跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳琳
研究生(外文):Chen, Lin
論文名稱:芫荽葉片萃取物綠色合成奈米粒子及其抗微生物活性之研究
論文名稱(外文):Study on Green Synthetic Nanoparticles of Coriander Leaf Extract and Their Antimicrobial Activities
指導教授:徐志宏徐志宏引用關係
指導教授(外文):Douglas J. H. Shyu
口試委員:張格東陳義元徐志宏
口試委員(外文):Chang, Ko-TungChen, Yih-YuanDouglas J. H. Shyu
口試日期:2021-07-19
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:97
中文關鍵詞:芫荽奈米粒子抗微生物
外文關鍵詞:Coriandrum sativum L.NanoparticlesAntibacterial activityMinimum Inhibitory ConcentrationMinimum Bacterial Concentration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米粒子 (Nanoparticles, NPs) 是最近幾年興起的技術,應用於生活上化妝品或是紡織工業,甚至是生醫都有它的生機存在,其合成的方式主要有三種,包括生物合成、物理及化學合成等等,前者為利用建造式的方法將奈米粒子合成出來,後者為利用將大顆粒使顆粒變小;將合成出的物質粒徑大小介於1~100 nm之間的奈米級大小。近年來有使用許多植物的葉片、根、莖、花、樹皮、果實及種子等等合成,也有些是利用芽孢桿菌及乳酸菌等益生菌的上清液來合成。本研究所使用芫荽 (Coriandrum sativum) 綠色合成奈米粒子,將芫荽乾燥後的葉片經過水加熱萃取,合成五種奈米粒子:銀奈米粒子、鋅奈米粒子、銅奈米粒子、鎳奈米粒子及鈦奈米粒子等應用在臨床細菌菌株、標準細菌菌株以及會造成嚴重感染的分枝桿菌,測試不同種類的奈米粒子對於各式菌種的抑制效果。透過測量吸光值變化與奈米粒子合成的狀況,且找出最佳合成條件,再經由表徵分析確認是否形成奈米粒子,利用超音波震盪 (Sonication) 及重新離心上清液讓奈米粒子顆粒盡量達到最小,且分析其元素及組成及製成奈米化。透過奈米粒子進行與臨床細菌菌株、標準致病菌株及分枝桿菌等微生物作為抗菌效果之測試,透過最小抑菌濃度 (Minimum Inhibitory Concentration, MIC) 及最小殺菌數 (Minimum Bactericidal Concentration, MBC) 觀察抑菌效果,實驗結果顯示銀奈米粒子 (AgNPs) 對於臨床致病菌、標準細菌菌株以及分枝桿菌均有抑制的效果,在MIC及MBC中均有明顯的抑菌表現。鎳奈米粒子 (NiNPs) 粒子及鈦奈米粒子 (TiNPs) 對於分枝桿菌的抑制活性,比起臨床細菌菌株及標準細菌菌株更為有效。利用相同濃度的銅奈米粒子 (CuNPs) 進行抑菌活性分析,結果顯示對於革蘭氏陽性菌的效果比革蘭氏陰性菌好。後續對於具有抑菌活性的奈米粒子,可針對其有效濃度、細胞毒性及劑型進行分析,以開發奈米粒子在醫藥上的應用。
Nanoparticles (Nanoparticles, NPs) are a technology that has emerged in recent years. It has many applications such as applied to cosmetics, textiles, and even biomedicine. There are three main ways of synthesis, including biosynthesis and physics, and chemical synthesis, etc. The former is to synthesize nanoparticles by constructive methods. The latter uses large particles to make the particles smaller; the synthesized materials are nanoparticles with a particle size between 1-100 nm level size. Many plants have synthesized many plants using leaves, roots, stems, flowers, bark, fruits, and seeds, and some are synthesized using the supernatant of probiotics such as Bacillus and lactic acid bacteria. This research uses coriander (Coriandrum sativum L.) green synthetic nanoparticles. The dried coriander leaves are heated and extracted with water to synthesize five nanoparticles: silver nanoparticles, zinc nanoparticles, copper nanoparticles, nickel nanoparticles, and nickel nanoparticles. Was used in clinical bacterial strains, standard bacterial strains, and mycobacteria that can cause serious infections to test the inhibitory effects of different types of nanoparticles on various bacterial species. By measuring the change in absorbance and the state of nanoparticle synthesis, and finding the best synthesis conditions, and then confirming whether nanoparticles are formed through characterization and analysis, using ultrasonic vibration (Sonication) and re-centrifuging the supernatant to make the nanoparticle particles Try to achieve the smallest possible, and analyze its elements and composition and make it into nano. Nanoparticles are used to test the antibacterial effects of clinical bacterial strains, standard pathogenic strains, and mycobacteria as an antibacterial effect by observing through Minimum Inhibitory Concentration (MIC) and Minimum Bacterial Concentration (MBC) antibacterial effect. Experimental results show that AgNPs particles have inhibitory effects on clinical pathogenic bacteria, standard strains, and mycobacteria and have apparent antibacterial performance in MIC and MBC. Nickel nanoparticles (NiNPs) and titanium nanoparticles (TiNPs) are more effective in inhibiting mycobacteria than clinical bacterial strains and standard bacterial strains. The CuNPs (copper nanoparticles) had high antibacterial activity to Gram-positive than Gram-negative bacterias when using the same concentration. Subsequent analysis of the effective concentration, cytotoxicity, and dosage form of nanoparticles with antibacterial activity can be conducted to develop the application of nanoparticles in medicine.
摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1前言 1
1.2研究動機 1
第二章 文獻回顧 3
2.1 Coriandrum sativum L. 芫荽 3
2.2 奈米粒子 4
2.2.1 金奈米粒子 (Au) 5
2.2.2 銀奈米粒子 (Ag) 5
2.2.3 鋅奈米粒子 (Zn) 6
2.2.4 銅奈米粒子 (Cu) 6
2.2.5 鎳奈米粒子 (Ni) 6
2.2.6 鈦奈米粒子 (Ti) 6
2.3 實驗用菌種 6
2.3.1 Gram -positive bacteria革蘭氏陽性菌 6
2.3.2 Gram -negative bacteria革蘭氏陰性菌 8
2.3.3 分枝桿菌 10
2.4 實驗用儀器 12
2.4.1掃描電子顯微鏡 (Scanning Electron Microscope, SEM) 12
2.4.2穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 12
2.4.3 X射線繞射儀 (X-Ray Diffractometer, XRD) 13
2.4.4 高解析度場發射掃描式電子顯微鏡 (FE-SEM) 13
2.4.5 能量分散式X-ray元素分析儀 (EDS) 13
第三章 材料與方法 14
3.1實驗架構 14
3.2 實驗儀器、設備 15
3.2.1使用於國立屏東科技大學生物科技系功能性基因體實驗室 15
3.2.2使用於國立屏東科技大學貴重儀器中心 15
3.2.3使用於國立屏東科技大學工學院之儀器 15
3.3實驗材料 15
3.3.1實驗植物 15
3.3.2 實驗藥品及化學試劑 16
3.3.3 實驗用抗生素 16
3.3.4 實驗培養基 16
3.3.5 實驗菌株 16
3.4 實驗方法 18
3.4.1 備製芫荽水萃液 18
3.4.2 奈米粒子的合成 18
3.4.3 奈米粒子表徵分析 21
3.4.5 奈米粒子抗菌試驗分析 22
3.5.2 CFU 測試菌量濃度 22
3.5.3 最小抑菌濃度 (Minimum Inhibitory Concentration, MIC) 23
3.5.4 最小抑菌濃度 (Minimum Bactericidal Concentration, MBC) 25
第四章 結果與討論 26
4.1 奈米粒子表徵 26
4.1.1銀奈米粒子表徵 26
4.1.2鋅奈米粒子表徵 34
4.1.3銅奈米粒子表徵 42
4.1.2鎳奈米粒子表徵 50
4.1.2鈦奈米粒子表徵 58
4.3 抗菌試驗 66
4.3.1 以CFU測定菌量 66
4.3.2 最小抑菌濃度測試 (MIC) 69
4.3.3 最小殺菌濃度測試 (MBC) 79
第五章 結論 87
第六章 參考文獻 89
周如文. 2020. 重訪結核菌群,衛福部疾病管制署結核病研究中心.
鍾玉衡、林幸慧、徐志育. 2014. 非結核分枝桿菌簡介. 家庭醫學與基層醫療 29(8): 214-218.
陳佩君. 2013. 防癆雜誌,中華民國防癆協會.
Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272-284.
Al-Jedah, J. H., Ali, M. Z., & Robinson, R. K. (2000). The inhibitory action of spices against pathogens that might be capable of growth in a fish sauce (mehiawah) from the Middle East. International Journal of Food Microbiology, 57, 129-133.
Al-Masaudi, S. B., Hussain, M. B., Al-Maaqar, S. M., Al Jaouni, S., & Harakeh, S. (2020). In vitro antibacterial activity of honey against multidrug-resistant Shigella sonnei. Complementary Therapies in Clinical Practice, 41, 101257.
Alsubki, R., Tabassum, H., Abudawood, M., Rabaan, A. A., Alsobaie, S. F., & Ansar, S. (2021). Green synthesis, characterization, enhanced functionality and biological evaluation of silver nanoparticles based on Coriander sativum. Saudi Journal of Biological Sciences, 28, 2102-2108.
Amaike, S., & Keller, N. P. (2011). Aspergillus flavus. Annual Review of Phytopathology, 49, 107-133.
Armistead, B., Oler, E., Waldorf, K. A., & Rajagopal, L. (2019). The double life of group B Streptococcus: asymptomatic colonizer and potent pathogen. Journal of Molecular Biology, 431, 2914-2931.
Chauhan, P., Raja, A. N., & Jain, R. (2020). Nanogold modified glassy carbon sensor for the quantification of phytoestrogenchlorogenic acid. Surfaces and Interfaces, 19, 100536.
Chimbekujwo, K. I., Ja'afaru, M. I., & Adeyemo, O. M. (2020). Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Scientific African, 8, e00398.
Cho, E. H., H. J. Huh, D. J. Song, S. H. Lee, C. K. Kim, S. Y. Shin, C.-S. Ki, B. W. Jhun, S. M. Moon, O. J. J. D. m. Kwon and i. disease (2019). "Drug susceptibility patterns of Mycobacterium abscessus and Mycobacterium massiliense isolated from respiratory specimens." Diagnostic Microbiology and Infectious Disease 93: 107-111.
Coşkuner, Y., & Karababa, E. (2007). Physical properties of coriander seeds (Coriandrum sativum L.). Journal of Food Engineering, 80, 408-416.
Dashtizadeh, Z., Kashi, F. J., & Ashrafi, M. (2021). Phytosynthesis of copper nanoparticles using Prunus mahaleb L. and its biological activity. Materials Today Communications, 27, 102456.
da Silva, B. L., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177, 440-447.
Delaquis, P. J., Stanich, K., Girard, B., & Mazza, G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International journal of food microbiology, 74, 101-109.
Dong, W., Rasid, O., Chevalier, C., Connor, M., Eldridge, M. J., & Hamon, M. A. (2020). Streptococcus pneumoniae infection promotes histone H3 dephosphorylation by modulating host PP1 phosphatase. Cell Reports, 30, 4016-4026.
Drobniewski, F. A. (1993). Bacillus cereus and related species. Clinical microbiology reviews, 6, 324-338.
Duarte, A., Luís, Â., Oleastro, M., & Domingues, F. C. (2016). Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control, 61, 115-122.
Eriksson, N., Wu, S., Do, C. B., Kiefer, A. K., Tung, J. Y., Mountain, J. L., Hinds A. D. & Francke, U. (2012). A genetic variant near olfactory receptor genes influences cilantro preference. Flavour, 1, 1-7.
Espinosa-Ortiz, E. J., Rene, E. R., Pakshirajan, K., van Hullebusch, E. D., & Lens, P. N. (2016). Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chemical Engineering Journal, 283, 553-571.
Evergetis, E., & Haroutounian, S. A. (2015). The Umbelliferae (Apiaceae) of Dioscorides annotated in codex Neapolitanus Graecus# 1. Journal of Ethnopharmacology, 175, 549-566.
Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature physical science, 241(105), 20-22.
Gao, Z., Cui, F., Zeng, S., Guo, L., & Shi, J. (2010). A high surface area superparamagnetic mesoporous spinel ferrite synthesized by a template-free approach and its adsorptive property. Microporous and mesoporous materials, 132, 188-195.
Gu, Y., Liu, Y., Cao, S., Huang, X., Zuo, Z., Yu, S., Deng., J., Ding, C., Yuan, M. Shen, L., Wu, R. Wen, Y. Ren, Z. Zhao, Q., Peng, G., Zhong, Z., Wang, C., & Ma, X. (2016). Suppressive subtractive hybridization reveals different gene expression between high and low virulence strains of Cladosporium cladosporioides. Microbial Pathogenesis, 100, 276-284.
Guo, D., Wang, Z., Guo, L., Yin, X., Li, Z., Zhou, M., Li, T., Chen, C. & Bi, H. (2021). Zinc oxide nanoparticle-triggered oxidative stress and autophagy activation in human tenon fibroblasts. European Journal of Pharmacology, 174294.
Guo, Q., Wei, J., Zou, W., Li, Q., Qian, X., & Zhu, Z. (2021). Antimicrobial susceptibility profiles of Mycobacterium abscessus complex isolated from respiratory specimens in Shanghai, China. Journal of Global Antimicrobial Resistance, 25, 72-76.
Hamzah, N., Singhal, N., Padhye, L., & Swift, S. (2018). Effect of surfactants on Aspergillus brasiliensis ATCC 16404 physicochemical properties. Journal of Environmental Chemical Engineering, 6, 3392-3398.
Hashemzadeh, M., Dezfuli, A. A. Z., Nashibi, R., Jahangirimehr, F., & Akbarian, Z. A. (2021). Study of biofilm formation, structure and antibiotic resistance in Staphylococcus saprophyticus strains causing urinary tract infection in women in Ahvaz, Iran. New Microbes and New Infections, 39, 100831.
Hosseinkhan, N., Allahverdi, A., & Abdolmaleki, F. (2021). The novel potential multidrug-resistance biomarkers for Pseudomonas aeruginosa lung infections using transcriptomics data analysis. Informatics in Medicine Unlocked, 22, 100509.
Jayachandran, A., Aswathy, T. R., & Nair, A. S. (2021). Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports, 26, 100995.
Johansen, M. D., Herrmann, J. L., & Kremer, L. (2020). Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nature Reviews Microbiology, 18, 392-407.
Kannappan, A., Durgadevi, R., Srinivasan, R., Lagoa, R. J. L., Packiavathy, I. A. S. V., Pandian, S. K., & Veera Ravi, A. (2020). 2-Hydroxy-4-methoxybenzaldehyde from Hemidesmus indicus is antagonistic to Staphylococcus epidermidis biofilm formation. Biofouling, 36, 549-563.
Kašparová, P., Vaňková, E., Brázdová, L., Lokočová, K., Maťátková, O., & Masák, J. (2021). Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis. Microbial Pathogenesis, 152, 104632.
Kubo, I., Fujita, K. I., Kubo, A., Nihei, K. I., & Ogura, T. (2004). Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. Journal of Agricultural and Food Chemistry, 52, 3329-3332.
Kumar, V. P., Mathew, S., Anand, V. R., Radhakrishnan, P., Nampoori, V. P. N., & Mujeeb, A. (2021). Defect level dependent visible emission of nickel oxide nanoparticles through controlled calcination temperature. Optik, 231, 166388.
Kunwar, A., Shrestha, P., Shrestha, S., Thapa, S., Shrestha, S., & Amatya, N. M. (2021). Detection of biofilm formation among Pseudomonas aeruginosa isolated from burn patients. Burns Open, 5, 125-129.
Laribi, B., Kouki, K., M'Hamdi, M., & Bettaieb, T. (2015). Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia, 103, 9-26.
Liu, Q., Li, X., Wu, R., Xiao, X., & Xing, F. (2021). Development of an on-spot and rapid recombinase polymerase amplification assay for Aspergillus flavus detection in grains. Food Control, 125, 107957.
Lv, H., Fang, T., Kong, F., Wang, J., Deng, X., Yu, Q., & Liang, X. (2021). Dryocrassin ABBA ameliorates Streptococcus pneumoniae-induced infection in vitro through inhibiting Streptococcus pneumoniae growth and neutralizing pneumolysin activity. Microbial Pathogenesis, 150, 104683.
Mathew, S. S., Sunny, N. E., & Shanmugam, V. (2021). Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorganic Chemistry Communications, 126, 108485.
Mauer, L., & El-Sohemy, A. (2012). Prevalence of cilantro (Coriandrum sativum) disliking among different ethnocultural groups. Flavour, 1, 1-5.
Merugu, R., Nayak, B., Chitturi, K. L., & Misra, P. K. (2021). Biofabrication of nickel and bismuth bimetallic nanoparticles using aqueous toddy of Borassus flabellifer: Synthesis, characterization and elucidation of biological properties. Materials Today: Proceedings, 44, 2466-2470.
Molina, R. D. I., Campos-Silva, R., Macedo, A. J., Blázquez, M. A., Alberto, M. R., & Arena, M. E. (2020). Antibiofilm activity of coriander (Coriander sativum L.) grown in Argentina against food contaminants and human pathogenic bacteria. Industrial Crops and Products, 151, 112380.
Mourer, T., El Ghalid, M., d’Enfert, C., & Bachellier-Bassi, S. (2021). Involvement of amyloid proteins in the formation of biofilms in the pathogenic yeast Candida albicans. Research in Microbiology, 103813.
Nicholas E., Shirley W., Chuong B. D., Amy K. K., Joyce Y. T., Joanna L. M., David A. H. & Uta Francke (2012) A genetic variant near olfactory receptor genes influences cilantro preference. Genomics 1:22 1-7.
Ortega, E., Abriouel, H., Lucas, R., & Gálvez, A. (2010). Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins, 2, 2117-2131.
Osman, E. A., El-Amin, N. I., Al-Hassan, L. L., & Mukhtar, M. (2021). Multiclonal spread of Klebsiella pneumoniae across hospitals in Khartoum, Sudan. Journal of Global Antimicrobial Resistance, 24, 241-245.
Preedy, V. R., & Watson, R. R. (2020). Nuts and Seeds in Health and Disease Prevention (2nd ed.). Academic Press.
Raguvaran, R., Manuja, B. K., Chopra, M., Thakur, R., Anand, T., Kalia, A., & Manuja, A. (2017). Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. International Journal of Biological Macromolecules, 96, 185-191.
Ramanujam, S., Joshi, B. S., & Saxena, M. B. L. (1964). Extent and randomness of cross-pollination in some umbelliferous spices of India. Indian Journal of Genetics and Plant Breeding. 24, 62-67.
Saeed, S., & Tariq, P. (2007). Antimicrobial activities of Emblica officinalis and Coriandrum sativum against gram positive bacteria and Candida albicans. Pak. J. Bot, 39, 913-917.
Sampaio, L. S., de Annunzio, S. R., de Freitas, L. M., Dantas, L. O., de Boni, L., Donatoni, M. C., ... & Fontana, C. R. (2020). Influence of light intensity and irradiation mode on methylene blue, chlorin-e6 and curcumin-mediated photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 31, 101925.
Shivaee, A., Meskini, M., Roodaki, R. R. N., Kalani, B. S., Mirshekar, M., & Razavi, S. (2021). Evaluation of the effects of nano-curcumin on the expression of genes involved in biofilm formation in Staphylococcus epidermidis. Gene Reports, 23, 101026.
Shivaee, A., Mohammadzadeh, R., Shahbazi, S., Pardakhtchi, E., Ohadi, E., & Kalani, B. S. (2019). Time-variable expression levels of mazF, atlE, sdrH, and bap genes during biofilm formation in Staphylococcus epidermidis. Acta Microbiologica et Immunologica Hungarica, 66, 499-508.
Shi, Z. E., Liu, S. H., Tsai, C. H., Li, C. W., Chen, C. P., & Yu, Y. H. (2021). Enhancing charge transport performance of perovskite solar cells by using reduced graphene oxide-cysteine/nanogold hybrid material in the active layer. FlatChem, 28, 100254.
Silva, F., Domeño, C., & Domingues, F. C. (2020). Coriandrum Sativum L.: Characterization, biological activities, and applications. In Nuts and Seeds in Health and Disease Prevention ,497-519. Academic Press.
Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition, 3, 506-516.
Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M., & Sharma, A. (2020). Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants, 9, 762.
Telci, I., Toncer, O. G., & Sahbaz, N. (2006). Yield, essential oil content and composition of Coriandrum sativum varieties (var. vulgare Alef and var. microcarpum DC.) grown in two different locations. Journal of Essential Oil Research, 18, 189-193.
Thakar, M. A., Jha, S. S., Phasinam, K., Manne, R., Qureshi, Y., & Babu, V. H. (2021). X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea. Materials Today: Proceedings, 123, 108369.
Tongnuanchan, P., & Benjakul, S. (2014). Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of Food Science, 79, R1231-R1249.
Torabi, S., Joharchi, K., Kalhori, K. A., Sohrabi, M., & Fekrazad, R. (2021). Evaluation of antimicrobial photodynamic therapy on wounds infected by Staphylococcus aureus in animal models. Photodiagnosis and Photodynamic Therapy, 33, 102092.
Ueda, Y., Tokumasu, K., Hagiya, H., Iio, K., Fujimori, T., Kakehi, A., Okura., M., Minabe, H. & Otsuka, F. (2020). Mycobacterium chelonae bloodstream infection induced by osteomyelitis of toe: A case report. Journal of Infection and Chemotherapy, 26, 843-846.
Uwamino, Y., Nishimura, T., Sato, Y., Tamizu, E., Uno, S., Mori, M., Fujiwara, H. Kawabe, H., Murata, M. & Hasegawa, N. (2020). Showering is associated with Mycobacterium avium complex lung disease: An observational study in Japanese women. Journal of Infection and Chemotherapy, 26, 211-214.
Veeraraghavan, V. P., Periadurai, N. D., Karunakaran, T., Hussain, S., Surapaneni, K. M., & Jiao, X. (2021). Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi Journal of Biological Sciences.
Wahl, B., O'Brien, K. L., Greenbaum, A., Majumder, A., Liu, L., Chu, Y., & Knoll, M. D. (2018). Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. The Lancet Global Health, 6, e744-e757.
Wang, X., Tian, L., Fu, J., Liao, S., Yang, S., Jia, X., & Gong, G. (2021). Evaluation of the membrane damage mechanism of thymol against Bacillus cereus and its application in the preservation of skim milk. Food Control, 108435.
Waris, A., Din, M., Ali, A., Ali, M., Afridi, S., Baset, A., & Khan, A. U. (2021). A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorgan. Chem. Commun, 123, 1387-7003.
Wong, P. Y., & Kitts, D. D. (2006). Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food chemistry, 97, 505-515.
Yalçın C. & Erşan Karababa (2007) Physical properties of coriander seeds (Coriandrum sativum L.). Journal of Food Engineering 80-2: 408-416.
Yehia, R. S., Osman, G. H., Assaggaf, H., Salem, R., & Mohamed, M. S. (2020). Isolation of potential antimicrobial metabolites from endophytic fungus Cladosporium cladosporioides from endemic plant Zygophyllum mandavillei. South African Journal of Botany, 134, 296-302.
Yuan, R., Liu, Z., Zhao, J., Wang, Q. Q., Zuo, A., Huang, L., Hongwei G., Qiongming X., A. Shilin, K., Y. &Yang, S. (2020). Novel compounds in fruits of coriander (Coşkuner & Karababa) with anti-inflammatory activity. Journal of Functional Foods, 73, 104145.
Yue, X., Huang, Y., Zhang, Y., Ouyang, H., Xie, J., & Fu, Z. (2021). Mycobacteriophage SWU1-Functionalized magnetic particles for facile bioluminescent detection of Mycobacterium smegmatis. Analytica Chimica Acta, 1145, 17-25.
Zhang, L., Lyng, J. G., Xu, R., Zhang, S., Zhou, X., & Wang, S. (2019). Influence of radio frequency treatment on in-shell walnut quality and Staphylococcus aureus ATCC 25923 survival. Food Control, 102, 197-205.
電子全文 電子全文(網際網路公開日期:20260725)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top