|
行政院農委會漁業署,(2019),漁業統計年報。 行政院農委會漁業署,(2019),漁業生產量值,漁業種類別魚類別生產 量值。 Abarike, E. D., Cai, J., Lu, Y., Yu, H., Chen, L., Jian, J., . . . Kuebutornye, F. K. (2018). Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish & shellfish immunology, 82, 229-238. Aguilar‐Macías, O. L., Ojeda‐Ramírez, Josafat J, Campa‐Córdova, Angel I, Saucedo, Pedro E. (2010). Evaluation of natural and commercial probiotics for improving growth and survival of the pearl oyster, Pinctada mazatlanica, during late hatchery and early field culturing. Journal of the world aquaculture society, 41(3), 447-454. Akhter, N., Wu, Bin, Memon, Aamir Mahmood, Mohsin, Muhammad. (2015). Probiotics and prebiotics associated with aquaculture: a review. Fish & shellfish immunology, 45(2), 733-741. Alarcón, F. M., TF Díaz, M Moyano, FJ. (2001). Characterization of digestive carbohydrase activity in the gilthead seabream (Sparus aurata). Hydrobiologia, 445(1-3), 199-204. Atela, J. A., Mlambo, V., & Mnisi, C. M. (2019). A multi-strain probiotic administered via drinking water enhances feed conversion efficiency and meat quality traits in indigenous chickens. Animal Nutrition, 5(2), 179-184. Balcázar, J. L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., & Múzquiz, J. L. (2006). The role of probiotics in aquaculture. Veterinary microbiology, 114(3-4), 173-186. Banerjee, G. R., Arun Kumar. (2017). The advancement of probiotics research and its application in fish farming industries. Research in veterinary science, 115, 66-77. Cerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Morinigo, M. A., & Esteban, M. A. (2013). Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol, 34(5), 1063-1070. doi:10.1016/j.fsi.2013.01.015 Cima, F., & Matozzo, V. (2018). Proliferation and differentiation of circulating haemocytes of Ruditapes philippinarum as a response to bacterial challenge. Fish & shellfish immunology, 81, 73-82. Cruz, A. G., Castro, W. F., Faria, J. A., Bogusz Jr, S., Granato, D., Celeguini, R. M., . . . Godoy, H. T. (2012). Glucose oxidase: A potential option to decrease the oxidative stress in stirred probiotic yogurt. LWT, 47(2), 512-515. De la Fuente, M. V., VM. (2000). Anti‐oxidants as modulators of immune function. Immunology and cell biology, 78(1), 49-54. Divya, K., Isamma, A., Ramasubramanian, V., Sureshkumar, S., & Arunjith, T. (2012). Colonization of probiotic bacteria and its impact on ornamental fish Puntius conchonius. Journal of environmental biology, 33(3), 551. El‐Haroun, E. G., AMA‐S, Kabir Chowdhury, MA. (2006). Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquaculture Research, 37(14), 1473-1480. Elisashvili, V., Kachlishvili, Eva, Chikindas, Michael L. (2018). Recent Advances in the Physiology of Spore Formation for Bacillus Probiotic Production. Probiotics and antimicrobial proteins, 1-17. Ellis, A. (1998). Meeting the requirements for delayed release of oral vaccines for fish. Journal of Applied Ichthyology, 14(3‐4), 149-152. FAO/WHO. (2001). Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. PREVENTION, 5, 1. Fuller, R. (1989). Probiotics in man and animals. The Journal of applied bacteriology, 66(5), 365-378. Galagarza, O. A., Smith, S. A., Drahos, D. J., Eifert, J. D., Williams, R. C., & Kuhn, D. D. (2018). Modulation of innate immunity in Nile tilapia (Oreochromis niloticus) by dietary supplementation of Bacillus subtilis endospores. Fish & shellfish immunology, 83, 171-179. German, D. P. H., Michael H, Gawlicka, Anna. (2004). Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiological and Biochemical Zoology, 77(5), 789-804. Gismondo, M. D., Lombardi, A. (1999). Review of probiotics available to modify gastrointestinal flora. International journal of antimicrobial agents, 12(4), 287-292. Gobi, N., Malaikozhundan, B., Sekar, V., Shanthi, S., Vaseeharan, B., Jayakumar, R., & Nazar, A. K. (2016). GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus. Fish & shellfish immunology, 52, 230-238. Guarner, F., Schaafsma, GJ. (1998). Probiotics. International journal of food microbiology, 39(3), 237-238. Hai, N. (2015). The use of probiotics in aquaculture. Journal of applied microbiology, 119(4), 917-935. Havenaar, R., Ten Brink, Bart, Huis, Jos HJ. (1992). Selection of strains for probiotic use. In Probiotics (pp. 209-224): Springer. Hindu, S. V., Thanigaivel, S., Vijayakumar, S., Chandrasekaran, N., Mukherjee, A., & Thomas, J. (2018). Effect of microencapsulated probiotic Bacillus vireti 01-polysaccharide extract of Gracilaria folifera with alginate-chitosan on immunity, antioxidant activity and disease resistance of Macrobrachium rosenbergii against Aeromonas hydrophila infection. Fish & shellfish immunology, 73, 112-120. Holmblad, T. S., Kenneth. (1999). Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture, 172(1-2), 111-123. Hong, H. A. D., Le Hong Cutting, Simon M. (2005). The use of bacterial spore formers as probiotics. FEMS microbiology reviews, 29(4), 813-835. Hoseinifar, S. H., Khalili, M., Rufchaei, R., Raeisi, M., Attar, M., Cordero, H., & Esteban, M. Á. (2015). Effects of date palm fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry. Fish & shellfish immunology, 47(2), 706-711. Ibrahem, M. D. (2015). Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. Journal of advanced Research, 6(6), 765-791. Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., & Gibson, L. (2008). Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture, 274(1), 1-14. Krajmalnik‐Brown, R. I., Zehra‐Esra Kang, Dae‐Wook DiBaise, John K. (2012). Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice, 27(2), 201-214. Krovacek, K., Faris, A., Ahne, W., & Månsson, I. (1987). Adhesion of Aeromonas hydrophila and Vibrio anguillarum to fish cells and to mucus-coated glass slides. FEMS Microbiology Letters, 42(1), 85-89. Lazado, C. C. C., Christopher Marlowe A. (2014). Mucosal immunity and probiotics in fish. Fish & shellfish immunology, 39(1), 78-89. Lewin, C. S. (1992). Mechanisms of resistance development in aquatic microorganisms. Chemotherapy in Aquaculture: from Theory to Reality. Office International des Epizooties, Paris, France., pp. 288–301. Li, Lei, K., Xu, X., Rajput, I. R., Yu, D. Y., & Li, W. F. (2013). Protective Effect of Bacillus subtilis B10 against Hydrogen Peroxide-Induced Oxidative Stress in a Murine Macrophage Cell Line. International Journal of Agriculture and Biology, 15(5), 927-932. Retrieved from ://WOS:000324999800019 Lie, Ø. E., Ø Sorensen, A Froysadal, E. (1989). Study on lysozyme activity in some fish species. Diseases of Aquatic Organisms, 6(1), 1-5. Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748. Lin, Y.-S., Saputra, F., Chen, Y.-C., & Hu, S.-Y. (2019). Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish & shellfish immunology, 86, 410-419. Liu, C.-H., Chiu, C.-H., Wang, S.-W., & Cheng, W. (2012). Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish & shellfish immunology, 33(4), 699-706. Lovell, B., Moss, M., & Wetherell, M. (2012). The psychosocial, endocrine and immune consequences of caring for a child with autism or ADHD. Psychoneuroendocrinology, 37(4), 534-542. Maeda, M., & Liao, I.-C. (1992). Effect of bacterial population on the growth of a prawn larva, Penaeus monodon. Magnadottir, B. (2010). Immunological control of fish diseases. Marine biotechnology, 12(4), 361-379. Makled, S. O., Hamdan, A. M., & El-Sayed, A.-F. M. (2020). Growth promotion and immune stimulation in nile tilapia, Oreochromis niloticus, fingerlings following dietary administration of a novel marine probiotic, Psychrobacter maritimus S. Probiotics and antimicrobial proteins, 12(2), 365-374. Martínez Cruz, P. I., Ana L, Monroy Hermosillo, Oscar A, Ramírez Saad, Hugo C. (2012). Use of probiotics in aquaculture. International Scholarly Research Notices, 2012. Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T., Bøgwald, J., . . . Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1-2), 1-18. Morelli, L. (2007). In vitro assessment of probiotic bacteria: from survival to functionality. International Dairy Journal, 17(11), 1278-1283. Moriarty, D. (1998). Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture, 164(1-4), 351-358. Nakharuthai, C. A., Nontawith Srisapoome, Prapansak. (2016). Molecular characterization, functional analysis, and defense mechanisms of two CC chemokines in Nile tilapia (Oreochromis niloticus) in response to severely pathogenic bacteria. Developmental & Comparative Immunology, 59, 207-228. Naviner, M. B., J-P Durand, P Le Bris, H. (1999). Antibacterial activity of the marine diatom Skeletonemacostatum against aquacultural pathogens. Aquaculture, 174(1-2), 15-24. Nikoskelainen, S. O., Arthur, & Salminen, S. B., Göran. (2001). Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 198(3-4), 229-236. Park, S. C. S., Ichiro Fukunaga, Minoru Mori, Koh-Ichiro Nakai, Toshihiro. (2000). Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol., 66(4), 1416-1422. Parker, R. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health, 29, 4-8. Ray, A. K. R., Tanami Mondal, Sabyasachi Ringø, Einar. (2010). Identification of gut‐associated amylase, cellulase and protease‐producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10), 1462-1469. Reda, R. M., El-Hady, M., Selim, K. M., & El-Sayed, H. M. (2018). Comparative study of three predominant gut Bacillus strains and a commercial B. amyloliquefaciens as probiotics on the performance of Clarias gariepinus. Fish & shellfish immunology, 80, 416-425. Saha, A. K. R., Arun Kumar. (1998). Cellulase activity in rohu fingerlings. Aquaculture International, 6(4), 281-291. Salinas, I., Zhang, Y.-A., & Sunyer, J. O. (2011). Mucosal immunoglobulins and B cells of teleost fish. Developmental & Comparative Immunology, 35(12), 1346-1365. Santander, J. M. R., Kenneth L Curtiss III, Roy. (2008). Regulation of Vi capsular polysaccharide synthesis in Salmonella enterica serotype Typhi. Journal of infection in developing countries, 2(6), 412. Saputra, F., Shiu, Y.-L., Chen, Y.-C., Puspitasari, A. W., Danata, R. H., Liu, C.-H., & Hu, S.-Y. (2016). Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 58, 397-405. Satomi, M., La Duc, M. T., & Venkateswaran, K. (2006). Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. International journal of systematic and evolutionary microbiology, 56(8), 1735-1740. Saurabh, S. S., PK. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39(3), 223-239. Shen, W. Y., Fu, Ling‐Lin, Li, Wei‐Fen Zhu, Yao‐Rong. (2010). Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquaculture Research, 41(11), 1691-1698. Son, V. M., Chang, C.-C., Wu, M.-C., Guu, Y.-K., Chiu, C.-H., & Cheng, W. (2009). Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish & shellfish immunology, 26(5), 691-698. Sriket, C., Benjakul, S., Visessanguan, W., Hara, K., Yoshida, A., & Liang, X. (2012). Low molecular weight trypsin from hepatopancreas of freshwater prawn (Macrobrachium rosenbergii): Characteristics and biochemical properties. Food Chemistry, 134(1), 351-358. doi:https://doi.org/10.1016/j.foodchem.2012.02.173 Suva, M. A., Sureja, Varun P, Kheni, Dharmesh B. (2016). Novel insight on probiotic Bacillus subtilis: mechanism of action and clinical applications. Journal of Current Research in Scientific Medicine, 2(2), 65. Swiatkiewicz, S. S., M Arczewska‐Wlosek, A Jozefiak, D. (2016). Efficacy of feed enzymes in pig and poultry diets containing distillers dried grains with solubles: a review. Journal of animal physiology and animal nutrition, 100(1), 15-26. Torres, M., Rubio-Portillo, E., Antón, J., Ramos-Esplá, A. A., Quesada, E., & Llamas, I. (2016). Selection of the N-acylhomoserine lactone-degrading bacterium Alteromonas stellipolaris PQQ-42 and of its potential for biocontrol in aquaculture. Frontiers in microbiology, 7, 646. Tovar-Ramírez, D., Mazurais, D., Gatesoupe, J., Quazuguel, P., Cahu, C., & Zambonino-Infante, J. (2010). Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture, 300(1-4), 142-147. Ullah, A., Zuberi, A., Ahmad, M., Shah, A. B., Younus, N., Ullah, S., & Khattak, M. N. K. (2018). Dietary administration of the commercially available probiotics enhanced the survival, growth, and innate immune responses in Mori (Cirrhinus mrigala) in a natural earthen polyculture system. Fish & shellfish immunology, 72, 266-272. Van Hai, N. (2015). Research findings from the use of probiotics in tilapia aquaculture: a review. Fish & shellfish immunology, 45(2), 592-597. Vergin, F. v. (1954). Anti-und probiotika. Hippokrates, 25(4), 116-119. Verschuere, L., Rombaut, Geert, Sorgeloos, Patrick Verstraete, Willy. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64(4), 655-671. Walker, S. L. R., Jeremy A Elimelech, Menachem. (2004). Role of cell surface lipopolysaccharides in escherichia c oli k12 adhesion and transport. Langmuir, 20(18), 7736-7746. Xia, Y., Lu, M., Chen, G., Cao, J., Gao, F., Wang, M., . . . Yi, M. (2018). Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & shellfish immunology, 76, 368-379. Yi, Y., Zhang, Z., Zhao, F., Liu, H., Yu, L., Zha, J., & Wang, G. (2018). Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish & shellfish immunology, 78, 322-330. Yirga, H. (2015). Journal of Probiotics & Health. Zheng, C.-c., Cai, X.-y., Huang, M.-m., Mkingule, I., Sun, C., Qian, S.-C., . . . Fei, H. (2019). Effect of biological additives on Japanese eel (Anguilla japonica) growth performance, digestive enzymes activity and immunology. Fish & shellfish immunology, 84, 704-710. Zhou, X., Tian, Z., Wang, Y., & Li, W. (2010). Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish physiology and biochemistry, 36(3), 501-509.
|