跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陸若眉
研究生(外文):Ruo-Mei Lu
論文名稱:高植物性蛋白飼料中添加甲硫胺酸及牛磺酸對龍膽石斑成長、體組成與牛磺酸狀態之影響
論文名稱(外文):Effects of dietary methionine and taurine supplementation on growth, body composition and taurine status of giant grouper (Epinephelus lanceolatus) fed a diet with high level of plant protein
指導教授:林鈺鴻
指導教授(外文):Yu-Hung Lin
口試委員:蕭錫延謝淑玲
口試委員(外文):Shi-Yen ShiauShu-Ling Hsieh
口試日期:2021-01-21
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水產養殖系所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:116
中文關鍵詞:牛磺酸甲硫胺酸植物性蛋白龍膽石斑(Epinephelus lanceolatus)
外文關鍵詞:TaurineMethioninePlant proteingiant grouper (Epinephelus lanceolatus)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討含高量植物性蛋白之飼料中添加甲硫胺酸(methionine)及牛磺酸(taurine)對龍膽石斑(Epinephelus lanceolatus)成長表現、體組成與牛磺酸狀態之影響。實驗一,基礎飼料以豆粉取代40%魚粉蛋白(S),並於基礎飼料中添加0.17%甲硫胺酸(S+M)或0.17%甲硫胺酸與0.1%牛磺酸(S+M+T),另以全魚粉組(FM)作為對照,實驗飼料共四組,餵予初重41.76 ± 0.32 g之龍膽石斑,每組三重複。以循環水系統養殖,實驗為期八週。增重率、肝體比、腹脂率及血液生化分析等指標在四組間均無顯著差異,飼料效率及蛋白質效率均以FM組顯著高於(p < 0.05)其餘組別。全魚體及肌肉牛磺酸濃度以FM及S+M+T兩組高於S及S+M組,肝臟牛磺酸濃度則以S+M+T組最高,其次為FM組,以S及S+M兩組最低。實驗一結果顯示,含高量豆粉飼料添加甲硫胺酸或牛磺酸,均不影響石斑成長表現,添加牛磺酸可提高體內牛磺酸之蓄積,但添加甲硫胺酸則無此效果。實驗二,基礎飼料以大豆濃縮蛋白取代50%魚粉蛋白(SPC),於基礎飼料分別添加0.25% (0.25%M)、0.5% (0.5%M)、1% (1%M)的甲硫胺酸,或0.1% (0.1%T)、0.2% (0.2%T)、0.3% (0.3%T)的牛磺酸,並以全魚粉組作為對照(FM),實驗飼料共8組,餵予初重18.13 ± 0.05 g,每組三重複,以循環水系統養殖,實驗為期八週。結果顯示,SPC組之增重率低於FM組,添加甲硫胺酸及牛磺酸之各組均改善其增重率。魚隻肝體比以FM組顯著高於0.1%T、0.2%T及0.3%T三組。SPC組肌肉及肝臟牛磺酸濃度低於FM組,且隨牛磺酸添加量增加而上升,但添加甲硫胺酸之三組均不影響各組織牛磺酸濃度。SPC組肝臟膽固醇合成相關基因3-羥-3-甲基戊二酰輔酶A還原酶(3-hydroxy-3-methylglutaryl -coenzyme A reductase)基因表現高於FM組,但添加甲硫胺酸及牛磺酸均不影響其表現。肝臟中牛磺酸合成相關基因半胱胺酸雙加氧酶(cysteine dioxygenase)表現不受各飼料處理組之影響;SPC組之半胱胺酸亞磺酸脫羧 (cysteinesulfinate decarboxylase)基因表現低於FM組,補充甲硫胺酸後有改善之趨勢,但補充牛磺酸則不影響其表現。實驗二結果顯示,含高量大豆濃縮蛋白飼料中添加甲硫胺酸及牛磺酸可以改善龍膽石斑成長表現,而添加甲硫胺酸無法提高魚體內牛磺酸濃度,顯示龍膽石斑合成牛磺酸能力有限。
The study aims to investigate the effects of dietary taurine and methionine supplementation on growth, body composition and tissue taurine status of giant grouper (Epinephelus lanceolatus) fed a diet with high plant protein. In Experiment 1, the basal diet containing soybean meal (replaced 40% fishmeal protein) (S) was supplemented with 0.17% of methionine (S+M) or 0.17% of methionine and 0.1% of taurine (S+M+T). All fishmeal diet (FM) was also included for comparison. Total of four experimental diets were each fed to triplicate groups of fish (initial weight: 41.76 ± 0.32 g) in a recirculation system for 8 weeks. Weight gain, hepatosomatic index (HSI), visceral fat content and hematological parameters were not different among all dietary treatments. Fish fed the all fishmeal diet had higher feed efficiency and protein efficiency ratio than other dietary groups (p < 0.05). Whole body and muscle taurine concentrations were higher in fish fed FM and S+M+T diets than those in fish fed S and S+M diets. Hepatic taurine concentration was the highest in fish fed the S+M+T diet, followed by fish fed the FM diet, and the lowest in fish fed S and S+M diets. Results indicate that dietary methionine and taurine supplementation could not affect the growth performance of giant grouper. Taurine but not methionine supplementation in the diet enhances tissue taurine accumulation for the fish. In Experiment 2, the basal diet containing soy protein concentrate (replaced 50% fishmeal protein) (SPC) was supplemented with 0.25, 0.5, 1% methionine (0.25%M, 0.5%M, 1%M) or 0.1, 0.2, 0.3% taurine (0.1%T, 0.2%T, 0.3%T). All fishmeal diet (FM) was also included for comparison. Total of eight experimental diets were each fed to triplicate groups of fish (initial weight: 18.13 ± 0.05 g) in a recirculation system for 8 weeks. Weight gain of fish fed the SPC diet was lower than that of fish fed the FM diet, and improved by the supplementation of methionine and taurine in diets. Fish fed the FM diet had higher HSI than fish fed 0.1%T, 0.2%T and 0.3%T diets. Muscle and hepatic taurine concentrations were lower in fish fed the SPC diet than those in fish fed the FM diet. Raising dietary taurine, but not methionine, supplementation levels increased the tissue taurine concentrations. The hepatic cholesterol de novo synthesis gene, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), expression was higher in FM group than that in SPC group. Supplementation of taurine and methionine in diet did not affect the HMGCR gene expression. Hepatic taurine synthesis gene, cysteine dioxygenase (CDO), expression was similar among all dietary treatments. Another taurine synthesis gene, cysteinesulfinate decarboxylase (CSD), expression was lower in SPC group than that in FM group. Taurine, but not methionine, supplementation in diet improved the CSD gene expression. Results indicated that dietary taurine and methionine supplementation can enhance growth performance of giant grouper fed the diet with high level of SPC. Supplementation of methionine in diet cannot enhance the tissue taurine concentration, suggesting that the ability of taurine synthesis in grouper is limited.
目錄

頁 次
中文摘要 I
英文摘要 III
謝誌 V
目錄 VI
表目錄 VIII
圖目錄 X

1. 文獻回顧
1.1石斑魚養殖背景 1
1.2水產養殖及飼料概況 1
1.3人工配合飼料 2
1.4牛磺酸的結構與性質 3
1.5牛磺酸的生理功能 4
1.6牛磺酸對魚類的重要性 6
1.7牛磺酸的生合成 8

2. 含高量豆粉飼料添加甲硫胺酸及牛磺酸對龍膽石斑成長及牛磺酸
狀態之影響(實驗一)
2.1摘要 13
2.2前言 14
2.3材料與方法 16
2.4結果 30
2.5討論 45

3. 含高量大豆濃縮蛋白飼料分別添加不同含量甲硫胺酸及牛磺酸對
龍膽石斑成長、牛磺酸狀態、膽固醇代謝及牛磺酸合成相關基因
表現之影響(實驗二)
3.1摘要 51
3.2前言 52
3.3材料與方法 53
3.4結果 68
3.5討論 92

4. 總結論 100
5. 參考文獻 101

附錄一、胺基酸標準品之圖譜 113
附錄二、以全魚粉及豆粉取代之飼料餵飼龍膽石斑其肝臟中牛磺酸
及亞牛磺酸之代謝路徑 114
附錄三、以全魚粉及大豆濃縮蛋白取代之飼料餵飼龍膽石斑其肝臟
中牛磺酸及亞牛磺酸之代謝路徑 115

6. 作者簡介 116
王和偉、葉繼丹、陳建春,2013。牛磺酸在魚類營養中的作用及其在魚類飼料中的應用。動物營養學報,第七期,1418-1428頁。
沈士新、鄭安倉、劉秉忠、林正輝、冉繁華,2014。水產養殖生技,農業生技產業季刊,第三十八期。
Al‐Feky, S.S.A., El‐Sayed, A.F., Ezzat, A.A., 2015. Dietary taurine enhances growth and feed utilization in larval Nile tilapia (Oreochromis niloticus) fed soybean meal‐based diets. Aquacult. Nutr. 22, 457-464.
AOAC (Association of Official Analytical Chemists), 1995. Official Methods of Analysis, 16th edn. AOAC, Arlington, VA, USA.
Bañuelos-Vargas, I., López, L.M., Pérez-Jiménez, A., Peres, H., 2014. Effect of fishmeal replacement by soy protein concentrate with taurine supplementation on hepatic intermediary metabolism and antioxidant status of totoaba juveniles (Totoaba macdonaldi). Comp. Biochem. Physiol. 170B, 18-25.
Brosnan, J.T., Brosnan, M.E., 2006. The sulfur-containing amino acids: An overview. J. Nutr. 136, 1636S-1640S.
Carvalho, A.P., Sa´, R., Oliva-Teles, A., Bergot, P., 2004. Solubility and peptide profile affect the utilization of dietary protein by common carp (Cyprinus carpio) during early larval stages. Aquaculture 234, 319-333.
Chatzifotis, S., Polemitou, I., Divanach, P., Antonopoulou, E., 2008. Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture 275, 201-208.
Chiang, J.Y.L., 2013. Bile acid metabolism and signaling. Compr Physiol. 3, 1191-1212.
Deng, J.M., Mai, K.S., Ai, Q.H., Zhang, W.B., Wang, X.J., Xu, W., 2012. Effects of antinutritional factors on plasma lipoprotein levels in Japanese flounder Paralichthys olivaceus. J. Fish Biol. 80, 286-300.

El-Sayed, A.F.M., 2014. Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review. Rev. Aquacult. 6, 241-255.
Espe, M., Ruohonen, K., El-Mowafi, A., 2012. Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmo salar). Aquacult. Res. 43, 349-360.
FAO (Food Agriculture Organization) Yearbooks of FishStatJ, 2020. Food Agriculture Organization of the United Nations, Rome.
Folch, J., Lees, M., Sloane-Stanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509.
Fontagné, S., Burtaire, L., Corraze, G., Bergot, P., 2000. Effects of dietary medium-chain triacylglycerols (tricaprylin and tricaproin) and phospholipid supply on survival, growth and lipid metabolism in common carp (Cyprinus carpio L.) larvae. Aquaculture 190, 289-303.
Froger, N., Moutsimilli, L., Cadetti, L., Jammoul, F., Wang, Q.P., Fan, Y., Gaucher, D., Rosolen, S.G., Neveux, N., Cynober, L., Sahel, J.A., Picaud, S., 2014. Taurine: The comeback of a neutraceutical in the prevention of retinal degenerations. Prog. Retin. Eye Res. 41, 44-63.
Francis, G., Makkar, H.P.S., Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197-227.
Gatlin, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., Souza, E.J., Stone, D., Wilson, R., Wurtele, E., 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult. Res. 38, 551-579.
Ghafarzadegan, T., Essén, S., Verbrugghe, P., Marungruang, N., Hållenius, F.F., Nyman, M., Sandahl, M., 2019. Determination of free and conjugated bile acids in serum of Apoe (−/−) mice fed different lingonberry fractions by UHPLC-MS. Sci. Rep. 9:3800.
Goto, T., Takagi, S., Ichiki, T., Sakai, T., Endo, M., Yoshida, T., Ukawa, M., Murata, H., 2001. Studies on the green liver in cultured red sea bream fed low level and non‐fish meal diets: Relationship between hepatic taurine and biliverdin levels. Fish. Sci. 67, 58-63.
Griffith, O.W., 1987. Mammalian sulfur amino acid metabolism: an overview. Methods Enzymol. 143, 366-376.
Gropper, S.S., Smith, J.L., Groff, J.L., 2009. Advanced Nutrition and Human Metabolism. 5th ed. ISBN 978-986-6121-98-2. Wadsworth, USA, 48-51.
Gu, M., Bai, N., Kortner, T.M., 2017. Taurocholate supplementation attenuates the changes in growth performance, feed utilization, lipid digestion, liver abnormality and sterol metabolism in turbot (Scophthalmus maximus) fed high level of plant protein. Aquaculture 468, 597-604.
Gyan, W.R., Ayiku, S., Yang, Q., 2019. Effects of replacing fishmeal with soybean products in fish and crustaceans performance. J. Aquacult. Res. Dev. 10, 573.
Hanna, J., Chahine, R., Aftimos, G., Nader, M., Mounayar, A., Esseily, F., Chamat, S., 2004. Protective effect of taurine against free radicals damage in the rat myocardium. Exp. Toxicol. Pathol. 56, 189-194.
Hardy, R.W., 2010. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquacult. Res. 41, 770-776.
Hedrera, M.I., Galdames, J.A., Jimenez-Reyes, M.F., Reyes, A.E., Avendaño-Herrera, R., Romero, J., Feijóo, C.G., 2013. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One 8, e69983.
Hernández, M.D., Martínez, F.J., Jover, M., García, B.G., 2007. Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture 263, 159-167.
Higuchi, M., Celino, F.T., Shimizu-Yamaguchi, S., Miura, C., Miura, T., 2012. Taurine plays an important role in the protection of spermatogonia from oxidative stress. Amino Acids 43, 2359-2369.

Huxtable, R.J., 1989. Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol. 32, 471-533.
Huxtable, R.J., 1992. Physiological actions of taurine. Physiol. Rev. 72, 101-163.
Hoseini, S.M., Hosseini, S.A., Eskandari, M., Amirahmadi, M., 2018. Effect of dietary taurine and methionine supplementation on growth performance, body composition, taurine retention and lipid status of Persian sturgeon, Acipenser persicus (Borodin, 1897), fed with plant-based diet. Aquacult. Nutr. 24, 324-331.
Jacobsen, J.G., Smith, L.H., 1968. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 48, 424-511.
Johnson, R.B., Kimb, S.K., Watson, A.M., Barrows, F.T., Kroeger, E.L., Nicklason, P.M., Goetz, G.W., Place, A.R., 2015. Effects of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria) fed plant based feeds. Aquaculture 445, 79-85.
Jirsa, D.O., Stuart, K.R., Salze1, G.P., Rhodes, M.A., Allen Davis, D., Drawbridge, M.A., 2014. Limiting Amino Acids in Practical Diets for California Yellowtail, Seriola lalandi. J. World Aquacult. Soc. 45, 281-290.
Kader, M.A., Koshio, S., Ishikawa, M., Yokoyama, S., Bulbul, M., 2010. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture 308, 136-144.
Kamalam, B.S., Médale, F., Larroquet, L., Corraze, G., Panserat, S., 2013. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates. PLoS One 8, e76570.
Kaushik, S.J., Cravedi, J.P., Lalles, J.P., 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 133, 257-274.
Kaushik, S.J., Seiliez, I., 2010. Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquacult. Res. 41, 322-332.
Kim, S. K., Matsunari, H., Takeuchi, T., Yokoyama, M., Murata, Y., Ishihara, K., 2007. Effect of different dietary taurine levels on the conjugated bile acid composition and growth performance of juvenile and fingerling Japanese flounder Paralichthys olivaceus. Aquaculture 273, 595-601.
Kim, S.K., Matsunari, H., Takeuchi, T., Yokoyama, M., Furuita, H., Murata, Y., Goto, T., 2008. Comparison of taurine biosynthesis ability between juveniles of Japanese flounder and common carp. Amino Acids 35, 161-168.
Kim, S.K., Kim, K.G., Kim, K.D., Kim, K.W., Son, M.H., Rust, M., Johnson, R., 2015. Effect of dietary taurine levels on the conjugated bile acid composition and growth of juvenile Korean rockfish Sebastes schlegeli (Hilgendorf). Aquacult. Res. 46, 2768-2775.
Kortner, T.M., Gu, J., Krogdahl, Å., Bakke, A.M., 2013. Transcriptional regulation of cholesterol and bile acid metabolism after dietary soyabean meal treatment in Atlantic salmon (Salmo salar L.). Br. J. Nutr. 109, 593-604.
Kortner, T.M., Penn, M.H., Bjӧrkhem, I., Måsøval, K., Krogdahl, Å., 2016. Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon. BMC Vet. Res. 12, 190.
Koven, W., Peduel, A., Gada, M., Nixon, O., Ucko, M., 2016. Taurine improves the performance of white grouper juveniles (Epinephelus aeneus) fed a reduced fish meal diet. Aquaculture 460, 8-14.
Kuriyama, K., Ida, S., Ohkuma, S., 1984. Alteration of cerebral taurine biosynthesis in spontaneously hypertensive rats. J. Neurochem. 42, 1600-1606.
Lange, Y., Steck, T.L., 2008. Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog. Lipid Res. 47, 319-332.
Lin, Y.H., Lu, R.M., 2020. Dietary taurine supplementation enhances growth and nutrient digestibility in giant grouper Epinephelus lanceolatus fed a diet with soybean meal. Aquacult. Rep. 18, 100464.
Lunger, A.N.,Mclean, E., Gaylord, T.G., et al., 2007. Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture 271, 401-410.
Luo, Z., Liu, Y.J., Mai, K.S., Tian, L.X., Yang, H.J., Tan, X.Y., Liu, D.H., 2005. Dietary l-methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cystine level. Aquaculture 249, 409-418.
Li, M., Lai, H., Li, Q., Gong, S., Wang, R., 2016. Effects of dietary taurine on growth, immunity and hyperammonemia in juvenile yellow catfish Pelteobagrus fulvidraco fed all-plant protein diets. Aquaculture 450, 349-355.
Li, X., Mu, W., Wu, X., Dong, Y., Zhou, Z., Wang, X., Ma, L., Ye, B., Geng, L., 2020. The optimum methionine requirement in diets of juvenile hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂): Effects on survival, growth performance, gut micromorphology and immunity. Aquaculture 520, 735014.
Lim, S.J., Kim, S.S., Ko, G.Y., Song, J.W., Oh, D.H., Kim, J.D., Kim, J.U., Lee, K.J., 2011. Fish meal replacement by soybean meal in diets for Tiger puffer, Takifugu rubripes. Aquaculture 313, 165-170.
Lin, Y.H., Cheng, M.Y., 2017. Effects of dietary organic acid supplementation on the growth, nutrient digestibility and intestinal histology of the giant grouper Epinephelus lanceolatus fed a diet with soybean meal. Aquaculture 469, 106-111.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25, 402-408.
López, L.M., Flores-Ibarra, M., Bañuelos-Vargas, I., Galaviz, M.A., True, C.D., 2015. Effect of fishmeal replacement by soy protein concentrate with taurine supplementation on growth performance, hematological and biochemical status, and liver histology of totoaba juveniles (Totoaba macdonaldi). Fish Physiol. Biochem. 41, 921-936.
Ma, Q.W., Guo, H.Y., Zhu, K.C., Liu, B.S., Zhang, N., Liu, B., Yang, J.W., Jiang, S.G., Zhang, D.C., 2021. Dietary taurine intake affects growth and taurine synthesis regulation in golden pompano, Trachinotus ovatus (Linnaeus 1758). Aquaculture 530, 735918.
Madani, S., Prost, J., Belleville, J., 2000. Dietary protein level and origin (casein and highly purified soybean protein) affect hepatic storage, plasma lipid transport, and antioxidative defense status in the rat. Nutrition 16, 368-375.
Madani, S., Frenoux, J.M., Prost, J., Belleville, J., 2004. Changes in serum lipoprotein lipids and their fatty acid compositions and lipid peroxidation in growing rats fed soybean protein versus casein with or without cholesterol. Nutrition 20, 554-563.
Martinez, J.B., Chatzifotis, S., Pascal, D., Toshio, T., 2004. Effect of dietary taurine supplementation on growth performance and feed selection of sea bass Dicentrarchus labrax fry fed with demand‐feeders. Fish. Sci., 70, 74-79.
Martins, N., Estevão-Rodrigues, T., Diógenes, A.F., Diaz-Rosales, P., Oliva-Teles, A, Peres, H., 2018. Taurine requirement for growth and nitrogen accretion of European sea bass (Dicentrarchus labrax, L.) juveniles. Aquaculture 494, 19-25.
Martins, N., Diógenes, A.F., Magalhães, R., Matas, I., Oliva-Teles, A., Peres, H., 2021. Dietary taurine supplementation affects lipid metabolism and improves the oxidative status of European seabass (Dicentrarchus labrax) juveniles. Aquaculture 531, 735820.
Martins, N., Magalhães, R., Castro, C., Couto, A., Díaz-Rosales, P., Oliva-Teles, A., Peres, H., 2019. Taurine modulates hepatic oxidative status and gut infammatory markers of European seabass (Dicentrarchus labrax) fed plant feedstufs-based diets. Amino Acids 51, 1307-1321.
Matsunari, H., Hashimoto, H., Iwasaki, T., Oda, K., Masuda, Y., Imaizumi, H., Teruya, K., Furuita, H., Yamamoto, T., Hamada, K., Mushiake, K., 2013. Effect of feeding rotifers enriched with taurine on the growth and survival of larval amberjack Seriola dumerili. Fish. Sci. 79, 815-821.
Matsuoka, K., Suzuki, M., Honda, C., Endo, K., Moroi, Y., 2006. Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species. Chem. Phys. Lipids 139, 1-10.
Merrifield, D.L., Dimitroglou, A., Bradley, G., Baker, R.T.M., Davies, S.J., 2009. Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 32, 755766.
Michelato, M., Furuya, W.M., Gatlin, D.M., 2018. Metabolic responses of Nile tilapia Oreochromis niloticus to methionine and taurine supplementation. Aquaculture 485, 66-72.
Moschetta, A., Xu, F., Hagey, L.R., van Berge-Henegouwen, G.P., van Erpecum, K.J., Browers, J.F., Cohen, J.C., Bierman, M., Hobbs, H.H., Steinbach, J.H., Hofmann, A.F., 2005. A phylogenetic survey of biliary lipids in vertebrates. J. Lipid Res. 46, 2221-2232.
Murakami, S., Fujita, M., Nakamura, M., Sakono, M., Nishizono, S., Sato, M., Imaizumi, K., Mori, M., Fukuda, N., 2016. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats. Clin. Exp. Pharmacol. Physiol. 43, 372-378.
National Research Council (NRC), 2011. Nutrient Requirement of Fish and Shrimp. National Academic Press, Washington, D.C.

Ostaszewska, T., Dabrowski, K., Palacios, M.E., Olejniczak, M., Wieczorek, M., 2005. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture 245, 273-286.

Park, G.S., Takeuchi, T., Yokoyama, M., Seikai, T., 2002. Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fish. Sci. 68, 824-829.
Peterson, B.C., Li, M.H., 2018. Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth performance. Aquacult. Nutr. 24, 310-314.
Polanuer, B., Ivanov, S., Sholin, A., 1994. Rapid assay of dinitrophenyl derivative of taurine by high-performance liquid chromatography. J. Chromatogr. B, 656, 81-85.
Salze, G.P., Davis, D.A., 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture 437, 215-229.
Salze, G.P., Spangler, E., Cobine, P.A., Rhodes, M., Davis, D.A., 2016. Investigation of biomarkers of early taurine deficiency in Florida pompano Trachinotus carolinus. Aquaculture 451, 254-265.
Stipanuk, M.H., 1986. Metabolismof sulfur-containing amino acids. Ann. Rev. Nutr. 6, 179-209.
Stipanuk, M.K., 2004a. Role of the liver in regulation of body cysteine and taurine levels: A brief review. Neurochem. Res. 29, 105-110.
Stipanuk, M.H., 2004b. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr. 24, 539-577.
Storebakken, T., Refstie, S., Ruyter, B., 2000. Soy products as fat and protein sources in fish feeds for intensive aquaculture. In: Drackley, J.K., Ed., Soy in Animal Nutrition, Federation of Animal Science Societies, Champaign, 127-170.
Sturman, J.A., Rassin, D.K., Hayes, K.C., Gaull, G.E., 1977. Taurine-Essential nutrient in cat. Fed. Proc. 36, 1112-1112.
Takagi, S., Murata, H., Goto, T., Ichiki, T., Munasinghe, D.M.S., Endo, M., Matsumoto, T., Sakurai, A., Hatate, H., Yoshida, T., Sakai, T., Yamashita, H., Ukawa, M., Kuramoto, T., 2005. The green liver syndrome is caused by taurine deficiency in yellowtail, Seriola quinqueradiata fed diets without fishmeal. Aquacult. Sci. 53, 279-290.
Takagi, S., Murata, H., Goto, T., Ichiki, T., Endo, M., Hatate, H., Yoshida, T., Sakai, T., Yamashita, H., Ukawa, M., 2006a. Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagrus major fed low-fishmeal diet. Fish. Sci. 72, 1191-1199.
Takagi, S., Murata, H., Goto, T., Hayashi, M., Hatate, H., Endo, M., Yamashita, H., Ukawa, M., 2006b. Hemolytic suppression roles of taurine in yellowtail Seriola quinqueradiata fed non-fishmeal diet based on soybean protein. Fish. Sci. 72, 546-555.
Takagi, S., Murata, H., Goto, T., Endo, M., Yamashita, H., Ukawa, M., 2008. Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate. Aquaculture 280, 198-205.
Takagi, S., Murata, H., Goto, T., Hatate, H., Endo, M., Yamashita, H., Miyatake, H., Ukawa, M., 2010. Necessity of dietary taurine supplementation for preventing green liver symptom and improving growth performance in yearling red sea bream Pagrus major fed nonfishmeal diets based on soy protein concentrate. Fish. Sci. 76, 119-130.
Takagi, S., Murata, H., Goto, T., Hatate, H., Endo, M., Yamashita, H., Miyatake, H., Ukawa, M., 2011. Role of taurine deficiency in inducing green liver symptom and effect of dietary taurine supplementation in improving growth in juvenile red sea bream Pagrus major fed non-fishmeal diets based on soy protein concentrate. Fish. Sci. 77, 235-244.
Takeuchi, T., 2007. Amino Acids, Peptides. In: Nakagawa, H., Sato, M., Gatlin III, D.M. (Eds.), Dietary Supplements for the Health and Quality of Cultured Fish. CABI Publishing,Wallingford, 48-49.
Tian, Q.Q., Hu, Y., Mao, P., Xie, J., Fang, B., Peng, H.Z., 2016. Effect of dietary taurine supplementation on growth, intestinal structure and resistance to acute crowding stress in juvenile black carp (Mylopharyngodon piceus) fed low fish meal diets. J. Fish. China 40, 1330-1339.
Uchiyama, M., Mihara, M., 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271-278.
Urán, P.A., Gonçalves, A., Taverne-Thiele, J.J., Schrama, J.W., Verreth, J.A.J., Rombout, J.H.W.M., 2008. Soybean meal-induced enteritis in common carp (Cyprinus carpio L.) and the gene expression of inflammatory mediators in intestinal leukocytes. Fish Shellfish Immunol. 25, 751-760.
van den Ingh, T.S.G.A.M., Krogdahl, Å., Olli, J.J., Hendriks, H.G.C.J.M., Koninkx, J.G.J.F., 1991. Effects of soybean-containing diets on the proximal and distal intestine in Atlantic salmon (Salmo salar): a morphological study. Aquaculture 94, 297-305.
Wang, Q., He, G., Wang, X., Mai, K., Xu, W., Zhou, H., 2014. Dietary sulfur amino acid modulations of taurine biosynthesis in juvenile turbot (Psetta maxima). Aquaculture 422-423, 141-145.
Wardlaw, G.M., Hampl, J.S., DiSivestro, R.A., 2006. Lipids. In: Perspectives in Nutrition, 6/e. McGraw-Hill, Taipei, 177-222.
Wei, Y., Zhang, Q., Xu, H., Liang, M., 2020. Taurine requirement and metabolism response of tiger puffer Takifugu rubripes to graded taurine supplementation. Aquaculture 524, 735237.
Wu, T.M., Jiang, J.J., Lu, R.M., Lin, Y.H., 2020. Effects of dietary inclusion of soybean meal and cholesterol on the growth, cholesterol status and metabolism of the giant grouper (Epinephelus lanceolatus). Aquacult. Nutr. 26, 351-357.
Yamamoto, T., Akimoto, A., Kishi, S., Unuma, T., Akiyama, T., 1998. Apparent and true availabilities of amino acids from several protein sources for fingerling rainbow trout, common carp and red sea bream. Fish. Sci. 64, 448-458.
Yamamoto, T., Suzuki, N., Furuita, H., Sugita, T., Tanaka, N., Goto, T., 2007. Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss. Fish. Sci. 73, 123-131.
Yamamoto, T., Goto, T., Kine, Y., Endo, Y., Kitaoka, Y., Sugita, T., Furuita, H., Iwashita, Y., Suzuki, N., 2008. Effect of an alcohol extract from a defatted soybean meal supplemented with a casein-based semi-purified diet on the biliary bile status and intestinal conditions in rainbow trout Oncorhynchus mykiss (Walbaum). Aquacult. Res. 39, 986-994.
Yamamoto, T., Iwashita, Y., Matsunari, H., Sugita, T., Furuita, H., Akimoto, A., Okamatsu, K., Suzuki, N., 2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture 309, 173-180.
Ye, H., Xu, M., Chen, L., Tan, X., Chen, S., Zou, C., Sun, Z., Liu, Q., Ye, C., Wang, A., 2019. Effects of dietary plant protein sources influencing hepatic lipid metabolism and hepatocyte apoptosis in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Aquaculture 506, 437-444.
Yildirim, Z., Kilic, N., 2011. Effects of Taurine and Age on Cerebellum Antioxidant Status and Oxidative Stress. Int. J. Gerontol. 5, 166-170.
Yokoyama, M., Takeuchi, T., Park, G.S., Nakazoe, J., 2001. Hepatic cysteinesulphinate decarboxylase activity in fish. Aquacult. Res. 32, 216-220.
Yun, B.A., Ai, Q.H., Mai, K.S., Xu, W., Qi, G.S., Luo, Y.W., 2012. Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture 324, 85-91.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊