跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林冠宇
研究生(外文):LIN, GUAN-YU
論文名稱:具內建偏移誤差消除功能之全數位CMOS智慧型溫度感測器
論文名稱(外文):All-Digital CMOS Smart Temperature Sensor with Build-In Offset-Error Cancellation
指導教授:陳俊吉陳俊吉引用關係
指導教授(外文):CHEN, CHUN-CHI
口試委員:陳朝烈黃崇禧陳俊吉
口試委員(外文):CHEN, CHAO-LIEHHWANG, CHORNG-SIICHEN, CHUN-CHI
口試日期:2021-07-08
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:63
中文關鍵詞:智慧型溫度感測器脈衝縮減
外文關鍵詞:Smart Temperature SensorPulse-Shrinking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出具內建偏移誤差消除功能之全數位CMOS智慧型溫度感測器,採用循環式架構來增加元件使用效率來節省成本。本電路包含脈衝縮減循環延遲線電路(Pulse-Shrinking Cyclic Delay Line, PSCDL)、脈衝寬度偵測電路(Pulse Width Detecting Circuit, PWDC)以及計數器(Counter, CNT),其中PSCDL內建控制單元、脈衝縮減單元(Pulse Shrinking Unit, PSU)、溫度感測延遲線(Temperature-Sensing Delay Line, TSDL)以及時間增加延遲線(Time-Added Delay Line, TADL),首先,TSDL用來產生溫度感測脈衝,而PSU則實現脈衝縮減功能,此外,內建於PSCDL內之TADL則用來產生時間增加脈衝,其結合 PWDC可實現內建偏移誤差消除;最後,利用CNT計數脈衝縮減次數並輸出數位值以達成溫度轉換數位值功能。本感測器以TSMC 0.35-μm CMOS製程實作,晶片面積為 0.023 mm2,其溫度解析度約為0.1 °C/LSB,而誤差在-20 ~ 60°C之溫度範圍內僅為 ± 0.3 °C。
An all-digital CMOS smart temperature sensor with build-in offset-error cancellation is presented. The cyclic structure increases the efficiency of the used element for cost saving. The proposed sensor consists of a pulse-shrinking cyclic delay line (PSCDL), a pulse width detecting circuit (PWDC), and a counter (CNT). The PSCDL contains two control units, a pulse-shrinking unit (PSU), a temperature-sensing delay line (TSDL), and a time-added delay line (TADL). First, the TSDL is used to generate a temperature-sensing pulse. Then, the PSU is adopted for the pulse-shrinking function. Additionally, the TADL in the PSCDL is used to create a time-added pulse, combining the PWDC to perform the build-in offset-error cancellation. Finally, the CNT is used to count the times of pulse-shrinking number for output coding. The sensor was fabricated with TSMC 0.35-μm CMOS process and had a small area of 0.023 mm2. The measured temperature resolution reaches about 0.1 °C/LSB, and the corresponding error is merely ±0.3 °C in a range of -20 ~ 60 °C.
摘要 I
ABSTRACT II
誌謝 III
目錄 III
表目錄 VI
圖目錄 VII
一、 緒論 1
1.1 研究動機 1
1.2 論文架構 4
二、 智慧型溫度感測器探討 5
2.1 智慧型溫度感測器介紹 5
2.1.1 積體電路(半導體)溫度感測器 6
2.1.2 熱敏電容溫度感測器 6
2.1.3 熱電耦溫度感測器(Thermocouple,TC) 7
2.1.4 電阻式溫度感測器(Resistance Temperature Detector,RTD) 7
2.1.5 溫度感測器之整理與比較 8
2.2 積體電路式之時域型溫度感測器 9
2.2.1 時域脈衝循環式溫度感測器(一) 10
2.2.2 時域脈衝循環式溫度感測器(二) 11
三、 全數位CMOS具內建偏移誤差消除功能之智慧型溫度感測器 12
3.1 研究目的 12
3.2 整體電路架構 13
3.3 脈衝縮減循環延遲線 (PSCDL) 15
3.3.1 內建於循環圈之脈衝產生器 16
3.3.2 時間扣抵機制 18
3.3.3 溫度感測延遲線(TSDL) 19
3.3.4 全數位MOS電容機制 21
3.4 為解決偏移誤差問題所提出之新穎的時間增加偵測電路 24
3.4.1 本論文使用之脈衝寬度偵測電路(PWDC) 26
3.5 脈衝中和技術 27
3.5.1 控制單元之脈衝中和 29
3.5.2 訊號分流處之脈衝中和 30
四、 電路設計與模擬 32
4.1 設計流程與規格考量 32
4.2 脈衝縮減循環延遲線電路模擬 35
4.3 全數位MOS電容機制之脈衝縮減單元模擬 36
4.4 溫度感測器模擬 37
4.5 脈衝中和技術模擬 38
4.6 脈衝寬度偵測電路模擬 39
五、 量測結果、結論與未來展望 40
5.1 量測環境設定 40
5.2 量測步驟與結果 42
5.3 結論 47
5.4 問題與討論 48
參考文獻 49


[1]F.-M. Wanlass, “Low stand-by power complementary field effect circuitry,” U.S. Patent 3356858, Dec. 5, 1967
[2]G. Mautry, J. Trager, “Investigation of self-heating in VLSI and ULSI MOSFETs,” IEEE International Conference on Microelectronic Test Structures, pp. 221-226, Mar. 1990.
[3]S.-G. Lee, “A review of self-heating effects on bipolar circuits,” Southcon/94. Conference Record, pp. 138-142, Mar. 1994.
[4]財團法人國家實驗研究院國家晶片系統設計中心, “對外服務收費方式與說明” https://www.cic.org.tw/soc/pdf/service_free.pdf
[5]方煒,2018,具成本效率之全數位CMOS時間與溫度至數位雙功能轉換器, 國立高雄科技大學,碩士論文。
[6]Y.-J. An, et al., “An Energy Efficient Time-Domain Temperature Sensor for Low-Power On-Chip Thermal Management,” IEEE J. Sensors, vol. 14, no. 1, Jan. 2014.
[7]Bakker, et al., “High accuracy CMOS smart temperature sensors,” Kluwer Academic Publishers, 2000
[8]陳瑞和, “感測器,” 全華圖書, Jan. 1993
[9]P. Chen et al., “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642-8, Aug. 2005.
[10]A.-L. Aita et al., “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 342-343, Feb. 2009.
[11]K.-C. Liu, “A High-Resolution CMOS Time-to-Digital Converter Based on Pulse Shrinking and Pulse Stretching,” NKFUST, Electronic Engineering and Computer Science, Master’s Thesis, Jun. 2013.
[12]H.-W. Chen, “Design and Realization of Low Cost CMOS Smart Temperature Sensors.” NKFUST, Electronic Engineering and Computer Science, Master’s Thesis, Jun. 2014.
[13]F. Sebastiano et al., “A 1.2 V 10 W NPN-based temperature sensor in 65 nm CMOS with an inaccuracy of 0.2 C (3) from -70 C to 125 C,” IEEE ISSCC Dig., Feb. 2010, pp. 312–313.
[14]K. Sour et al., “A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of 0.25 C (3) from 40 to 125 C” IEEE ISSCC Dig., Feb. 2010, pp. 310–311.
[15]P. Chen et al., “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” IEEE Trans. Circuits Syst. I, vol. 54, no. 12, pp. 2661–2668, Dec. 2007.
[16]Y.-S. Lin et al., “An ultra low power 1 V, 220 nW temperature sensor for passive wireless applications,” IEEE CICC Dig., Sep. 2008, pp. 507–510.
[17]M.-K. Law et al., “A 405-nW CMOS temperature sensor based on linear MOS operation,” IEEE Trans. Circuits Syst. II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
[18]C.-C. Chen et al., “Area-efficient all-digital pulse-shrinking smart temperature sensor with improved accuracy and resolution” Rev. Sci. Instrum. 89, 125002. 2018
[19]C.-C. Chen et al., “All-Digital CMOS Time-to-Digital Converter With Temperature-Measuring Capability” IEEE Transactions on very large scale integration (VLSI) systems, vol. 28, no. 9, Sep. 2020
[20]張凱翔,2019,具內建偏移誤差消除之CMOS脈衝縮減式時間至數位轉換器,國立高雄科技大學,碩士論文。
[21]G.C. M. Meijer, et al., “Temperature sensor and voltage reference implemented in CMOS technology,” IEEE J. Sensors, vol.1, no. 3, pp. 225-235, Oct. 2001.
[22]C. Poirier, et al., “Power and Temperature control on a 90nm Itanium Family Processor” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 229–237 Jan. 2006.
[23]M. Sasaki, et al., “A Temperature Sensor With an Inaccuracy of -1/+0.8°C Using 90-nm 1-V CMOS for Online Thermal Monitoring of VLSI Circuits,” IEEE Transaction on Semiconductor Manufacturing, vol. 21, no. 2, May. 2008.
[24]J. Yin, et al., “A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor,” IEEE ISSCC Dig., pp. 308-309, Feb. 2010.
[25]C.-C. Chung et al., “An Auto calibrated All-Digital Temperature Sensor for On-Chip Thermal Monitoring,” IEEE Trans. Circuits Syst. II, vol. 58, no. 2, pp. 105–109, Feb. 2011.
[26]K. Woo et al., “Time-Domain CMOS Temperature Sensors With Dual Delay-Locked Loops for Microprocessor Thermal Monitoring,” IEEE Transaction on VLSI, vol. 20, no. 9, pp. 1590–1601, Sept. 2012.
[27]C.-C. Chen, et al., “C All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters,” Rev. Sci. Instrum., vol. 86, no. 12, Dec. 2015.
[28]C.-C. Chen, et al., “All-Digital Cost-Efficient CMOS Digital-to-Time Converter Using Binary-Weighted Pulse Expansion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 1094-1098, April 2020.
[29]C.-C. Chen, et al., “All-Digital Pulse-Shrinking Time-to-Digital Converter with Improved Dynamic Range,” Review of Scientific Instruments, vol. 87, no. 4, pp. 046104(1-3), Apr. 2016.
[30]R. Szplet, et al., “An FPGA-Integrated Time-to-Digital Converter Based on Two-Stage Pulse Shrinking,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1663-1670, June. 2010.
[31]朱哲勳,2017,基於脈衝擴增之全數位CMOS數位至時間轉換器,國立高雄科技大學,碩士論文。
[32]C. K. Kim, et al., “CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems, pp. 3094-3097, May. 2008.
[33]T. Anand, et al., “A VCO Based Highly Digital Temperature Sensor With 0.034 °C/mV Supply Sensitivity,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2651-2663, Nov. 2016.
[34]C.-C. Chen, et al., “CMOS time-to-digital converter based on a pulse-mixing scheme,” Rev. Sci. Instrum., vol. 85, no. 11, pp. 114702(1–9), Nov. 2014.
[35]R. Quan, et al., “A 4600 μm2 1.5 °C (3σ) 0.9 kS/s thermal-diffusivity temperature sensor with VCO-based readout,” in IEEE ISSCC Dig. Tech. Papers, pp. 1–3, Feb. 2015.
[36] J. S. Shor and K. Luria, “Miniaturized BJT-based thermal sensor for microprocessors in 32- and 22-nm technologies,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2860–2867, Nov. 2013.

電子全文 電子全文(網際網路公開日期:20260728)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top