|
1. Das N. and Chandran P.(2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview.Biotechnol Res Int, 2011:941810. doi: 10.4061/2011/941810. 2.Keyte IJ, Harrison RM, Lammel G.(2013) Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons--a review.Chem Soc Rev, 42(24), 9333-9391. 3.Grady SL, Malfatti SA, Gunasekera TS, Dalley BK, Lyman MG, Striebich RC, Mayhew MB, Zhou CL, Ruiz ON, Dugan LC.(2017) A comprehensive multi-omics approach uncovers adaptations for growth and survival of Pseudomonas aeruginosa on n-alkanes. BMC Genomics, 18(1), 334. doi: 10.1186/s12864-017-3708-4. 4. Smits TH, Balada SB, Witholt B, van Beilen JB. (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria.JBacteriol, 184(6), 1733-1742. 5. Lai Q, Li W, Shao Z. (2012) Complete genome sequence of Alcanivoraxdieseloleitype strain B5. J Bacteriol, 194(23), 6674. doi: 10.1128/JB.01813-12. 6. Park C, Shin B, Jung J, Lee Y, Park W. (2017) Metabolic and stress responses of Acinetobacter oleivoransDR1 during long-chain alkane degradation.MicrobBiotechnol, 10(6), 1809-1823. 7. Sierra-Garcia IN, de Oliveira VM. (2013) Microbial Hydrocarbon Degradation: Efforts to understand biodegradation in petroleum reservoirs. 47–72. 8.Ji N, Wang X, Yin C, Peng W, Liang R. (2019) CrgAproteinrepresses AlkB2 monooxygenase and regulates the degradation of medium-to-long-chain n-alkanes in Pseudomonas aeruginosa SJTD-1. Front Microbiol, 12, 10:400. doi: 10.3389/fmicb.2019.00400. 9.Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL. (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep, 15;4:4968. doi: 10.1038/srep04968. 10.Raju MN, Leo R, Herminia SS, Morán RE, Venkateswarlu K, Laura S. (2017) Biodegradation of diesel, crude oil and spent lubricating oil by soil isolates of Bacillus spp. Bull Environ ContamToxicol, 98(5), 698-705. doi: 10.1007/s00128-017-2039-0. 11. Ribicic D, McFarlin KM, Netzer R, Brakstad OG, Winkler A, Throne-Holst M, Størseth TR. (2018) Oil type and temperature dependent biodegradation dynamics - Combining chemical and microbial community data through multivariate analysis. BMC Microbiol, 7;18(1), 83. doi: 10.1186/s12866-018-1221-9. 12.Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S. (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol, 4(3), 141-147. 13.Peng M, Zi X, Wang Q. (2015) Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes. Int J Environ Res Public Health, 12(10), 12002-15. doi: 10.3390/ijerph121012002. 14.Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL. (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep, 15;4:4968. doi: 10.1038/srep04968. 15.Chang YJ, Stephen JR, Richter AP, Venosa AD, Brüggemann J, Macnaughton SJ, Kowalchuk GA, Haines JR, Kline E, White DC. (2000) Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Methods, 40(1), 19-31. 16.Liu H, Xu J, Liang R, Liu J. (2014) Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS One, 28;9(8):e105506. doi: 10.1371/journal.pone.0105506. 17. “Bioavailability, transport and chemotaxis of organic pollutants,” inMicrobial Bioremediation. ed Diaz E., editor. (Norfolk: Caister Academic Press) 145–187. 18.Baoune H, Ould El Hadj-Khelil A, Pucci G, Sineli P, Loucif L, Polti MA. (2018) Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicol Environ Saf, 147:602-609. doi: 10.1016/j.ecoenv.2017.09.013. 19.Pawlik M, Cania B, Thijs S, Vangronsveld J, Piotrowska-Seget Z. (2017) Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatusandOenotherabiennisfrom a long-term polluted site. Environ Sci Pollut Res Int, 24(24):19640-19652. doi: 10.1007/s11356-017-9496-1. 20.Kukla M, Płociniczak T, Piotrowska-Seget Z. (2014) Diversity of endophytic bacteria in Loliumperenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere, 117:40-6. doi: 10.1016/j.chemosphere.2014.05.055. 21. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A. (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigiistrains. Environ Pollut, 159(10), 2675-83. doi: 10.1016/j.envpol.2011.05.031. 22.Wu M, Li W, Dick WA, Ye X, Chen K, Kost D, Chen L. (2017) Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere, 169:124-130. doi: 10.1016/j.chemosphere.2016.11.059. 23.Iqbal A, Mukherjee M, Rashid J, Khan SA, Ali MA, Arshad M. (2019) Development of plant-microbe phytoremediation system for petroleum hydrocarbon degradation: An insight from alkB gene expression and phytotoxicity analysis. Sci Total Environ, 25;671:696-704. doi: 10.1016/j.scitotenv.2019.03.331. 24.Shen Y, Ji Y, Li C, Luo P, Wang W, Zhang Y, Nover D. (2018) Effects of phytoremediation treatment on bacterial community structure and diversity in different petroleum-contaminated soils. Int J Environ Res Public Health, 15(10). pii: E2168. doi: 10.3390/ijerph15102168. 25.Zhang H, Wang R, Chen S, Qi G, He Z, Zhao X. (2017) Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Sci Rep. 4;7:39911. doi: 10.1038/srep39911. 26.Das N. and Chandran P. (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int, 941810. doi: 10.4061/2011/941810. 27.Grady SL, Malfatti SA, Gunasekera TS, Dalley BK, Lyman MG, Striebich RC, Mayhew MB, Zhou CL, Ruiz ON, Dugan LC. (2017) A comprehensive multi-omics approach uncovers adaptations for growth and survival of Pseudomonas aeruginosa on n-alkanes. BMC Genomics, 18(1), 334. doi: 10.1186/s12864-017-3708-4. 28.Brzeszcz J, Kaszycki P. (2018) Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation, (4):359-407. doi: 10.1007/s10532-018-9837-x. 29Cébron A, Norini MP, Beguiristain T, Leyval C. (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods, 73, 148–159. 30.奥谷翔吾 (2020) 陸生・沿岸植物による難分解性物質の土壌汚染浄化とその作用機序について. 熊本大学先端科学研究部(理)修士論文. 31.Brito EM, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, Wasserman JC, Duran R. (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol., 157(8):752-762. 32.Cui J, Mai G, Wang Z, Liu Q, Zhou Y, Ma Y, Liu C. (2019) Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Front Microbiol, 28;10:618. doi: 10.3389/fmicb.2019.00618. 33.Lu C, Hong Y, Liu J, Gao Y, Ma Z, Yang B, Ling W, Waigi MG. (2019) A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environ Pollut. 251:773-782. doi: 10.1016/j.envpol.2019.05.044. 34.Dore SY, Clancy QE, Rylee SM, Kulpa CF. (2003) Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol, 63:194–199. 35. Yan Z, Han Z, Wu H, Jiang H, Yang M, Wang C. (2019) Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments. J Hazard Mater, 367, 99-108. 36.Nwinyi OC, Ajayi OO, Amund OO. (2016) Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Braz J Microbiol, 47(3):551-562. 37. Oberoi AS, Philip L, Bhallamudi M. (2015) Biodegradation of various aromatic compounds by enriched bacterial cultures: Part A–Monocyclic and polycyclic aromatic hydrocarbons. Appl Biochem Biotechnol, 176:1870–1888. 38.Steliga T, Wojtowicz K, Kapusta P, Brzeszcz J. (2020) Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules, 25, 709; doi:10.3390/molecules25030709 39.Singleton DR, Lee J, Dickey AN, Stroud A, Scholl EH, Wright FA, Aitken MD. (2018) Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol, 41(5): 460–472. doi:10.1016/j.syapm.2018.06.001. 40. Zhou HW, Guo CL, Wong YS, Yee Tam NF. (2006) Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett, 262, 148–157. 41.Corteselli EM, Aitken MD, Singleton DR. (2017) Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov. Int J Syst Evol Microbiol, 67:925–931. 42. Shetty AR, de Gannes V, Obi CC, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Peters L, Mikhailova N, Teshima H, Han C, Tapia R, Land M, Hauser LJ, Kyrpides N, Ivanova N, Pagani I, Chain PS, Denef VJ, Woyke T, Hickey WJ. (2015) Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4. Stand Genomic Sci, 10:55. doi: 10.1186/s40793-015-0041-x. 43.Lyu Y, Zheng W, Zheng T, Tian Y. (2014) Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One, 9(7):e101438. doi: 10.1371/journal.pone.0101438.
|