range for hybrid energy sources EVs,” IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 2680–2690, Apr. 2019.
[8] Y. Zhang, Y. Gao, L. Zhou, and M. Sumner, “A switched-capacitor bidirectional DC–DC converter with wide voltage gain range for electric vehicles with hybrid energy sources,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9459–9469, Nov. 2018.
[9] Y. Zhang, Q. Liu, J. Li, and M. Sumner, “A common ground switched-quasi-Z-source bidirectional DC–DC converter with wide-voltage-gain range for EVs with hybrid energy sources,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 5188–5200, Jun. 2018.
[10] M. Liserre, F. Blaabjerg, and R. Teodorescu, “Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 263–272, Jan. 2006.
[11] H. Zhu, D. Zhang, H. S. Athab, B. Wu, and Y. Gu, “PV isolated three-port converter and energy-balancing control method for PV-battery power supply applications,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3595–3606, Jun. 2015.
[12] H. Zhu, D. Zhang, B. Zhang, and Z. Zhou, “A nonisolated three-port DC–DC converter and three-domain control method for PV-battery power systems,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4937–4947, Aug. 2015.
[13] Y.-M. Chen, A. Q. Huang, and X. Yu, “A high step-up three-port DC–DC converter for stand-alone PV/battery power systems,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5049–5062, Nov. 2013.
[14] H. Moradisizkoohi, N. Elsayad, and O. A. Mohammed, ‘‘A family of three-port three-level converter based on asymmetrical bidirectional half-bridge topology for fuel cell electric vehicle applications,’’ IEEE Trans. Power Electron., vol. 34, no. 12, pp. 11706–11724, Dec. 2019.
[15] G. Chen, Z. Jin, Y. Deng, X. He, and X. Qing, “Principle and topology synthesis of integrated single-input dual-output and dual-input single-output DC–DC converters,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3815–3825, May 2018.
[16] U. R. Prasanna, A. Hintz, and K. Rajashekara, “Novel modular multiple-input bidirectional DC–DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163–3172, May 2015.
[17] Y. Li, X. Ruan, D. Yang, F. Liu, and C. K. Tse, “Synthesis of multiple-input DC/DC converters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2372–2385, Sep. 2010.
[18] Y.-C. Liu and Y.-M. Chen, “A systematic approach to synthesizing multi-input DC–DC converters” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 116–127, Jan. 2009.
[19] Y. Yuanmao and K. W. E. Cheng, “Level-shifting multiple-input switched-capacitor voltage copier,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 828–837, Feb. 2012.
[20] N. Zhang, D. Sutanto, and K. M. Muttaqi, “A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system,” Renew. Sust. Energ. Rev., vol. 56, pp. 388–401, Apr. 2016.
[21] J. Deng, H. Wang, and M. Shang, “A ZVS three-port DC/DC converter for high-voltage bus-based photovoltaic systems,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10688–10699, Nov. 2019.
[22] M. C. Mira, Z. Zhang, A. Knott, and M. A. E. Andersen, “Analysis, design, modeling, and control of an interleaved-boost full-bridge three-port converter for hybrid renewable energy systems,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1138–1155, Feb. 2017.
[23] H. Wu, J. Zhang, X. Qin, T. Mu, and Y. Xing, “Secondary-side-regulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4847–4860, Jul. 2016.
[24] H. Hu, S. Harb, X. Fang, D. Zhang, Q. Zhang, Z. J. Shen, and I. Batarseh, “A three-port flyback for PV microinverter applications with power pulsation decoupling capability,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3953–3964, Sep. 2012.
[25] H. Wu, J. Zhang, and Y. Xing, “A family of multiport buck-boost converters based on DC-link-inductors (DLIs),” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 735–746, Feb. 2015.
[26] T. Bhattacharya, V. S. Giri, K. Mathew, and L. Umanand, “Multiphase bidirectional flyback converter topology for hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 78–84, Jan. 2009.
[27] F. Nejabatkhah, S. Danyali, S. Hosseini, M. Sabahi, and S. Niapour, “Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309–2324, May 2012.
[28] H. Wu, K. Sun, S. Ding, and Y. Xing, “Topology derivation of nonisolated three-port DC–DC converters from DIC and DOC,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3297–3307, Jul. 2013.
[29] H. Wu, K. Sun, R. Chen, H. Hu, and Y. Xing, “Full-bridge three-port converters with wide input voltage range for renewable power systems,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3965–3974, Sep. 2012.
[30] Y.-M. Chen, A. Q. Huang, and X. Yu, “A high step-up three-port DC–DC converter for stand-alone PV/battery power systems,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5049–5062, Nov. 2013.
[31] Z. Ding, C. Yang, Z. Zhang, C. Wang, and S. Xie, “A novel soft-switching multiport bidirectional DC–DC converter for hybrid energy storage system,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1595–1609, 2014.
[32] L.-J. Chien, C.-C. Chen, J.-F. Chen, and Y.-P. Hsieh, “Novel three-port converter with high-voltage gain,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4693–4703, Sep. 2014.
[33] W. Li, C. Xu, H. Luo, Y. Hu, X He, and C. Xia, “Decoupling-controlled triport composited DC/DC converter for multiple energy interface,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4504–4513, Jul. 2015.
[34] Y. Hu, W. Xiao, W. Cao, B. Ji, and D. J. Morrow, “Three-port DC–DC converter for stand-alone photovoltaic systems,” IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3068–3076, Jun. 2015.
[35] R.-J. Wai and J.-J. Liaw, “High-efficiency-isolated single-input multiple-output bidirectional converter,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4914–4930, Sep. 2015.
[36] F. Wang, L. Li, Y. Zhong, and X. Shu, “Flyback-based three-port topologies for electrolytic capacitor-less LED drivers,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5818–5827, Jul. 2017.
[37] R. Faraji and H. Farzanehfard, “Soft-switched nonisolated high step-up three-port DC–DC converter for hybrid energy systems,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10101–10111, Dec. 2018.
[38] M. Uno, R. Oyama, and K. Sugiyama, “Partially-isolated single-magnetic multi-port converter based on integration of series-resonant converter and bidirectional PWM converter,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9575–9587, Nov. 2018.
[39] S. Dobakhshari, S. H. Fathi, and J. Milimonfared, “A new soft-switched three-port DC/DC converter with high voltage gain and reduced number of semiconductors for hybrid energy applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3590–3600, Apr. 2020.
[40] R. Faraji, H. Farzanehfard, G. Kampitsis, M. Mattavelli, E. Matioli, and M. Esteki, “Fully soft-switched high step-up nonisolated three-port DC–DC converter using GaN HEMTs,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8371–8380, Oct. 2020.

電子全文 電子全文(網際網路公開日期:20260115)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top