跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 11:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳鴻鈞
研究生(外文):CHEN, HONG-JUN
論文名稱:果樹枝條生物炭與煙霧冷凝液特性分析
論文名稱(外文):Characteristics of biochar and smoke condensed liquid (SCL) from fruit tree branches
指導教授:陳錫添陳錫添引用關係
指導教授(外文):CHEN, SHYI-TIEN
口試委員:林弘萍歐士輔
口試委員(外文):LIN, HONG-PINGOU, SHIH-FU
口試日期:2021-01-25
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:115
中文關鍵詞:廢棄果樹枝條生物炭煙霧冷凝液精製化綠色循環倡議農廢再利用
外文關鍵詞:wasted fruit-tree branchesbiocharsmoke condensed liquid (SCL)refinementgreen circulation initiativeagrowaste recycle and reuse
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高雄市燕巢區為國內果樹種植重點區域,蜜棗、芭樂及西施柚是該區內三大主要作物。果樹生長需每年修剪枝條1-3次,然而法規禁止露天焚燒,枝條常被堆置在農地,需2-3年才能腐化,而多數枝條上的細刺,易造成農民身體上的傷害,是急需解決的問題。本研究擬將三種果樹枝條集中處理,以悶燒方式,將破碎後枝條製成生物炭與煙霧冷凝液,做為農作所需資材,惟對所產出材料特性、效能及成本,仍有進一步探討的需要。希望能透過技術導入,將農業廢棄資材變成可再利用資材,達到農廢回收再利用、零廢棄與永續等目標的綠色循環倡議。為此本研究主要目的包括:(1)分析並比較三種果樹枝生物炭及煙霧冷凝液之特性;(2)精製生物炭與煙霧冷凝液;(3)估算製作生物炭及煙霧冷凝液之成本。
本研究實驗主軸分為兩部分,其一,生產三種果樹枝條生物炭及煙霧冷凝液,並逐一分析生物炭的保水性、持水性、吸附性、菌群附著率、比表面積、孔隙率、土壤中(保水性、持水性、吸附性)、有機成分分析及金屬成分分析等; 煙霧冷凝液則分析驅蟲性、抗菌性、有機成分分析及金屬成分分析等;其二則將生物炭及煙霧冷凝液精製化後,比照第一部分的分析項目進行分析;最後,依據實驗結果,估算製作生物炭及煙霧冷凝液之成本及效益。
實驗結果顯示,果樹枝條生物炭呈鹼性(pH=9.2-9.3),有超過6成含碳量及多種植物所需營養物質及金屬。三種生物炭中以棗枝生物炭對物質吸附性最高,其吸水量達3.3±0.12 g-water/g,吸農藥克收欣及納乃得,分別及7.16±0.06與15.2±0.82 mg/g,此外,棗枝亦可吸附微生物膜達1.1±0.06 g-濕重/g-biochar。煙霧冷凝液接近強酸(pH=2.6),含微量鉀及少許有機物質。煙霧冷凝液金屬含量皆低,然經10倍稀釋後,仍測出豐富有機成份,其中以酚類為主,且棗枝及柚枝者為高,分別佔所有成份的38%及36%。棗枝煙霧冷凝液抑菌性最佳,10 %所產生的抑菌面積即高出為75 %乙醇的1.36倍。精製後,生物炭經純水或雙氧水重量損失約在3.8-5.6%之間,以棗枝損失量最低。經精製後生物炭pH略降(pH=8.7-9.0)、營養物質略減、金屬含量差異不大。生物炭經純水或雙氧水精製後重量損失約在3.8-5.6%之間,以棗枝損失量最低。精製後柚/芭生物炭吸水量提高較明顯,但以吸附總水量而言,仍以棗枝生物炭為高,約4.2±0.08 g/g。精製後棗枝生物炭可多吸收25%納乃得,但另二種精製後生物炭則否。經精製後煙霧冷凝液的pH略升(pH=3.1-3.2)。精製後棗枝煙霧冷凝液中部分成份下降,其中苯酚類下降13.3(佔未精製的3.1%)個百萬單位,柚枝分別下降15.7(佔未精製的11.1%)個百萬單位,芭枝分別下降11.0(佔未精製的0.1%)個百萬單位,其餘下降量較不明顯。精製後冷凝液因苯酚類化合物含量下降及pH值上升而影響抑菌效果,以10%冷凝液而言,棗枝SCL下降3.1%、柚枝SCL下降11.1%,芭樂枝SCL下降0.1%。萵苣種植測試資料顯示,添加生物炭(100 克/m2)及5%棗枝冷凝液(0.2 mL/株-次)的生長最佳,均重為28.1克/顆,較空白組高出3.5倍重。最後,如以批次處理400公斤果樹枝條計算,所產出生物炭及SCL市值約13,000元,為所需生產總成本(4710元)的2.8倍,具市場性。

Fruit tree planting including date, pomelo and guava in Kaohsiung rural areas is well known in Taiwan. The fruit trees need to be trimed 1-3 times per year and result in a massive amount of branches. The thorns on the branches are problematic since the branches are not allowed to burn by laws and have to be piled up on land, and need to be resolve in a timely fashion. In this study, we intend to make wood chips from the branches and burn them under limited oxygen conditions to generate two useful products: the biochar and smoke condensed liquid (SCL). However, the products’ characteristics, usage and costs deserve further investigations. Thus, the objectives of this study include: (1) to manufacture and analyze various properties of the biochar and SCL from three kinds of fruit branches, (2) to refine the obtained biochars and SCLs, and (3) to estimate the costs of processing fruit-tree branches to make biochar and SCLs.
Main experiments of this study were divided into two portions: one is to produce the biochar and SCL and analyze their characteristics. For biochar, adsorption of water and pesiticide, attachment of microbes, specific surface area, pore size, organic ingredients and metals were analyzed; for SCL, bug repellent, bactericidal effct, organic ingredients and metals were analyzed. The other experiment focused on the refinements of biochar and SCL. The characteristics of the refined products were also analyzed. Finally, economical analysis was performed based on the costs and benefits of the products.
The results showed that all the biochars from the three fruit-tree branches were basic (pH=9.2-9.3) with more than 60% of carbon and many kinds of plant nutrients and metals. Date biochar had highest adsorption capacity, which adsorbed 3.3±0.12 g/g of water, and 7.16±0.06 and 15.2±0.82 mg/g of kresoxim and methomyl, respectively. Date biochar could also formed 1.1±0.06 g-wet wt./g-biochar biofilm in 12 days. On the other hand, SCL appeared to be acidic (pH=2.6) with small amount of potassium and organic matter but very low concentration of metals. With 10-times dilution, there were plenty of organic ingredients detected. Most of them were phenolics. Date and pomelo contained 38 and 36%, respectively. Among three SCLs, date SCL had best anti-bacteria effect. 10% of date SCL created 1.36 times of inhibition zone area than 75% of ethanol. With refinemenet, weight loss of biochar was around 3.8-5.6%. The refined biochar pH dropped (pH=8.7-9.0), so was the nutriunts’ content. Water adorption of the refined date biochar raised to 4.2±0.08 g/g, and a bit less for the other two biochars. 25% more of methomyl were adsorbed by the refined date biochar, but not the other two refined biochars. Refinement of SCLs resulted in the loss of phenolic contents, among which date, pomelo and guava SCLs dropped 13.3, 15.7 and 11.0 of peak areas, respectively. Also, with refinement the all SCLs’ pH went up. The bactericidal effect of the refined date, pomelo and guava SCLs also dropped by 3.1, 11.1 and 0.1% repectively with respected to the unrefined ones. Results of lettus planting showed that with additons of biochar (100 g/m2) and 5% date SCL (0.2 mL/lettus-time), the average weight of each lettus equaled 28.1 g/lettus, which was higher than 3.5 times of the blank run. Finally, after the evaluation of the enconomic analysis in processing 400 kg fruit-tree branches, the benefits reached 13,000 NTD which was about 2.8 times of the required costs. The whole operation is considered profitable.

摘要 iii
Abstract v
誌謝 vii
目錄 viii
表目錄 xii
圖目錄 xiv
符號對照表 xvi
第一章 研究緣起與目的 1
第二章 文獻回顧 2
2-1 目前農業種植問題與需求 2
2-1-1 慣行、友善與有機農業的永續議題 2
2-1-2 種植土質與水份需求 4
2-1-3 種植營養鹽需求 4
2-1-4 農藥與病蟲害 6
2-2 果樹廢棄枝條處理技術及其衍生循環性產品與應用 7
2-2-1 果樹剪枝潛在問題 7
2-2-2 枝條悶燒處理技術 9
2-2-3 生物炭特性及應用性 9
2-2-4 煙霧冷凝液特性及應用性 13
2-3 生物炭及煙霧冷凝液精製與優勢 15
2-3-1 生物炭精製方法 15
2-3-2 煙霧冷凝液精製方法 15
2-3-3 精製生物炭與煙霧冷凝液的優勢 16
第三章 研究材料與方法 18
3-1 研究架構與流程 18
3-2 實驗藥品及材料 19
3-2-1重金屬及萃取分析藥品 19
3-2-2 實驗材料 20
3-3 實驗與分析設備與操作方法 21
3-3-1 悶燒槽體 21
3-3-2 氣相層析質譜儀(GC-MS) 22
3-3-3 氣相層析儀-火焰離子偵檢器(GC-FID) 24
3-3-4 超音波樣品震盪機 26
3-3-5 離心機及相關萃取設備 27
3-3-6 感應耦合電漿原子發射光譜儀(ICP) 28
3-3-7高效能液相層析儀(HPLC) 30
3-4 前導實驗規劃及分析方法 31
3-4-1 生物炭基本成分分析 31
3-4-2 冷凝液基本成分分析 31
3-4-3 三成分分析 32
3-4-4 pH值測定 33
3-4-5 重金屬檢測-王水消化法 34
3-4-6 有機成分分析 35
3-6-7 營養鹽成分分析 35
3-5 生物炭特性實驗操作 36
3-5-1 生物炭吸水量及持水量 36
3-5-2 生物炭對農藥吸附性測試 36
3-5-3 生物炭孔隙對菌群附著率測試 37
3-5-4 土壤中生物炭吸水量及持水量 37
3-5-5 生物炭表面SEM結構觀察 37
3-5-6 生物炭比表面積(BET)測定 38
3-5-7 生物炭精製 38
3-6 煙霧冷凝液特性實驗操作 39
3-6-1 各式冷凝液有機成分分析 39
3-6-2 各式冷凝液抑菌圈測試 39
3-6-3 煙霧冷凝液精製 40
3-7 實驗數據之QA/QC管制 41
3-7-1 檢量線建立 41
3-7-2 三重複數據分析 42
第四章 結果與討論 43
4-1 生物炭及煙霧冷凝液基本特性 43
4-1-1 基本特性分析 44
4-1-2 金屬成分分析 47
4-1-3 有機成分分析 49
4-2 三種生物炭及煙霧冷凝液特性分析 52
4-2-1 生物炭吸水量及持水量 52
4-2-2 生物炭混拌土壤吸水量及持水量 53
4-2-3 生物炭對克收欣(kresoxim)吸附性測試 55
4-2-4 生物炭對納乃得(Methomyl)吸附性測試 57
4-2-5 生物炭菌群附著率重量變化 59
4-2-6 生物炭表面結構觀察-SEM 60
4-2-7 生物炭BET分析比較 62
4-2-8 煙霧冷凝液抑菌圈測試 63
4-3 精製前與精製後生物炭及煙霧冷凝液特性比較 65
4-3-1 精製後生物炭及煙霧冷凝液基本特性 65
4-3-2 精製後生物炭及煙霧冷凝液金屬成分分析 68
4-2-3 精製後生物炭吸水量及持水量 71
4-3-4 精製後生物炭混拌土壤吸水量及持水量 73
4-3-5 精製後生物炭納乃得(Methomyl)吸附性測試 74
4-3-6 精製後煙霧冷凝液有機成分分析 75
4-3-7 精製後煙霧冷凝液抑菌圈測試 77
4-4 生物炭及煙霧冷凝液成本與效益 78
4-4-1 生物炭及煙霧冷凝液成本計算 78
4-4-2 萵苣種植測試 79
第五章 結論與建議 81
5-1 結論 81
5-2 建議 84
第六章 工程應用性 85
參考文獻 86
附錄A-實驗數據 89
附錄B-口試委員之問題建議及回答 97



Cao, X., Ma, L., Gao, B., Harris, W. (2009). "Dairy-manure derived biochar effectively sorbs lead and atrazine." Environmental Science and Technology 43(9): 3285-3291.
Castellini, M., Giglio, L., Niedda, M., Palumbo, A.D., Ventrella, D. (2015). "Impact of biochar addition on the physical and hydraulic properties of a clay soil." Soil and Tillage Research 154: 1-13.
Grewal, A., Lord Abbey, Lokanadha Rao Gunupuru (2018). "Production, prospects and potential application of pyroligneous acid in agriculture." Journal of Analytical and Applied Pyrolysis 135: 152-159.
Jiang, T.-Y., Jun Jiang, Ren-Kou Xu, Zhuo Li (2012). "Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar." Chemosphere 89: 249-256.
Khalid, S., Muhammad Shahid, Behzad Murtaza, Irshad Bibi, Natasha, Muhammad Asif Naeem, Nabeel Khan Niazi (2009). "A critical review of different factors governing the fate of pesticides in soil under biochar application." Science of The Total Environment 711.
Kwon, S., J.J. Pignatello (2005). "Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): Pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents." Environmental Science and Technology 39(20): 7932-7939.
Marumoto, S., Seiji P. Yamamoto, Hiroshi Nishimura, Koji Onomoto, Mitsuyoshi Yatagai, Kazufumi Yazaki, Takashi Fujita, and Takashi Watanabe (2012). "Identification of a Germicidal Compound against Picornavirus in Bamboo Pyroligneous Acid." J. Agric. Food Chem. 60(36): 9106-9111.
Oni, B. A., Olubukola Oziegbe, Obembe O. Olawole (2019). "Significance of biochar application to the environment and economy." Annals of Agricultural Sciences 64(2): 222-236.
Peng, X., L.L. Ye, C.H. Wang, H. Zhou, B. Sun (2011). "Temperature- and duration-dependent rice straw-derived biochar:Characteristics and its effects on soil properties of an Ultisol in southern China." Soil & Tillage Research 112(2): 159-166.
Rhodes, A. H., Carlin, A., Semple, K.T. (2008). "Impact of black carbon in the extraction and mineralization of phenanthrene in soil." Environmental Science and Technology 42(3): 740-745.
Santos, W. J. R., Bruno Montoani Silva, Geraldo César Oliveira, Margarete Marin Lordelo Volpato, José Maria Lima, Nilton Curi, João José Marques (2014). "Soil moisture in the root zone and its relation to plant vigor assessed byremote sensing at management scale." Geoderma 221-222: 91-95.
Silva, B. M. (2012). "Dinâmica espaço—temporal da água no solo cultivado com cafeeiro nas condições climáticas do Alto São Francísco." Federal University of Lavras(Master dissertation).
Souza, J. L. S. d., Victoria Burmann da Silva Guimarães, Angela Diniz Camposc, Rafael Guerra Lund (2019). "Antimicrobial potential of pyroligneous extracts – a systematic review and technological prospecting." Brazilian Journal of Microbiology 49: 128-139.
Uchimiya, M., L.H. Wartelle, K.T. Klasson, C.A. Fortier, M. Lima (2011). "Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil." Journal of Agricultural and Food Chemistry 59(6): 2501-2510.
Wang, Z., Weigang Lin, Wenli Song, Jianzhong Yao (2010). "Preliminary investigation on concentrating of acetol from wood vinegar." Energy Conversion and Management 51(2): 346-349.
Zhang, X., Xudong Miao, Wei Xiang, Jiankun Zhang, Chengcheng Cao, Hailong Wang, Xin Hu, Bin Gao (2021). "Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs)." Journal of Hazardous Materials 403: 123540.
向為民、劉禎祺 (2005). "合理化施肥之土壤水分管理." 87-101.
林浩潭 (2005). "農藥與環境安全-環境降解."
范念慈 (1991). "果樹整枝修剪."
張庚鵬、李艷琪、黃維廷、林毓雯、劉禎祺 (2005). "作物之合理化肥培管理." 135-146.
許嘉恩 (2011). "台灣的自然保育."
International Biochar initiative https://biochar-international.org/

電子全文 電子全文(網際網路公開日期:20260208)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top