行政院農業委員會。2021。黑豆。農糧署作物生產組雜糧特作科。
陳經學。2020。豌豆蛋白的分離及其加工上特性的研究。國立屏東科技大學食品科學系碩士學位論文。蔡寬慈。2020。白芝麻蛋白質的萃取與功能特性之探討。國立屏東科技大學食品科學系碩士學位論文。Arntfield, S. D., & Maskus, H. D. (2011b). 9 - Peas and other legume proteins. In G. O. Phillips & P. A. Williams (Eds.), Handbook of Food Proteins (pp. 233–266). Woodhead Publishing.
Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347.
Boss, E. A., Filho, R. M., & de Toledo, E. C. V. (2004). Freeze drying process: Real time model and optimization. Chemical Engineering and Processing: Process Intensification, 43(12), 1475–1485.
Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431.
Brishti, F. H., Chay, S. Y., Muhammad, K., Ismail-Fitry, M. R., Zarei, M., Karthikeyan, S., & Saari, N. (2020). Effects of drying techniques on the physicochemical, functional, thermal, structural and rheological properties of mung bean (Vigna radiata) protein isolate powder. Food Research International, 138, 109783.
Chen, N., Zhao, M., Chassenieux, C., & Nicolai, T. (2016). Thermal aggregation and gelation of soy globulin at neutral pH. Food Hydrocolloids, 61, 740–746.
Chiang, J. H., Tay, W., Ong, D. S. M., Liebl, D., Ng, C. P., & Henry, C. J. (2021). Physicochemical, textural and structural characteristics of wheat gluten-soy protein composited meat analogues prepared with the mechanical elongation method. Food Structure, 28, 100183.
Dadi, D. W., Emire, S. A., Hagos, A. D., & Eun, J.-B. (2020). Physical and functional properties, digestibility, and storage stability of spray- and freeze-dried microencapsulated bioactive products from Moringa stenopetala Leaves Extract. Industrial Crops and Products, 156, 112891.
Day, L. (2013). Proteins from land plants – Potential resources for human nutrition and food security. Trends in Food Science & Technology, 32(1), 25–42.
Dekkers, B. L., Boom, R. M., & van der Goot, A. J. (2018). Structuring processes for meat analogues. Trends in Food Science & Technology, 81, 25–36.
Feyzi, S., Milani, E., & Golimovahhed, Q. A. (2018). Grass Pea (Lathyrus sativus L.) Protein Isolate: The effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocolloids, 74, 187–196.
Garcia-Amezquita, L. E., Welti-Chanes, J., Vergara-Balderas, F. T., & Bermúdez-Aguirre, D. (2016). Freeze-drying: The Basic Process. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 104–109). Academic Press.
Ge, J., Sun, C.-X., Mata, A., Corke, H., Gan, R.-Y., & Fang, Y. (2020). Physicochemical and pH-dependent functional properties of proteins isolated from eight traditional Chinese beans. Food Hydrocolloids, 106288.
Gong, K.-J., Shi, A.-M., Liu, H.-Z., Liu, L., Hu, H., Adhikari, B., & Wang, Q. (2016). Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate. Journal of Food Engineering, 170, 33–40.
Grabowska, K. J., Zhu, S., Dekkers, B. L., de Ruijter, N. C. A., Gieteling, J., & van der Goot, A. J. (2016). Shear-induced structuring as a tool to make anisotropic materials using soy protein concentrate. Journal of Food Engineering, 188, 77–86.
Habeych, E., Dekkers, B., van der Goot, A. J., & Boom, R. (2008). Starch–zein blends formed by shear flow. Chemical Engineering Science, 63(21), 5229–5238.
Hyeon, H., Xu, J. L., Kim, J. K., & Choi, Y. (2020). Comparative metabolic profiling of cultivated and wild black soybeans reveals distinct metabolic alterations associated with their domestication. Food Research International, 134, 109290.
Jiang, S., & Nail, S. L. (1998). Effect of process conditions on recovery of protein activity after freezing and freeze-drying. European Journal of Pharmaceutics and Biopharmaceutics, 45(3), 249–257.
Kim, S. Y., Wi, H.-R., Choi, S., Ha, T. J., Lee, B. W., & Lee, M. (2015). Inhibitory effect of anthocyanin-rich black soybean testa (Glycine max (L.) Merr.) on the inflammation-induced adipogenesis in a DIO mouse model. Journal of Functional Foods, 14, 623–633.
Lajnaf, R., Trigui, I., Samet-Bali, O., Attia, H., & Ayadi, M. A. (2020). Comparative study on emulsifying and physico-chemical properties of bovine and camel acid and sweet wheys. Journal of Food Engineering, 268, 109741.
Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147.
Lin, S., Huff, H. E., & Hsieh, F. (2002). Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. Journal of Food Science, 67(3), 1066–1072.
Liu, K., & Hsieh, F.-H. (2008). Protein–protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems. Journal of Agricultural and Food Chemistry, 56(8), 2681–2687.
Nishinari, K., Fang, Y., Nagano, T., Guo, S., & Wang, R. (2018). 6 - Soy as a food ingredient. In R. Y. Yada (Ed.), Proteins in Food Processing (Second Edition) (pp. 149–186). Woodhead Publishing.
Peng, Y., Kersten, N., Kyriakopoulou, K., & van der Goot, A. J. (2020). Functional properties of mildly fractionated soy protein as influenced by the processing pH. Journal of Food Engineering, 275, 109875.
Preece, K. E., Hooshyar, N., & Zuidam, N. J. (2017). Whole soybean protein extraction processes: A review. Innovative Food Science & Emerging Technologies, 43, 163–172.
Radix Astadi, I., & Paice, A. G. (2011). Chapter 27 - Black Soybean (Glycine max L. Merril) Seeds’ Antioxidant Capacity. In V. R. Preedy, R. R. Watson, & V. B. Patel (Eds.), Nuts and Seeds in Health and Disease Prevention (pp. 229–236). Academic Press.
Rahman, M. M., Byanju, B., Grewell, D., & Lamsal, B. P. (2020). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019.
Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170–184.
Samoto, M., Maebuchi, M., Miyazaki, C., Kugitani, H., Kohno, M., Hirotsuka, M., & Kito, M. (2007a). Abundant proteins associated with lecithin in soy protein isolate. Food Chemistry, 102(1), 317–322.
Samoto, M., Maebuchi, M., Miyazaki, C., Kugitani, H., Kohno, M., Hirotsuka, M., & Kito, M. (2007b). Abundant proteins associated with lecithin in soy protein isolate. Food Chemistry, 102(1), 317–322.
Schutyser, M. A. I., Pelgrom, P. J. M., van der Goot, A. J., & Boom, R. M. (2015). Dry fractionation for sustainable production of functional legume protein concentrates. Trends in Food Science & Technology, 45(2), 327–335.
Sha, L., & Xiong, Y. L. (2020). Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102, 51–61.
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49–67.
Vogelsang-O’Dwyer, M., Zannini, E., & Arendt, E. K. (2021). Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends in Food Science & Technology, 110, 364–374.
Wu, C., Hua, Y., Chen, Y., Kong, X., & Zhang, C. (2017). Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size. Food Hydrocolloids, 66, 389–395.
Yamashita, Y., Wang, L., Nakamura, A., Nanba, F., Saito, S., Toda, T., Nakagawa, J., & Ashida, H. (2020). Black soybean improves the vascular function through an increase in nitric oxide and a decrease in oxidative stress in healthy women. Archives of Biochemistry and Biophysics, 688, 108408.
Yuliarti, O., Kiat Kovis, T. J., & Yi, N. J. (2021). Structuring the meat analogue by using plant-based derived composites. Journal of Food Engineering, 288, 110138.