跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱崴
研究生(外文):Chang Kai Wei
論文名稱:北海道油田產地的芳香族化合物分解菌解析
論文名稱(外文):Analysis of Aromatic Compound Degrading Bacteria in Hokkaido Oil Fields
指導教授:蔡宗岳
指導教授(外文):Tsung-Yueh Tsai
口試委員:賴俊吉莊蕙萍蔡宗岳
口試委員(外文):LAI,JUN-JIHui-Ping ChuangTsung-Yueh Tsai
口試日期:2020-12-23
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:76
中文關鍵詞:烷烴
外文關鍵詞:Hydrocarbons
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知烷烴在環境中穩定並且不易生物降解。 此外,由於它是致癌的並且在體內積累,因此對人類的健康具有危害。 有幾種從環境中除去烷烴的方法,其中,生物修復是一種使用微生物的修復方法,被認為是環保,低成本和具有成本效益的。 在這項研究中,使用從北海道油田的土壤中提取的DNA(其含有高濃度的碳氫化和物和PAH),該微生物群落具有可降解烷烴和PAH的微生物群落,期待將來可應用於淨化油汙染的土壤。
從北海道油田的遺跡A和B這兩個地點收集土壤和植物。 使用珠式细胞破碎裝置破碎土壤樣品後,提取DNA。 使用提取的DNA作為模板,進行針對總細菌代表16S rRNA基因的微生物群落做PCR分析,且具有增幅的DNA片段進行克隆與序列分析,以研究A和B兩個產地的微生物群落構造和特性。 關於烷烴功能降解相關之功能性基因,GN-RHDα,GP-RHDα,catA和pcaH是參與多環芳烴(PAH)降解酶的基因。 選擇CYP153和alkB作為參與線性烴降的酶的基因。 並透過PCR反應去確認是否存在DNA片段的擴增,並且針對擴增的DNA片段進行克隆與序列分析和系統發生樹( phylogenetic tree )的建立。
針對六個功能性基因P450(CYP153),alkB,GN-RHDα,GP-RHDα,catA,pcaH和總細菌的代表性基因16S rRNA進行PCR分析。針對石狩油田產地(A)和無煙海灘(B)的土壤中提取的DNA中16S rRNA和P450(CYP153)出現增幅片段,但對alkB,nidA,GP-RHDα,catA,pcaH,石狩油田產地(A)和無煙海灘(B)均未出現增幅片段。 因此,我們決定純化16S rRNA和P450(CYP153)的PCR產物後進行克隆與序列分析,並以非特異性DNA增幅片段對GN-RHDα進行巢式聚合酶鏈鎖反應(nested Polymerase Chain Reaction)。
通過針對16S rRNA基因和GN-RHDα的克隆與序列分析,檢出了假單胞菌屬的細菌(Pseudomonas),被判斷是存在北海道油田產地土壤中的烴降解細菌的主要種類。 將來,將這些具有降解烷烴能力的菌群分離出來,並可應用於石油污染的地區的淨化。
Hydrocarbons are known to be stable in the environment and less susceptible to biodegradation. Furthermore, since it is carcinogenic and accumulates in the body, there is concern about the danger to human health. There are several methods for removing hydrocarbons from the environment, and among them, bioremediation, which is a repair method using microorganisms, is said to be environmentally friendly, low cost, and cost effective. In this study, using DNA extracted from the soil of the remains of the Hokkaido oil field, which contains high concentrations of alkanes and PAH, a microbial community having n-alkane and PAH-degrading bacteria that can be used to purify the soil where oil leaked.
Soil and plants were collected from two locations, A and B, which are the remains of the Hokkaido oil field. Soil samples were crushed using a multi-bead shocker and then DNA was extracted. Using the extracted DNA as a template, PCR targeting the 16S rRNA gene possessed by all bacteria was performed, and clonal analysis was performed on the amplified DNA to investigate the microbial community structures at two locations, A and B. Regarding functional genes, GN-RHDɑ, GP-RHDα and catA, pcaH are genes encoding enzymes involved in polycyclic aromatic hydrocarbon (PAH) degradation. CYP153 and alkB were selected as genes encoding enzymes involved in the degradation of linear hydrocarbons. The presence or absence of amplification of the target DNA fragment was confirmed by PCR, and clone analysis and phylogenetic tree were created for the amplified DNA fragment.
Bacteria of the genus Pseudomonas were detected by clonal analysis targeting the 16S rRNA gene and GN-RHDα, and were considered to belong to the major group as hydrocarbon-degrading bacteria inhabiting the soil of the remains of the Hokkaido oil field. In the future, these hydrocarbon-degrading bacteria will be isolated and used in petroleum-contaminated areas.
摘要 I
Abstract III
致謝 VI
目錄 VII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1研究緣起 2
1.2 研究目的 3
第二章 文獻回顧 4
2.1 烷烴分解菌之特性 4
2.1.1 烷烴微生物之降解特性 5
2.1.2 具有烷烴降解基因的微生物的類型 5
2.1.3降解烷烴的細菌的特性 6
2.2 生活在海水中的烷烴降解細菌 7
2.3 生活在受汙染土壤中的碳氰化物降解細菌 10
2.4 生物修復(Bioremediation) 13
2.4.1 單獨透過微生物進行的生物修復 14
2.4.2 與植物相互作用下進行生物修復 15
2.5文獻回顧總結 17
第三章 研究方法及步驟 19
3.1 研究方法 20
3.2 實驗材料與設備 21
3.2.1 試劑一覽表 21
3.2.2 設備與材料一覽表 22
3.3採樣 22
3.4 DNA提取 22
3.5 PCR 23
3.5.1通常 PCR 23
3.5.2 巢式聚合酶鏈式反應(Nested PCR) 24
3.5.3 巢式聚合酶鍊式反應PCR引物設計(格蘭氏陰性細菌) 25
3.6 PCR產物的純化 27
3.7通過電泳確認擴增的DNA片段 27
3.8 克隆與序列分析 28
3.8.1連接反應(Ligation) 29
3.8.2轉化(Transformation) 29
3.8.3液體LB培養基/液體培養物的設備 30
3.8.4質體提取(Plsmid Extraction) 30
3.8.5限制性内切酶處理 31
3.8.6序列分析 32
3.8.7波形檢查和嵌合檢查 32
3.8.8同源性分析 33
3.8.9系統發生樹建立 33
第四章 結果與討論 33
4.1 PCR分析 34
4.1.1 PCR分析 34
4.1.2巢式PCR 35
4.2所有細菌中16SrRNA基因分析 36
4.2.1 16S rRNA克隆與序列分析 40
4.2.2 16S rRNA同源性搜索 42
4.2.3 16S rRNA 系統發生樹的建立 45
4.3分析烷烴降解細菌的機能性基因P450(CYP153) 46
4.3.1 克隆和序列分析P450(CYP153) 47
4.3.2同源性搜索P450(CYP153) 48
4.3.3系統發生樹的建立P450(CYP153) 51
4.4分析PAH降解細菌的機能性基因 52
4.4.1 克隆和序列分析(GN RHDα) 54
4.4.2同源性搜索(GN RHDα) 56
4.3.3系統發生樹的建立(GN RHDα) 61
第五章 總結與建議 62
1. Das N. and Chandran P.(2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview.Biotechnol Res Int, 2011:941810. doi: 10.4061/2011/941810.
2.Keyte IJ, Harrison RM, Lammel G.(2013) Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons--a review.Chem Soc Rev, 42(24), 9333-9391.
3.Grady SL, Malfatti SA, Gunasekera TS, Dalley BK, Lyman MG, Striebich RC, Mayhew MB, Zhou CL, Ruiz ON, Dugan LC.(2017) A comprehensive multi-omics approach uncovers adaptations for growth and survival of Pseudomonas aeruginosa on n-alkanes. BMC Genomics, 18(1), 334. doi: 10.1186/s12864-017-3708-4.
4. Smits TH, Balada SB, Witholt B, van Beilen JB. (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria.JBacteriol, 184(6), 1733-1742.
5. Lai Q, Li W, Shao Z. (2012) Complete genome sequence of Alcanivoraxdieseloleitype strain B5. J Bacteriol, 194(23), 6674. doi: 10.1128/JB.01813-12.
6. Park C, Shin B, Jung J, Lee Y, Park W. (2017) Metabolic and stress responses of Acinetobacter oleivoransDR1 during long-chain alkane degradation.MicrobBiotechnol, 10(6), 1809-1823.
7. Sierra-Garcia IN, de Oliveira VM. (2013) Microbial Hydrocarbon Degradation: Efforts to understand biodegradation in petroleum reservoirs. 47–72.
8.Ji N, Wang X, Yin C, Peng W, Liang R. (2019) CrgAproteinrepresses AlkB2 monooxygenase and regulates the degradation of medium-to-long-chain n-alkanes in Pseudomonas aeruginosa SJTD-1. Front Microbiol, 12, 10:400. doi: 10.3389/fmicb.2019.00400.
9.Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL. (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep, 15;4:4968. doi: 10.1038/srep04968.
10.Raju MN, Leo R, Herminia SS, Morán RE, Venkateswarlu K, Laura S. (2017) Biodegradation of diesel, crude oil and spent lubricating oil by soil isolates of Bacillus spp. Bull Environ ContamToxicol, 98(5), 698-705. doi: 10.1007/s00128-017-2039-0.
11. Ribicic D, McFarlin KM, Netzer R, Brakstad OG, Winkler A, Throne-Holst M, Størseth TR. (2018) Oil type and temperature dependent biodegradation dynamics - Combining chemical and microbial community data through multivariate analysis. BMC Microbiol, 7;18(1), 83. doi: 10.1186/s12866-018-1221-9.
12.Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S. (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol, 4(3), 141-147.
13.Peng M, Zi X, Wang Q. (2015) Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes. Int J Environ Res Public Health, 12(10), 12002-15. doi: 10.3390/ijerph121012002.
14.Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL. (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep, 15;4:4968. doi: 10.1038/srep04968.
15.Chang YJ, Stephen JR, Richter AP, Venosa AD, Brüggemann J, Macnaughton SJ, Kowalchuk GA, Haines JR, Kline E, White DC. (2000) Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Methods, 40(1), 19-31.
16.Liu H, Xu J, Liang R, Liu J. (2014) Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS One, 28;9(8):e105506. doi: 10.1371/journal.pone.0105506.
17. “Bioavailability, transport and chemotaxis of organic pollutants,” inMicrobial Bioremediation. ed Diaz E., editor. (Norfolk: Caister Academic Press) 145–187.
18.Baoune H, Ould El Hadj-Khelil A, Pucci G, Sineli P, Loucif L, Polti MA. (2018) Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicol Environ Saf, 147:602-609. doi: 10.1016/j.ecoenv.2017.09.013.
19.Pawlik M, Cania B, Thijs S, Vangronsveld J, Piotrowska-Seget Z. (2017) Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatusandOenotherabiennisfrom a long-term polluted site. Environ Sci Pollut Res Int, 24(24):19640-19652. doi: 10.1007/s11356-017-9496-1.
20.Kukla M, Płociniczak T, Piotrowska-Seget Z. (2014) Diversity of endophytic bacteria in Loliumperenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere, 117:40-6. doi: 10.1016/j.chemosphere.2014.05.055.
21. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A. (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigiistrains. Environ Pollut, 159(10), 2675-83. doi: 10.1016/j.envpol.2011.05.031.
22.Wu M, Li W, Dick WA, Ye X, Chen K, Kost D, Chen L. (2017) Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere, 169:124-130. doi: 10.1016/j.chemosphere.2016.11.059.
23.Iqbal A, Mukherjee M, Rashid J, Khan SA, Ali MA, Arshad M. (2019) Development of plant-microbe phytoremediation system for petroleum hydrocarbon degradation: An insight from alkB gene expression and phytotoxicity analysis. Sci Total Environ, 25;671:696-704. doi: 10.1016/j.scitotenv.2019.03.331.
24.Shen Y, Ji Y, Li C, Luo P, Wang W, Zhang Y, Nover D. (2018) Effects of phytoremediation treatment on bacterial community structure and diversity in different petroleum-contaminated soils. Int J Environ Res Public Health, 15(10). pii: E2168. doi: 10.3390/ijerph15102168.
25.Zhang H, Wang R, Chen S, Qi G, He Z, Zhao X. (2017) Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Sci Rep. 4;7:39911. doi: 10.1038/srep39911.
26.Das N. and Chandran P. (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int, 941810. doi: 10.4061/2011/941810.
27.Grady SL, Malfatti SA, Gunasekera TS, Dalley BK, Lyman MG, Striebich RC, Mayhew MB, Zhou CL, Ruiz ON, Dugan LC. (2017) A comprehensive multi-omics approach uncovers adaptations for growth and survival of Pseudomonas aeruginosa on n-alkanes. BMC Genomics, 18(1), 334. doi: 10.1186/s12864-017-3708-4.
28.Brzeszcz J, Kaszycki P. (2018) Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation, (4):359-407. doi: 10.1007/s10532-018-9837-x.
29Cébron A, Norini MP, Beguiristain T, Leyval C. (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods, 73, 148–159.
30.奥谷翔吾 (2020) 陸生・沿岸植物による難分解性物質の土壌汚染浄化とその作用機序について. 熊本大学先端科学研究部(理)修士論文.
31.Brito EM, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, Wasserman JC, Duran R. (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol., 157(8):752-762.
32.Cui J, Mai G, Wang Z, Liu Q, Zhou Y, Ma Y, Liu C. (2019) Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Front Microbiol, 28;10:618. doi: 10.3389/fmicb.2019.00618.
33.Lu C, Hong Y, Liu J, Gao Y, Ma Z, Yang B, Ling W, Waigi MG. (2019) A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environ Pollut. 251:773-782. doi: 10.1016/j.envpol.2019.05.044.
34.Dore SY, Clancy QE, Rylee SM, Kulpa CF. (2003) Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol, 63:194–199.
35. Yan Z, Han Z, Wu H, Jiang H, Yang M, Wang C. (2019) Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments. J Hazard Mater, 367, 99-108.
36.Nwinyi OC, Ajayi OO, Amund OO. (2016) Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Braz J Microbiol, 47(3):551-562.
37. Oberoi AS, Philip L, Bhallamudi M. (2015) Biodegradation of various aromatic compounds by enriched bacterial cultures: Part A–Monocyclic and polycyclic aromatic hydrocarbons. Appl Biochem Biotechnol, 176:1870–1888.
38.Steliga T, Wojtowicz K, Kapusta P, Brzeszcz J. (2020) Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules, 25, 709; doi:10.3390/molecules25030709
39.Singleton DR, Lee J, Dickey AN, Stroud A, Scholl EH, Wright FA, Aitken MD. (2018) Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol, 41(5): 460–472. doi:10.1016/j.syapm.2018.06.001.
40. Zhou HW, Guo CL, Wong YS, Yee Tam NF. (2006) Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett, 262, 148–157.
41.Corteselli EM, Aitken MD, Singleton DR. (2017) Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov. Int J Syst Evol Microbiol, 67:925–931.
42. Shetty AR, de Gannes V, Obi CC, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Peters L, Mikhailova N, Teshima H, Han C, Tapia R, Land M, Hauser LJ, Kyrpides N, Ivanova N, Pagani I, Chain PS, Denef VJ, Woyke T, Hickey WJ. (2015) Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4. Stand Genomic Sci, 10:55. doi: 10.1186/s40793-015-0041-x.
43.Lyu Y, Zheng W, Zheng T, Tian Y. (2014) Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One, 9(7):e101438. doi: 10.1371/journal.pone.0101438.
電子全文 電子全文(網際網路公開日期:20260114)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top