(3.236.214.19) 您好！臺灣時間：2021/05/06 19:58

### 詳目顯示:::

:

• 被引用:0
• 點閱:30
• 評分:
• 下載:0
• 書目收藏:0
 本研究中，我們對力感測電阻器 (Force Sensing Resistors；FSR) 分別以電壓及頻率之方式進行量測與討論。傳統以電壓方式量測，為因應物聯網的時代，將數據數位化以便進行分析利用，免去儀器攜帶不便的問題，我們提出了以頻率的方式來對感測器進行量測。　　對頻率的偵測及再生，是為了能夠以重製再生的頻率取代原本之頻率，以減少使用儀器量測。而以頻率方式進行的量測主要以 FPGA 來實現全數位鎖頻迴路 (All-Digital Frequency Locked Loop；ADFLL) 以及飛加器倍頻器，全數位鎖頻迴路之頻率控制位元 (Control_word) 以十進制呈現整數值，飛加器倍頻器則是兩位元的整數及六位元小數以十六進制來顯示。其結果先以萬用計頻器 (Counter) 量測，確認其重製結果的準確性，再以頻率控制位元來做再生頻率的實現，達到取代傳統量測儀器的目的。　　先以力感測電阻器結合 555 無穩態振盪電路來產生待量測之頻率，其值在 1.0644504677kHz 至 9.8306277397kHz。接著將全數位鎖頻迴路及飛加器倍頻器之頻率控制位元的值呈現於 FPGA 七段顯示器上。最後便能直接以頻率控制位元的結果來推算出力感測電阻器之電阻值。另外，再針對誤差的部分做探討，以理論方式推導出誤差之計算公式為 ∆F=(F_input)^2⁄F_sampling ，對量測結果進行分析比較，全數位鎖頻迴路以萬用計頻器量測及頻率控制位元計算之誤差分別在 ±0.08Hz 和 ±3Hz 之內，而飛加器倍頻器以萬用計頻器量測及頻率控制位元計算之誤差分別在 ±0.0004Hz 及 ±4Hz 內，更進一步證實以頻率的方式來進行量測之結果確實可行。
 In this study, we measure the Force Sensing Resistors (FSR) by the measurements of voltage and frequency respectively. Since the Internet of Things has almost become a trend, and we have to digitize the data for analysis.　　The purpose of frequency detection and regeneration is to replace the original frequency with the regenerated frequency, and to reduce the use of instrumentation. Frequency measurement includes the All-Digital Frequency Locked Loop (ADFLL) and the Flying-Adder Based Frequency Multiplier that are implemented by Field Programmable Gate Array (FPGA). The frequency control word of ADFLL is displayed as an integer value in decimal. The frequency control word of the Flying-Adder Based Frequency Multiplier is displayed in hexadecimal and the value is composed of two-bit integer and six-bit decimal. In order to confirm the accuracy of the regenerated frequency by FPGA, we use the universal frequency counter to accomplish the frequency measurements. Then the value of frequency control word is used to correspond to the regenerated frequency to achieve the purpose of replacing the measuring instruments.　　First, the FSR is combined with the 555 astable multivibrator circuit to generate the frequency. The frequency value ranges from 1.0644504677kHz to 9.8306277397kHz. The frequency control word of the ADFLL and Flying-Adder Based Frequency Multiplier are displayed on the seven-segment display in the FPGA board. Finally, the resistance value of the force sensing resistor can be calculated by the frequency control word directly. Moreover, the measurement results are compared with the derived formula of the frequency error. The derived formula is ∆F=(F_input)^2⁄F_sampling . The measured frequency error of the ADFLL with a universal frequency counter is within ±0.08Hz, and the frequency error based on frequency control word is within ±3Hz. The measured frequency error of the Flying-Adder Based Frequency Multiplier with a universal frequency counter is within ±0.0004Hz, and the frequency error based on frequency control word is within ±4Hz. As a result, the approach of frequency measurement is practicable to measure the sensors.
 摘要 iABSTRACT ii致謝 iii目錄 iv表目錄 vi圖目錄 vii第一章 緒論 11.1 文獻探討 11.2 研究動機與目的 31.3 論文架構 4第二章 FSR力感測電阻器與555無穩態振盪電路 52.1 FSR(Force Sensing Resistors)力感測電阻器 62.1.1 FSR力感測電阻器之電阻值量測 62.1.2 FSR力感測電阻器以電壓方式量測之介紹 102.1.3 FSR力感測電阻器以電壓方式之量測 112.1.4 FSR力感測電阻器之物理特性 152.2 555無穩態振盪電路 182.2.1 555無穩態振盪電路之頻率量測 21第三章 使用全數位鎖頻迴路及飛加器倍頻器進行頻率量測 263.1 FPGA(Field-Programmable Gate Array) 273.2 全數位鎖頻迴路(ADFLL)之架構 283.2.1 以全數位鎖頻迴路量測 293.3 飛加器倍頻器之架構 353.3.1 以飛加器倍頻器量測 363.4 以頻率控制位元計算FSR力感測電阻器之電阻值 423.4.1 以全數位鎖頻迴路之頻率控制位元來計算電阻值 423.4.2 以飛加器倍頻器之頻率控制位元來計算電阻值 433.5 全數位鎖頻迴路與飛加器倍頻器之比較分析 45第四章 頻率量測誤差分析 474.1 數位示波器及萬用計頻器之精確度差別 474.2 頻率誤差分析 51第五章 結論與未來研究方向 595.1 結論 595.2 未來研究方向 59參考文獻 60