跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:米俊仲
研究生(外文):Mi, Jun-Zhong
論文名稱:沙福芽孢桿菌 (Bacillus safensis) 對白蝦成長促進與免疫調節之研究
論文名稱(外文):Effects of dietary Bacillus safensis on growth performance and immune modulation of white shrimp (Litopenaeus vannamei)
指導教授:胡紹揚
指導教授(外文):Hu, Shao-Yang
口試委員:劉俊宏邱國勛朱建宏
口試委員(外文):Liu, Chun-HungChiu, Kuo-HsunChu, Jen-Hong
口試日期:2021-07-20
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:66
中文關鍵詞:南美白蝦益生菌沙福芽孢桿菌成長促進免疫調節
外文關鍵詞:Litopenaeus vannameiprobioticsBacillus safensisgrowth performanceimmune modulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究由吳郭魚腸道中篩選出一株具澱粉酶、蛋白酶、纖維素酶及木聚醣酶活性之菌株,經過16S rDNA序列鑑定及生化分析,確認該菌株為沙福芽孢桿菌 (Bacillus safenesis)。抗生素敏感性試驗結果顯示此菌株對於數種抗生素均無抗藥性。為評估其是否具有作為水產養殖益生菌之潛力,在自製飼料中添加105 CFU/g、106 CFU/g與107 CFU/g的B. safenesis,並餵食白蝦8週,分析該菌株對白蝦的生長促進、免疫調節、疾病抵抗及肝胰腺菌相之改善。結果顯示,添加106 CFU/g與107 CFU/g的組別,其體重增加及飼料效益方面皆顯著高於未添加B. safenesis的控制組。在免疫指標分析中,攝食107 CFU/g的B. safenesis的白蝦,其血液中酚氧化酶、超氧化物歧化酶、呼吸爆、溶菌酶及吞噬活性皆顯著高於控制組;另外,105 CFU/g及106 CFU/g組別在酚氧化酶、呼吸爆及吞噬活性分析中,亦有提升活性的趨勢。在免疫基因分析中,以real-time PCR分析免疫相關基因prophenoloxidase、TNF-α、astakine以及lysozyme的表現量,其中106 CFU/g與107 CFU/g的組別在四種基因表現量皆顯著高於控制組,105 CFU/g的組別在TNF-α、astakine及lysozyme的表現量相較於控制組亦有顯著提升。以溶藻弧菌 (Vibrio alginolyticus) 注射白蝦感染7天後,結果顯示餵食106 CFU/g與107 CFU/g的組別,其累積死亡率顯著低於控制組。次世代定序結果說明白蝦攝食B. safenesis有助於改變其菌相。綜上所述,每日以每克飼料含106 CFU之B. safenesis餵食白蝦,有助於白蝦之生長促進、免疫調節、疾病抵抗以及肝胰腺菌相之變化,說明B. safenesis具有潛力開發作為應用於水產養殖之益生菌。
In the present study, a strain with amylase, protease, cellulase and xylanase activities, was isolated from the intestine of Nile tilapia and characterized as Bacillus safensis by 16S rDNA sequencing and biochemical analysis. In order to evaluate the efficacy of B. safensis as a probiotic on improvement of growth performance, immune modulation, disease resistance and gut microbiota of white shrimp (Litopenaeus vannamei), shrimp was fed with diet containing 105 CFU/g (G1), 106 CFU/g (G2) or 107 CFU/g (G3) for eight weeks. The results showed that weight gain and feed efficiency in the shrimps of G2 and G3 groups were significantly increased than those in shrimp of control group. Immune parameters including phenoloxidase, superoxide dismutase (SOD), respiratory burst, lysozyme and phagocytic activities in shrimp fed diet containing 107 CFU/g of B. safenesis were significantly higher than those in shrimp of control group. In addition, shrimps of G1 and G2 groups were also showed significant difference from the shrimp of control group in phenoloxidase, respiratory burst and phagocytic activity. The expression level of prophenoloxidase, TNF-α, astakine and lysozyme genes in hepatopancreas of shrimps in G1, G2 and G3 groups were significantly higher than those in shrimp of control group. A significant decreasing of cumulative mortality was exhibited in white shrimp fed diet containing 106 CFU/g and 107 CFU/g of B. safenesis after challenging with Vibrio alginolyticus. The shrimps dietary supplemented with B. safensis revealed an improved microbiota in hepatopancreas of white shrimp were performed by next generation sequencing (NGS). In summary, dietary feeding of diet containing 106 CFU/g of B. safenesis could improve growth performance, immune modulation, disease resistance and microbiota of white shrimp. The results suggested that B. safenesis has potential to be developed as a probiotic for aquaculture.
摘 要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VIII
表目錄 IX
第一章 前言 1
第二章 文獻回顧 3
2.1. 白蝦的簡介 3
2.1.1. 白蝦的生長特性 3
2.1.2. 台灣白蝦發展史 3
2.1.3. 台灣白蝦養殖現況及面臨問題 4
2.1.4. 弧菌 (Vibrio spp.) 4
2.2. 益生菌 5
2.2.1. 益生菌的定義 5
2.2.2. 益生菌於水產養殖之應用 6
2.2.3. 芽孢桿菌 (Bacillus) 7
2.2.4. 沙福芽孢桿菌 (B. safensis) 8
2.3. 白蝦免疫系統 9
2.3.1. 細胞性免疫 9
2.3.2. 體液性免疫 11
2.4. 研究目的 12
第三章 材料與方法 13
3.1. 實驗菌株 13
3.1.1. 芽孢桿菌 (Bacillus) 篩選 13
3.1.2. 菌株之活化與保存 13
3.1.3. 菌株特性分析 14
3.1.3.1. 蛋白酶試驗 (Protease) 14
3.1.3.2. 澱粉酶試驗 (Amylase) 14
3.1.3.3. 纖維水解酶試驗 (Cellulase) 15
3.1.3.4. 木聚糖酶試驗 (Xylanase) 15
3.1.3.5. 菌株對抗生素之敏感性 16
3.1.4. 菌株鑑定 16
3.1.5. 菌株標準曲線 16
3.2. B. safensis作為飼料補充物對白蝦之生長評估 17
3.2.1. 自製基礎飼料 17
3.2.2. 飼料組成分析 19
3.2.2.1. 水分測定 (Moisture) 19
3.2.2.2. 灰分測定 (Ash) 19
3.2.2.3. 粗蛋白測定 (Crude protein) 19
3.2.2.4. 粗脂質測定 (Ether extract) 20
3.2.3. 實驗動物分組與飼養 21
3.2.4. 白蝦體重成長之變化 21
3.3. 白蝦免疫指標分析 22
3.3.1. 白蝦血液樣本採集 22
3.3.2. 酚氧化酶活性分析 (Phenoloxidase activity, PO) 22
3.3.3. 呼吸爆 (Respiratory burst) 22
3.3.4. 超氧化物歧化酶活性分析 (Superoxide dismutase activity, SOD) 23
3.3.5. 溶菌酶標準曲線 23
3.3.6. 溶菌酶活性分析 (Lysozyme activity) 24
3.3.7. 吞噬活性 (Phagocytic activity) 24
3.4. 白蝦免疫基因分析 25
3.4.1. 白蝦肝胰腺RNA抽取 25
3.4.2. 反轉錄酶反應 (Reverse Transcriptase, RT) 25
3.4.3. 即時定量聚合酶連鎖反應 (Real-time PCR) 25
3.5. 病原菌之毒性測試 28
3.5.1. 病原菌之活化與標準曲線 28
3.5.2. 病原菌注射 28
3.6. 白蝦肝胰腺菌群分析 28
3.6.1. 肝胰腺細菌genomic DNA抽取 28
3.6.2. 次世代定序 (Next-Generation Sequencing, NGS) 29
3.7. 統計分析 29
第四章 結果 30
4.1. 菌株篩選鑑定與特性分析 30
4.2. 餵食B. safensis對白蝦成長之影響 37
4.3. 餵食B. safensis對白蝦免疫調節之影響 39
4.4. 餵食B. safensis對白蝦免疫基因表現之影響 41
4.5. 餵食B. safensis對白蝦疾病抵抗之影響 43
4.6. 餵食B. safensis對白蝦肝胰腺菌相之影響 45
第五章 討論 49
第六章 結論 53
第七章 參考文獻 54
丁雲源。(2005)。白蝦養殖發展史。水產試驗所特刊第6號,行政院農業委員會水產試驗所海水繁養殖研究中心,3-4。
陳弘成。(2005)。白蝦室外超高密度之養殖、產量與管理。水產試驗所特刊第6號,國立臺灣海洋大學應用經濟研究所,147-153。
聯合國糧食及農業組織。(2020)。世界漁業和水產養殖狀況。
行政院農業委員會漁業署。(2018)。漁業統計年報。
Abarike, E. D., Jian, J., Tang, J., Cai, J., Yu, H., Lihua, C.& Jun, L. (2018). Influence of traditional Chinese medicine and Bacillus species (TCMBS) on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. 49(7), 2366-2375.
Abdelli, F., Jardak, M., Elloumi, J., Stien, D., Cherif, S., Mnif, S.& Aifa, S. (2019). Antibacterial, anti-adherent and cytotoxic activities of surfactin(s) from a lipolytic strain Bacillus safensis F4. Biodegradation, 30(4), 287-300.
Abriouel, H., Franz, C. M. A. P., Omar, N. B.& Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201-232.
Adel, M., El-Sayed, A.-F. M., Yeganeh, S., Dadar, M.& Giri, S. S. (2017). Effect of potential probiotic Lactococcus lactis subsp. Lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Probiotics and Antimicrobial Proteins, 9(2), 150-156.
Aderibigbe, A., Cowieson, A. J., Sorbara, J. O., Pappenberger, G.& Adeola, O. (2020). Growth performance and amino acid digestibility responses of
  broiler chickens fed diets containing purified soybean trypsin inhibitor and supplemented with a monocomponent protease. Poultry Science, 99(10), 5007-5017.
Adineh, H., Jafaryan, H., Sahandi, J.& Alizadeh, M. (2013). Effect of Bacillus spp. probiotic on growth and feeding performance of rainbow trout (Oncorhynchus mykiss) larvae. Bulgarian Journal of Veterinary Medicine, 16, 29-36.
Ahmed, T., Shahid, M., Noman, M., Bilal Khan Niazi, M., Zubair, M., Almatroudi, A., Khurshid, M., Tariq, F., Mumtaz, R.& Li, B. (2020). Bioprospecting a native silver-resistant Bacillus safensis strain for green synthesis and subsequent antibacterial and anticancer activities of silver nanoparticles. Journal of Advanced Research, 24, 475-483.
Akiyama, D., Dominy, W.& Lawrence, A. (1992). Penaeid shrimp nutrition. Developments in Aquaculture and Fisheries Science, 23, 535-568.
Amoah, K., Huang, Q. C., Tan, B. P., Zhang, S., Chi, S. Y., Yang, Q. H., Liu, H. Y.& Dong, X. H. (2019). Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 87, 796-808.
Asaduzzaman, M., Iehata, S., Akter, S., Kader, M. A., Ghosh, S. K., Khan, M. N. A.& Abol-Munafi, A. B. (2018). Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides. Aquaculture Reports, 9, 53-61.
Azad, M. A. K., Sarker, M., Li, T.& Yin, J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 9478630.
Banerjee, S., Ooi, M. C., Shariff, M.& Khatoon, H. (2012). Antibiotic resistant Salmonella and Vibrio associated with farmed Litopenaeus vannamei. ScientificWorldJournal, 2012, 130136.
Bulet, P., Hetru, C., Dimarcq, J. L.& Hoffmann, D. (1999). Antimicrobial peptides in insects; structure and function. Developmental & Comparative Immunology, 23(4), 329-344.
Buruiană, C. T., Georgiana, P.& Vizireanu, C. (2014). Effects of probiotic Bacillus species in aquaculture – An overview. Annals of the University Dunarea de Jos of Galati, 38, 9-17.
Butt, U. D., Lin, N., Akhter, N., Siddiqui, T., Li, S.& Wu, B. (2021). Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. Fish & Shellfish Immunology, 114, 263-281.
Cerenius, L., Lee, B. L.& Söderhäll, K. (2008). The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology, 29(6), 263-271.
Cha, J. H., Rahimnejad, S., Yang, S. Y., Kim, K. W.& Lee, K. J. (2013). Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture, 402-403, 50-57.
Chakraborty, U., Chakraborty, B. N., Chakraborty, A. P.& Dey, P. L. (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29(5), 789-803.
Drews, G. (2000). The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiology Reviews, 24(3), 225-249.
FAO/WHO. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina, 1-4.
Farzanfar, A. (2006). The use of probiotics in shrimp aquaculture. FEMS Immunology & Medical Microbiology, 48(2), 149-158.
Feng, N., Wang, D., Wen, R.& Li, F. (2014). Functional analysis on immune deficiency (IMD) homolog gene in Chinese shrimp Fenneropenaeus chinensis. Molecular Biology, 41, 1437-1444.
Fernandes, S., Kerkar, S., D'Costa, A., Costa, M., Mishra, A., Shyama, S. K.& Das, K. R. (2021). Immuno-stimulatory effect and toxicology studies of salt pan bacteria as probiotics to combat shrimp diseases in aquaculture. Fish & Shellfish Immunology, 113, 69-78.
Folch, J., Lees, M.& Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 226(1), 497-509
Fuller, R. (1989). Probiotics in man and animals. J Appl Bacteriol, 66(5), 365-378.
Gao, S., Pan, L., Zhang, M., Huang, F., Zhang, M.& He, Z. (2020). Screening of bacterial strains from the gut of Pacific white shrimp (Litopenaeus vannamei) and their efficiencies in improving the fermentation of soybean meal. FEMS Microbiol Lett, 367(2).
Geng, X., Dong, X.-H., Tan, B.-P., Yang, Q.-H., Chi, S.-Y., Liu, H.-Y.& Liu, X.-Q. (2012). Effects of dietary probiotic on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. 18(1), 46-55.
González-Félix, M. L.& Perez-Velazquez, M. (2002). Current status of lipid nutrition of Pacific white shrimp, Litopenaeus vannamei. Avances en Nutrición Acuicola, Memorias del Sexto Simposium Internacional de Nutrición Acuícola
Hai, N. V. (2015). The use of probiotics in aquaculture. J Appl Microbiol, 119(4), 917-935.
Hamza, A., Fdhila, K., Zouiten, D.& Masmoudi, A. S. (2016). Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: effects on growth performance and digestive enzyme activities. Fish Physiology and Biochemistry, 42(2), 495-507.
Hancock, R. E. (1998). The therapeutic potential of cationic peptides. Expert Opin Investig Drugs, 7(2), 167-174.
Hansen, G. H.& Olafsen, J. A. (1999). Bacterial Interactions in early life stages of marine cold water fish. Microb Ecol, 38(1), 1-26.
Hauville, M. R., Zambonino-Infante, J. L., Gordon Bell, J., Migaud, H.& Main, K. L. (2016). Effects of a mix of Bacillus sp. as a potential probiotic for Florida pompano, common snook and red drum larvae performances and digestive enzyme activities. Aquaculture Nutrition, 22(1), 51-60.
Hellio, C., Bado-Nilles, A., Gagnaire, B., Renault, T.& Thomas-Guyon, H. (2007). Demonstration of a true phenoloxidase activity and activation of a ProPO cascade in Pacific oyster, Crassostrea gigas (Thunberg) in vitro. Fish & Shellfish Immunology, 22(4), 433-440.
Hong, H. A., Duc le, H.& Cutting, S. M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiol Rev, 29(4), 813-835.
Hoseinifar, S. H., Dadar, M.& Ringø, E. (2017). Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: The functional feed additives scenario. Aquaculture Research, 48(8), 3987-4000.
Huang, X. D., Yin, Z. X., Liao, J. X., Wang, P. H., Yang, L. S., Ai, H. S., Gu, Z. H., Jia, X. T., Weng, S. P., Yu, X. Q.& He, J. G. (2009). Identification and functional study of a shrimp Relish homologue. Fish & Shellfish Immunology, 27(2), 230-238.
Huang, F., Pan, L., Song, M., Tian, C.& Gao, S. (2018). Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health. Applied Microbiology and Biotechnology, 102(19), 8585-8598.
Hudson, G. (1986). Blood cells of marine invertebrates: experimental systems in cell biology and comparative physiology. MBL Lectures in Biology. Journal of Anatomy, 145, 237-238.
Itami, T., Asano, M., Tokushige, K., Kubono, K., Nakagawa, A., Takeno, N., Nishimura, H., Maeda, M., Kondo, M.& Takahashi, Y. (1998). Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administration of peptidoglycan derived from Bifidobacterium thermophilum. Aquaculture, 164(1), 277-288.
Janeway, C., Jr.& Medzhitov, R. (2000). Viral interference with IL-1 and toll signaling. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10682-10683.
Johansson, A., Jesaitis, A. J., Lundqvist, H., Magnusson, K. E., Sjölin, C., Karlsson, A.& Dahlgren, C. (1995). Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis. Cell Immunol, 161(1), 61-71.
Johansson, M. W.& Söderhäll, K. (1989). A cell adhesion factor from crayfish haemocytes has degranulating activity towards crayfish granular cells. Insect Biochemistry, 19(2), 183-190.
Kavitha, M., Raja, M.& Perumal, P. (2018). Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquaculture Reports, 11, 59-69.
Kobayashi, M., Johansson, M. W.& Söderhäll, K. (1990). The 76 kD cell-adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Cell and Tissue Research, 260(1), 13-18.
Kothari, V. V., Kothari, R. K., Kothari, C. R., Bhatt, V. D., Nathani, N. M., Koringa, P. G., Joshi, C. G.& Vyas, B. R. M. (2013). Genome sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India. ASM Journals, 1(5), e00671-00613.
Kuebutornye, F. K. A., Abarike, E. D.& Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, 820-828.
Lee, M. H., Osaki, T., Lee, J. Y., Baek, M. J., Zhang, R., Park, J. W., Kawabata, S.-i., Söderhäll, K.& Lee, B. L. (2004). Peptidoglycan recognition proteins involved in 1,3-β-D-glucan-dependent prophenoloxidase activation system of insect. Journal of Biological Chemistry, 279(5), 3218-3227.
Lehrer, R. I.& Ganz, T. (1999). Antimicrobial peptides in mammalian and insect host defence. Current Opinion in Immunology, 11(1), 23-27.
Leonel Ochoa-Solano, J.& Olmos-Soto, J. (2006). The functional property of Bacillus for shrimp feeds. Food Microbiology, 23(6), 519-525.
Li, H., Yin, B., Wang, S., Fu, Q., Xiao, B., Lǚ, K., He, J.& Li, C. (2018). RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides. PLoS Pathog, 14(9), e1007109.
Li, K., Zheng, T., Tian, Y., Xi, F., Yuan, J., Zhang, G.& Hong, H. (2007). Beneficial effects of Bacillus licheniformis on the intestinal microflora and immunity of the white shrimp, Litopenaeus vannamei. Biotechnology Letters, 29(4), 525-530.
Lilly, D. M.& Stillwell, R. H. (1965). Probiotics: Growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748.
Liu, C. H., Cheng, W., Hsu, J. P.& Chen, J. C. (2004). Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis Aquat Organ, 61(1-2), 169-174.
Liu, C. H., Chiu, C. S., Ho, P. L.& Wang, S. W. (2009). Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. J Appl Microbiol, 107(3), 1031-1041.
Liu, C. H., Yeh, S. T., Cheng, S.-Y.& Chen, J. C. (2004). The immune response of the white shrimp Litopenaeus vannamei and its susceptibility to Vibrio infection in relation with the moult cycle. Fish & Shellfish Immunology, 16(2), 151-161.
Liu, H., Li, Z., Tan, B., Lao, Y., Duan, Z., Sun, W.& Dong, X. (2014). Isolation of a putative probiotic strain S12 and its effect on growth performance, non-specific immunity and disease-resistance of white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 41(2), 300-307.
Livak, K.J.& Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408.
Loker, E. S., Adema, C. M., Zhang, S.-M.& Kepler, T. B. (2004). Invertebrate immune systems – not homogeneous, not simple, not well understood. Immunological Reviews, 198(1), 10-24.
Luis-Villaseñor, I. E., Castellanos-Cervantes, T., Gomez-Gil, B., Carrillo-García, A. E., Campa-Córdova, A. I.& Ascencio, F. (2013). Probiotics in the intestinal tract of juvenile whiteleg shrimp Litopenaeus vannamei: modulation of the bacterial community. World J Microbiol Biotechnol, 29(2), 257-265.
Maas, R. M., Deng, Y., Dersjant-Li, Y., Petit, J., Verdegem, M. C. J., Schrama, J. W.& Kokou, F. (2021). Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Scientific Reports, 11(1), 8221.
Maas, R. M., Verdegem, M. C. J., Wiegertjes, G. F.& Schrama, J. W. (2020). Carbohydrate utilisation by tilapia: a meta-analytical approach. Reviews in Aquaculture, 12(3), 1851-1866.
Magnadottir, B. (2010). Immunological control of fish diseases. Mar Biotechnol (NY), 12(4), 361-379.
Marshall, S. H.& Arenas, G. (2003). Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology, 6, 271-284.
Nappi, A. J.& Ottaviani, E. (2000). Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays, 22(5), 469-480.
Nathan, C.& Shiloh, M. U. (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A, 97(16), 8841-8848.
Nayak, S. K. (2010). Probiotics and immunity: A fish perspective. Fish & Shellfish Immunology, 29(1), 2-14.
Nguyen, H. T., Nguyen, T. T., Pham, H. T. T., Nguyen, Q. T. N., Tran, M. T., Nguyen, A. H., Phan, T. N., Bui, H. T. V., Dao, H. T. T.& Nguyen, A. T. V. (2018). Fate of carotenoid-producing Bacillus aquimaris SH6 colour spores in shrimp gut and their dose-dependent probiotic activities. PLOS ONE, 13(12), e0209341.
Niu, K.-M., Kothari, D., Lee, W.-D., Zhang, Z., Lee, B.-J., Kim, K.-W., Wu, X., Han, H.-S., Khosravi, S., Lee, S.-M.& Kim, S.-K. (2021). Probiotic potential of the farmed olive flounder, Paralichthys olivaceus, autochthonous gut microbiota. Probiotics and Antimicrobial Proteins, 13(4), 1106-1118.
Parker, R. B. (1974). Probiotics. The other half of the antibiotics story. Anim. Nutr. Health, 29, 4-8.
Rendón, L.& Balcázar, J. L. (2003). Inmunología de camarones: Conceptos básicos y recientes avances. AquaTIC(19), 27-33.
Resende, J. A., Silva, V. L., Fontes, C. O., Souza-Filho, J. A., Rocha de Oliveira, T. L., Coelho, C. M., César, D. E.& Diniz, C. G. (2012). Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes and environments, 27(4), 449-455.
Ringoe, E., Olsen, R., González Vecino, J., Wadsworth, S.& Song, S. (2012). Use of immunostimulants and nucleotides in aquaculture: a review. J. Mar. Sci. Res. Dev., 2, 1-22.
Robalino, J., Browdy, C. L., Prior, S., Metz, A., Parnell, P., Gross, P.& Warr, G. (2004). Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. 78(19), 10442-10448.
Satomi, M., La Duc, M. T.& Venkateswaran, K. (2006). Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol, 56(8), 1735-1740.
Schultz, M., Burton, J. P.& Chanyi, R. M. (2017). Chapter 11 - Use of Bacillus in human intestinal probiotic applications. The Microbiota in Gastrointestinal Pathophysiology, 119-123.
Selim, K. M.& Reda, R. M. (2015). Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish & Shellfish Immunology, 44(2), 496-503.
Shi, Y.-Z., Suwaree, K., Chen, Y.-Y., Hsu, C.-H.& Chen, J.-C. (2020). White shrimp Litopenaeus vannamei hemocytes receiving fucoidan release endogenous molecules that activate and synergize innate immunity in the presence of fucoidan. Aquaculture, 519, 734720.
Soto-Rodriguez, S. A., Gomez-Gil, B.& Lozano, R. (2010). 'Bright-red' syndrome in Pacific white shrimp Litopenaeus vannamei is caused by Vibrio harveyi. Diseases of aquatic organisms, 92(1), 11-19.
Sun, Y.-Z., Yang, H.-L., Ma, R.-L.& Lin, W.-Y. (2010). Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish & Shellfish Immunology, 29(5), 803-809.
Tacon, A. G. J.& Metian, M. (2015). Feed matters: Satisfying the feed demand of aquaculture. Reviews in Fisheries Science & Aquaculture, 23(1), 1-10.
Tapia-Paniagua, S. T., Chabrillón, M., Díaz-Rosales, P., de la Banda, I. G., Lobo, C., Balebona, M. C.& Moriñigo, M. A. (2010). Intestinal microbiota diversity of the flat fish Solea senegalensis (Kaup, 1858) following probiotic administration. Microbial Ecology, 60(2), 310-319.
Thompson, J., Gregory, S., Plummer, S., Shields, R. J.& Rowley, A. F. (2010). An in vitro and in vivo assessment of the potential of Vibrio spp. as probiotics for the Pacific white shrimp, Litopenaeus vannamei. J Appl Microbiol, 109(4), 1177-1187.
van Barneveld, R. J. (1999). Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency. Nutr Res Rev, 12(2), 203-230.
van de Braak, C. B. T., Botterblom, M. H. A., Liu, W., Taverne, N., van der Knaap, W. P. W.& Rombout, J. H. W. M. (2002). The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish & Shellfish Immunology, 12(3), 253-272.
Vandenberghe, J., Verdonck, L., Robles-Arozarena, R., Rivera, G., Bolland, A., Balladares, M., Gomez-Gil, B., Calderon, J., Sorgeloos, P.& Swings, J. (1999). Vibrios associated with Litopenaeus vannamei larvae, postlarvae, broodstock, and hatchery probionts. Appl Environ Microbiol, 65(6), 2592-2597.
Velázquez-Lizárraga, A. E., Juárez-Morales, J. L., Racotta, I. S., Villarreal-Colmenares, H., Valdes-Lopez, O., Luna-González, A., Rodríguez-Jaramillo, C., Estrada, N.& Ascencio, F. (2019). Transcriptomic analysis of Pacific white shrimp (Litopenaeus vannamei, Boone 1931) in response to acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. PloS one, 14(8), e0220993-e0220993.
Verschuere, L., Rombaut, G., Sorgeloos, P.& Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology reviews : MMBR, 64(4), 655-671.
Wang, R., Lee, S. Y., Cerenius, L.& Söderhäll, K. (2001). Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. Eur J Biochem, 268(4), 895-902.
Wang, Y., Al Farraj, D. A., Vijayaraghavan, P., Hatamleh, A. A., Biji, G. D.& Rady, A. M. (2020). Host associated mixed probiotic bacteria induced digestive enzymes in the gut of tiger shrimp Penaeus monodon. Saudi J Biol Sci, 27(9), 2479-2484.
Xiong, J. (2018). Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Applied Microbiology and Biotechnology, 102(17), 7343-7350.
Young Lee, S.& Söderhäll, K. (2002). Early events in crustacean innate immunity. Fish & Shellfish Immunology, 12(5), 421-437.
Yu, P.& Chen, Y. (2013). Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702. BMC Biotechnology, 13(1), 78.
Zhang, M., Pan, L., Fan, D., He, J., Su, C., Gao, S.& Zhang, M. (2021). Study of fermented feed by mixed strains and their effects on the survival, growth, digestive enzyme activity and intestinal flora of Penaeus vannamei. Aquaculture, 530, 735703.
Zheng, L., Li, D., Li, Z. L., Kang, L. N., Jiang, Y. Y., Liu, X. Y., Chi, Y.-P., Li, Y. Q.& Wang, J. H. (2017). Effects of Bacillus fermentation on the protein microstructure and anti-nutritional factors of soybean meal. 65(6), 520-526.
Zokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A.& Nejat, N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 33(4), 683-689.
電子全文 電子全文(網際網路公開日期:20260823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊