跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佩珊
研究生(外文):Wu, Pei-Shan
論文名稱:沙福芽孢桿菌對吳郭魚成長促進與免疫調節之研究
論文名稱(外文):Studies on the effects of dietary Bacillus safensis on growth performance and immune modulation in Nile tilapia (Oreochromis niloticus)
指導教授:胡紹揚
指導教授(外文):Hu, Shao-Yang
口試委員:劉俊宏胡淳怡洪永瀚
口試委員(外文):Liu, Chun-HungHu, Chun-YiHong, Yong-Han
口試日期:2021-01-29
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:益生菌沙福芽孢桿菌吳郭魚成長促進免疫調節
外文關鍵詞:probioticsB. safensisNile tilapiagrowth enhancementimmune modulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
疾病問題為吳郭魚養殖永續發展的主要阻礙之一,而利用抗生素治療或預防養殖疾病已衍生抗藥性致病菌與食用安全疑慮等問題,因此發展替代抗生素的疾病控制方式有其必要性。益生菌為水產養殖疾病預防控制之策略之一,本研究由吳郭魚腸道中分離出一株產蛋白酶、纖維素酶、木聚醣酶和澱粉酶之菌株,經由16S rDNA 序列鑑定與生化分析,確認此菌株為沙福芽孢桿菌 (Bacillus safensis)。抗生素敏感試驗結果顯示此菌株對於多種測試之抗生素無抗性。飼料中添加105 CFU/g (G1)、106 CFU/g (G2) 和107 CFU/g (G3) 餵食吳郭魚八週,評估該菌對吳郭魚的成長促進,腸道酵素活性、免疫調節功能。餵食八週後結果顯示,飼料中添加107 CFU/g沙福芽孢桿菌 (B. safensis) 餵食之吳郭魚,在體重增加與飼料效益上與控制組相較有顯著差異,腸道中之澱粉酶、纖維素酶與脂肪酶也顯著高於控制組。餵食吳郭魚有添加沙福芽孢桿菌 (B. safensis) 之飼料,則頭腎組織中之吞噬活性、呼吸爆與SOD活性及頭腎和脾臟之免疫相關基因 (IL-1、IL-8、TNF-和Lysozyme)分析均顯著高於未添加之控制組,而添加105 CFU/g之組別,血液中溶菌酶活性顯著高於控制組。感染實驗結果顯示沙福芽孢桿菌 (B. safensis) 有助於提升吳郭魚感染魚型鏈球菌 (Streptococcus iniae) 之存活率,上述結果證實吳郭魚每日餵食沙福芽孢桿菌 (B. safensis) 有助於成長促進、免疫調節與疾病抵抗,說明篩選之沙福芽孢桿菌 (B. safensis) 具有潛力開發作為水產養殖成長促進與疾病控制之益生菌。
Disease problems are a major contributor to block sustainable development of tilapia aquaculture. The use of antibiotics to treat or prevent diseases has caused issues such as the rapid spread of antibiotic-resistant pathogens and increased risk of food safety by residual antibiotic contamination. Thus, development of an alternative to antibiotics for disease prevention is necessary. Probiotics have been considered an efficient alternative to antibiotics for biocontrol in aquaculture. In this study, a bacterial strain producing protease, cellulase, xylanase and amylase was isolated from the intestine of Nile tilapia, which was identified as Bacillus safensis by 16S rDNA sequencing and biochemical analysis. The antibiotic susceptibility test showed that the B. safensis do not exhibit resistance to diverse tested antibiotics. The effects of B. safensis on growth performance, intestinal hydrolytic enzyme activities and innate immunity in Nile tilapia were evaluated after feeding basial diet (control) containing B. safensis at levels of 105 CFU/g (G1), 106 CFU/g (G2) and 107 CFU/g (G3) for 8 weeks. The results showed significantly increased weight gain (WG) and feed efficiency (FE) in Nile tilapia in G3 group compared to those in fish fed a control diet. Intestinal digestive enzymes such as amylase, cellulase, and lipase were also significantly increased in Nile tilapia in G3 group. Immune parameters such as the phagocytic activity, respiratory bursts, and superoxide dismutase of head kidney leukocytes; and expression of the cytokine genes of IL-1, IL-8, TNF- and lysozyme in head kidney and spleen were significantly elevated in fish fed B. safensis. Serum lysozyme activity was significantly increased in tilapia in G1 group than that in control group. Enhanced cumulative survival was exhibited in fish fed B. safensis after challenge with S. iniae. The results suggested that B. safensis can be used as a potential probiotic in tilapia aquaculture to enhance the growth and disease biocontrol.
Keywords: probiotics, B. safensis, Nile tilapia, growth enhancement, immune modulation
中文摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 VIII
壹、前言 1
貳、文獻回顧 2
2.1 吳郭魚水產養殖現況 2
2.1.1 全球吳郭魚養殖 2
2.1.2 吳郭魚養殖面臨之困境 3
2.1.3 魚類鏈球菌 (Strptococcus spp.) 4
2.1.3 抗生素衍生之問題 5
2.2 益生菌 5
2.2.1 益生菌的定義 5
2.2.2 益生菌之條件特徵 6
2.2.3 益生菌的作用方式 7
2.2.4 益生菌在水產養殖上的應用 9
2.2.5 芽孢桿菌屬 (Bacillus) 9
2.3 魚類免疫系統 10
2.3.1 免疫器官介紹 11
2.3.2 先天性免疫系統 (Innate immune system) 11
2.4 研究目的 13
參、材料與方法 14
3.1. 實驗菌株 14
3.1.1 益生菌篩選 14
3.1.2 菌株鑑定 14
3.1.3 菌株活化與保存 14
3.1.4 菌株標準曲線 15
3.2. 菌株特性分析 15
3.2.1 菌株蛋白酶活性測定 16
3.2.2 菌株澱粉酶活性測定 16
3.2.3 菌株纖維素酶活性測定 16
3.2.4 菌株木聚醣酶活性測定 16
3.2.5 對於抗生素敏感性測定 16
3.3 實驗動物餵養實驗 17
3.3.1 自製飼料 17
3.3.2 實驗動物飼養及分組 19
3.3.3 吳郭魚體重變化 19
3.4 吳郭魚腸道消化酵素分析 19
3.4.1 腸道酵素活性樣本製備 19
3.4.2 蛋白濃度標準曲線 20
3.4.3 腸道蛋白酶活性測試 20
3.4.4 腸道還原糖活性測試 21
3.4.5 腸道脂肪酶活性測試 22
3.5 代謝及抗氧化基因分析 22
3.5.1 吳郭魚肝臟RNA抽取 22
3.5.2 反轉錄酶反應 23
3.7.3 即時定量聚合酶連鎖反應 (Real - time PCR) 23
3.6 吳郭魚免疫指標分析 24
3.6.1 巨噬細胞分離 24
3.6.2 超氧化物歧化酶 (Superoxide dismutase,SOD) 25
3.6.3 呼吸爆 (Respiratory burst,O2-) 25
3.6.4 吞噬活性 (Phagocytic activity,PA) 26
3.6.5 溶菌酶 (Lysozyme) 26
3.7 免疫基因分析 27
3.7.1 吳郭魚頭腎及脾臟RNA抽取 27
3.7.2 反轉錄酶反應 27
3.7.3 即時定量聚合酶連鎖反應 (Real - time PCR) 28
3.8 病原菌毒性測試 28
3.8.1 病原菌的製備及標準曲線 28
3.8.2 病原菌施打濃度曲線 29
3.8.3 吳郭魚腹腔注射 29
3.9統計方式 29
肆、結果 30
4.1 菌株篩選鑑定與特性分析 30
4.2 餵食吳郭魚B. safensis對成長之影響 37
4.3 吳郭魚餵食B. safensis對腸道消化水解酵素活性之影響 39
4.4 吳郭魚餵食B. safensis對肝臟營養代謝與生長基因表現之影響 41
4.5 吳郭魚餵食B. safensis對肝臟抗氧化基因表現之影響 43
4.6 吳郭魚餵食B. safensis對免疫調節之影響 45
4.7 吳郭魚餵食B. safensis對頭腎與脾臟免疫基因表現之影響 47
4.8 吳郭魚餵食B. safensis對疾病抵抗影響 50
伍、討論 52
陸、結論 57
柒、參考文獻 58
行政院農委會漁業署,(2019),漁業統計年報。
行政院農委會漁業署,(2019),漁業生產量值,漁業種類別魚類別生產
量值。
Abarike, E. D., Cai, J., Lu, Y., Yu, H., Chen, L., Jian, J., . . . Kuebutornye, F. K. (2018). Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish & shellfish immunology, 82, 229-238.
Aguilar‐Macías, O. L., Ojeda‐Ramírez, Josafat J, Campa‐Córdova, Angel I, Saucedo, Pedro E. (2010). Evaluation of natural and commercial probiotics for improving growth and survival of the pearl oyster, Pinctada mazatlanica, during late hatchery and early field culturing. Journal of the world aquaculture society, 41(3), 447-454.
Akhter, N., Wu, Bin, Memon, Aamir Mahmood, Mohsin, Muhammad. (2015). Probiotics and prebiotics associated with aquaculture: a review. Fish & shellfish immunology, 45(2), 733-741.
Alarcón, F. M., TF Díaz, M Moyano, FJ. (2001). Characterization of digestive carbohydrase activity in the gilthead seabream (Sparus aurata). Hydrobiologia, 445(1-3), 199-204.
Atela, J. A., Mlambo, V., & Mnisi, C. M. (2019). A multi-strain probiotic administered via drinking water enhances feed conversion efficiency and meat quality traits in indigenous chickens. Animal Nutrition, 5(2), 179-184.
Balcázar, J. L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., & Múzquiz, J. L. (2006). The role of probiotics in aquaculture. Veterinary microbiology, 114(3-4), 173-186.
Banerjee, G. R., Arun Kumar. (2017). The advancement of probiotics research and its application in fish farming industries. Research in veterinary science, 115, 66-77.
Cerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Morinigo, M. A., & Esteban, M. A. (2013). Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol, 34(5), 1063-1070. doi:10.1016/j.fsi.2013.01.015
Cima, F., & Matozzo, V. (2018). Proliferation and differentiation of circulating haemocytes of Ruditapes philippinarum as a response to bacterial challenge. Fish & shellfish immunology, 81, 73-82.
Cruz, A. G., Castro, W. F., Faria, J. A., Bogusz Jr, S., Granato, D., Celeguini, R. M., . . . Godoy, H. T. (2012). Glucose oxidase: A potential option to decrease the oxidative stress in stirred probiotic yogurt. LWT, 47(2), 512-515.
De la Fuente, M. V., VM. (2000). Anti‐oxidants as modulators of immune function. Immunology and cell biology, 78(1), 49-54.
Divya, K., Isamma, A., Ramasubramanian, V., Sureshkumar, S., & Arunjith, T. (2012). Colonization of probiotic bacteria and its impact on ornamental fish Puntius conchonius. Journal of environmental biology, 33(3), 551.
El‐Haroun, E. G., AMA‐S, Kabir Chowdhury, MA. (2006). Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquaculture Research, 37(14), 1473-1480.
Elisashvili, V., Kachlishvili, Eva, Chikindas, Michael L. (2018). Recent Advances in the Physiology of Spore Formation for Bacillus Probiotic Production. Probiotics and antimicrobial proteins, 1-17.
Ellis, A. (1998). Meeting the requirements for delayed release of oral vaccines for fish. Journal of Applied Ichthyology, 14(3‐4), 149-152.
FAO/WHO. (2001). Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. PREVENTION, 5, 1.
Fuller, R. (1989). Probiotics in man and animals. The Journal of applied bacteriology, 66(5), 365-378.
Galagarza, O. A., Smith, S. A., Drahos, D. J., Eifert, J. D., Williams, R. C., & Kuhn, D. D. (2018). Modulation of innate immunity in Nile tilapia (Oreochromis niloticus) by dietary supplementation of Bacillus subtilis endospores. Fish & shellfish immunology, 83, 171-179.
German, D. P. H., Michael H, Gawlicka, Anna. (2004). Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiological and Biochemical Zoology, 77(5), 789-804.
Gismondo, M. D., Lombardi, A. (1999). Review of probiotics available to modify gastrointestinal flora. International journal of antimicrobial agents, 12(4), 287-292.
Gobi, N., Malaikozhundan, B., Sekar, V., Shanthi, S., Vaseeharan, B., Jayakumar, R., & Nazar, A. K. (2016). GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus. Fish & shellfish immunology, 52, 230-238.
Guarner, F., Schaafsma, GJ. (1998). Probiotics. International journal of food microbiology, 39(3), 237-238.
Hai, N. (2015). The use of probiotics in aquaculture. Journal of applied microbiology, 119(4), 917-935.
Havenaar, R., Ten Brink, Bart, Huis, Jos HJ. (1992). Selection of strains for probiotic use. In Probiotics (pp. 209-224): Springer.
Hindu, S. V., Thanigaivel, S., Vijayakumar, S., Chandrasekaran, N., Mukherjee, A., & Thomas, J. (2018). Effect of microencapsulated probiotic Bacillus vireti 01-polysaccharide extract of Gracilaria folifera with alginate-chitosan on immunity, antioxidant activity and disease resistance of Macrobrachium rosenbergii against Aeromonas hydrophila infection. Fish & shellfish immunology, 73, 112-120.
Holmblad, T. S., Kenneth. (1999). Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture, 172(1-2), 111-123.
Hong, H. A. D., Le Hong Cutting, Simon M. (2005). The use of bacterial spore formers as probiotics. FEMS microbiology reviews, 29(4), 813-835.
Hoseinifar, S. H., Khalili, M., Rufchaei, R., Raeisi, M., Attar, M., Cordero, H., & Esteban, M. Á. (2015). Effects of date palm fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry. Fish & shellfish immunology, 47(2), 706-711.
Ibrahem, M. D. (2015). Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. Journal of advanced Research, 6(6), 765-791.
Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., & Gibson, L. (2008). Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture, 274(1), 1-14.
Krajmalnik‐Brown, R. I., Zehra‐Esra Kang, Dae‐Wook DiBaise, John K. (2012). Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice, 27(2), 201-214.
Krovacek, K., Faris, A., Ahne, W., & Månsson, I. (1987). Adhesion of Aeromonas hydrophila and Vibrio anguillarum to fish cells and to mucus-coated glass slides. FEMS Microbiology Letters, 42(1), 85-89.
Lazado, C. C. C., Christopher Marlowe A. (2014). Mucosal immunity and probiotics in fish. Fish & shellfish immunology, 39(1), 78-89.
Lewin, C. S. (1992). Mechanisms of resistance development in aquatic microorganisms. Chemotherapy in Aquaculture: from Theory to Reality. Office International des Epizooties, Paris, France., pp. 288–301.
Li, Lei, K., Xu, X., Rajput, I. R., Yu, D. Y., & Li, W. F. (2013). Protective Effect of Bacillus subtilis B10 against Hydrogen Peroxide-Induced Oxidative Stress in a Murine Macrophage Cell Line. International Journal of Agriculture and Biology, 15(5), 927-932. Retrieved from ://WOS:000324999800019
Lie, Ø. E., Ø Sorensen, A Froysadal, E. (1989). Study on lysozyme activity in some fish species. Diseases of Aquatic Organisms, 6(1), 1-5.
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748.
Lin, Y.-S., Saputra, F., Chen, Y.-C., & Hu, S.-Y. (2019). Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish & shellfish immunology, 86, 410-419.
Liu, C.-H., Chiu, C.-H., Wang, S.-W., & Cheng, W. (2012). Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish & shellfish immunology, 33(4), 699-706.
Lovell, B., Moss, M., & Wetherell, M. (2012). The psychosocial, endocrine and immune consequences of caring for a child with autism or ADHD. Psychoneuroendocrinology, 37(4), 534-542.
Maeda, M., & Liao, I.-C. (1992). Effect of bacterial population on the growth of a prawn larva, Penaeus monodon.
Magnadottir, B. (2010). Immunological control of fish diseases. Marine biotechnology, 12(4), 361-379.
Makled, S. O., Hamdan, A. M., & El-Sayed, A.-F. M. (2020). Growth promotion and immune stimulation in nile tilapia, Oreochromis niloticus, fingerlings following dietary administration of a novel marine probiotic, Psychrobacter maritimus S. Probiotics and antimicrobial proteins, 12(2), 365-374.
Martínez Cruz, P. I., Ana L, Monroy Hermosillo, Oscar A, Ramírez Saad, Hugo C. (2012). Use of probiotics in aquaculture. International Scholarly Research Notices, 2012.
Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T., Bøgwald, J., . . . Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1-2), 1-18.
Morelli, L. (2007). In vitro assessment of probiotic bacteria: from survival to functionality. International Dairy Journal, 17(11), 1278-1283.
Moriarty, D. (1998). Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture, 164(1-4), 351-358.
Nakharuthai, C. A., Nontawith Srisapoome, Prapansak. (2016). Molecular characterization, functional analysis, and defense mechanisms of two CC chemokines in Nile tilapia (Oreochromis niloticus) in response to severely pathogenic bacteria. Developmental & Comparative Immunology, 59, 207-228.
Naviner, M. B., J-P Durand, P Le Bris, H. (1999). Antibacterial activity of the marine diatom Skeletonemacostatum against aquacultural pathogens. Aquaculture, 174(1-2), 15-24.
Nikoskelainen, S. O., Arthur, & Salminen, S. B., Göran. (2001). Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 198(3-4), 229-236.
Park, S. C. S., Ichiro Fukunaga, Minoru Mori, Koh-Ichiro Nakai, Toshihiro. (2000). Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol., 66(4), 1416-1422.
Parker, R. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health, 29, 4-8.
Ray, A. K. R., Tanami Mondal, Sabyasachi Ringø, Einar. (2010). Identification of gut‐associated amylase, cellulase and protease‐producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10), 1462-1469.
Reda, R. M., El-Hady, M., Selim, K. M., & El-Sayed, H. M. (2018). Comparative study of three predominant gut Bacillus strains and a commercial B. amyloliquefaciens as probiotics on the performance of Clarias gariepinus. Fish & shellfish immunology, 80, 416-425.
Saha, A. K. R., Arun Kumar. (1998). Cellulase activity in rohu fingerlings. Aquaculture International, 6(4), 281-291.
Salinas, I., Zhang, Y.-A., & Sunyer, J. O. (2011). Mucosal immunoglobulins and B cells of teleost fish. Developmental & Comparative Immunology, 35(12), 1346-1365.
Santander, J. M. R., Kenneth L Curtiss III, Roy. (2008). Regulation of Vi capsular polysaccharide synthesis in Salmonella enterica serotype Typhi. Journal of infection in developing countries, 2(6), 412.
Saputra, F., Shiu, Y.-L., Chen, Y.-C., Puspitasari, A. W., Danata, R. H., Liu, C.-H., & Hu, S.-Y. (2016). Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 58, 397-405.
Satomi, M., La Duc, M. T., & Venkateswaran, K. (2006). Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. International journal of systematic and evolutionary microbiology, 56(8), 1735-1740.
Saurabh, S. S., PK. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39(3), 223-239.
Shen, W. Y., Fu, Ling‐Lin, Li, Wei‐Fen Zhu, Yao‐Rong. (2010). Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquaculture Research, 41(11), 1691-1698.
Son, V. M., Chang, C.-C., Wu, M.-C., Guu, Y.-K., Chiu, C.-H., & Cheng, W. (2009). Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish & shellfish immunology, 26(5), 691-698.
Sriket, C., Benjakul, S., Visessanguan, W., Hara, K., Yoshida, A., & Liang, X. (2012). Low molecular weight trypsin from hepatopancreas of freshwater prawn (Macrobrachium rosenbergii): Characteristics and biochemical properties. Food Chemistry, 134(1), 351-358. doi:https://doi.org/10.1016/j.foodchem.2012.02.173
Suva, M. A., Sureja, Varun P, Kheni, Dharmesh B. (2016). Novel insight on probiotic Bacillus subtilis: mechanism of action and clinical applications. Journal of Current Research in Scientific Medicine, 2(2), 65.
Swiatkiewicz, S. S., M Arczewska‐Wlosek, A Jozefiak, D. (2016). Efficacy of feed enzymes in pig and poultry diets containing distillers dried grains with solubles: a review. Journal of animal physiology and animal nutrition, 100(1), 15-26.
Torres, M., Rubio-Portillo, E., Antón, J., Ramos-Esplá, A. A., Quesada, E., & Llamas, I. (2016). Selection of the N-acylhomoserine lactone-degrading bacterium Alteromonas stellipolaris PQQ-42 and of its potential for biocontrol in aquaculture. Frontiers in microbiology, 7, 646.
Tovar-Ramírez, D., Mazurais, D., Gatesoupe, J., Quazuguel, P., Cahu, C., & Zambonino-Infante, J. (2010). Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture, 300(1-4), 142-147.
Ullah, A., Zuberi, A., Ahmad, M., Shah, A. B., Younus, N., Ullah, S., & Khattak, M. N. K. (2018). Dietary administration of the commercially available probiotics enhanced the survival, growth, and innate immune responses in Mori (Cirrhinus mrigala) in a natural earthen polyculture system. Fish & shellfish immunology, 72, 266-272.
Van Hai, N. (2015). Research findings from the use of probiotics in tilapia aquaculture: a review. Fish & shellfish immunology, 45(2), 592-597.
Vergin, F. v. (1954). Anti-und probiotika. Hippokrates, 25(4), 116-119.
Verschuere, L., Rombaut, Geert, Sorgeloos, Patrick Verstraete, Willy. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64(4), 655-671.
Walker, S. L. R., Jeremy A Elimelech, Menachem. (2004). Role of cell surface lipopolysaccharides in escherichia c oli k12 adhesion and transport. Langmuir, 20(18), 7736-7746.
Xia, Y., Lu, M., Chen, G., Cao, J., Gao, F., Wang, M., . . . Yi, M. (2018). Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & shellfish immunology, 76, 368-379.
Yi, Y., Zhang, Z., Zhao, F., Liu, H., Yu, L., Zha, J., & Wang, G. (2018). Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish & shellfish immunology, 78, 322-330.
Yirga, H. (2015). Journal of Probiotics & Health.
Zheng, C.-c., Cai, X.-y., Huang, M.-m., Mkingule, I., Sun, C., Qian, S.-C., . . . Fei, H. (2019). Effect of biological additives on Japanese eel (Anguilla japonica) growth performance, digestive enzymes activity and immunology. Fish & shellfish immunology, 84, 704-710.
Zhou, X., Tian, Z., Wang, Y., & Li, W. (2010). Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish physiology and biochemistry, 36(3), 501-509.
電子全文 電子全文(網際網路公開日期:20260203)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊