跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉儀秀
研究生(外文):Liu, Yi-Hsiu
論文名稱:研究黑豆蛋白的萃取條件及其加工特性
論文名稱(外文):Study on extraction conditions and processing characteristics of black bean (Glycine max (L.) Merr) protein
指導教授:林貞信
指導教授(外文):Lin, Jenshinn
口試委員:彭錦樵高莫森
口試委員(外文):Peng, Jin-ChyauMohsen Gavahian
口試日期:2021-07-13
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:84
中文關鍵詞:黑豆黑豆蛋白鹼萃取等電沉澱溶解度
外文關鍵詞:black beanblack bean proteinalkaline extractionisoelectric precipitationsolubility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,世界人口不斷的增長,環境持續地被開發及破壞,導致全球暖化、氣候變遷,氣候的改變影響了農業生產,造成糧食生產不足,其中最為科學家所關注的議題為替代肉類的植物性蛋白質,因此植物性蛋白質開始成為市場上的新焦點。而黑豆為大豆的一種,具有黑色種皮且富含豐富的蛋白質、澱粉、必需胺基酸以及微量元素。本研究以青仁黑豆為主原料,利用鹼萃取-等電沉澱法,以不同的萃取pH值(pH 8.0, pH 9.0, pH 10.0)自青仁黑豆中萃取其蛋白質,進行冷凍乾燥及噴霧乾燥,並分析黑豆蛋白粉的基本成分、萃取產率、蛋白質產率與不同粉末pH值(pH 5.0, pH 7.0, pH 9.0)以及不同環境pH值下之黑豆蛋白粉的加工特性,並探討量產的最適萃取條件。研究結果顯示,以等量的黑豆粉萃取所得之黑豆蛋白粉,皆以在pH 10.0下萃取有最高的萃取產率(26.13%, 36.68%)與蛋白質產率(37.77%, 49.95%),而以pH 8.0萃取有最高的蛋白質含量(58.63%, 55.76%)。保水能力與保油能力,分別以FD 10與FD 8於中性下具最高值(7.64 g/g, 6.23 g/g);蛋白質溶解度中,自製黑豆蛋白粉以冷涷乾燥組顯著高於噴霧乾燥組;乳化活性其整體趨勢與蛋白質溶解度相關,冷凍乾燥組與噴霧乾燥組中皆以pH 8.0萃取之黑豆蛋白粉有較好的趨勢(FD 8.0, SD 8.0);乳化穩定性整體以冷凍乾燥組較高;發泡能力測定中,自製黑豆蛋白粉的發泡能力與蛋白質溶解度相似,但以市售蛋白粉的發泡能力優於自製黑豆蛋白粉;SDS-PAGE的結果顯示,黑豆蛋白粉是由7S與11S球蛋白組成。綜合以上結果,大致以pH 8.0萃取之黑豆蛋白有較好的加工特性,而以pH 8.0萃取配合噴霧乾燥可能是為較好的量產條件。
In recent years, due to the continuous growth of the world’s population, the environment has been continuously developed and destroyed, which has led to global warming and climate change. The climate change has affected agricultural production, resulting in insufficient food production. Among that, the topic of most concern to scientists is the plant-based protein, a substitute of meat. So that, plant-based protein has become a new focus on the market. And, black beans is one of soybean that has black seed coat, also rich in protein, starch, and essential amino acids and trace elements. In this study, green kernel black soybeans were used as the main material, and the protein was extracted from green kernel black soybeans with different extraction pH values (pH 8.0, pH 9.0, pH 10.0) using the alkaline extraction-isoelectric precipitation method., and use the freeze drying and spray drying. Analyze the proximate components, extraction yield, protein yield, and processing characteristics of black soybean protein powder under different powder pH values (pH 5.0, pH 7.0, pH 9.0) and different environmental pH values, also discuss optimal condition for mass production. The research results show that the black bean protein powder extracted with the same amount of black bean powder has the highest extraction yield (26.13%, 36.68%) and protein yield (37.77%, 49.95%) at pH 10.0, but at pH 8.0 extraction condition, it had the highest protein content (58.63%, 55.76%). The water holding capacity and oil holding capacity, respectively FD 10 and FD 8 have the highest values under neutral conditions (7.64 g/g, 6.23 g/g). In the protein solubility, the freeze-drying group of self-extraction black soybean protein powder is significantly higher than that of the spray drying group. The overall trend of emulsifying activity index is related to protein solubility. Both freeze drying and spray drying of black soybean protein powders extracted with pH 8.0 have a better trend (FD 8.0, SD 8.0), also the overall emulsifying stability index of freeze-dried group is higher. In the foaming capacity, the foaming capacity of self-extraction black soybean protein powder is like the solubility of protein, but the foaming capacity of commercial protein powder is better than that of self-extraction black soybean protein powder. SDS-PAGE results showed that black soybean protein powder is composed of 7S and 11S globulin. Based on the above results, roughly the black soybean protein extracted with pH 8.0 has better processing characteristics, and extraction with pH 8.0 combined with spray drying may be a better mass production condition.
摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 IX
表目錄 XI
第1章 前言 1
第2章 文獻回顧 2
2.1 植物基蛋白質 2
2.1.1 植物蛋白的分類 4
2.1.2 植物基蛋白質的應用 4
2.1.2.1 擠壓加工 6
2.1.2.2 紡絲技術 6
2.1.2.3 剪切裝置 9
2.1.2.4 凍結結構 9
2.2 黑豆 12
2.2.1 黑豆簡介 12
2.2.2 黑豆的栽種與產量 12
2.2.3 黑豆的營養特性 13
2.2.4 黑豆中的植物化學物質 13
2.2.5 黑豆中的蛋白 15
2.3 植物蛋白的萃取方法 17
2.3.1 乾式分餾法 17
2.3.2 濕式分餾法 19
2.4 乾燥技術 21
2.4.1 冷凍乾燥 21
2.4.2 噴霧乾燥 25
2.5 植物蛋白的功能特性 27
2.5.1 蛋白質溶解度 27
2.5.2 乳化能力 27
2.5.3 發泡能力 28
2.5.4 保水及保油能力 28
2.5.5 凝膠能力 28
第 3 章 材料與方法 29
3.1 實驗設計 29
3.2 實驗流程 29
3.3 實驗原料 33
3.4 實驗設備 33
3.5 測定項目及分析方法 35
3.5.1 一般組成分分析 35
3.5.1.1 水分含量 35
3.5.1.2 灰分含量 35
3.5.1.3 粗蛋白含量 36
3.5.1.4 粗脂肪含量 37
3.5.1.5 總碳水化合物 37
3.5.2 理化性質分析 38
3.5.2.1 保水能力及保油能力測定 38
3.5.2.2 蛋白質溶解度測定 39
3.5.2.3 聚丙烯醯胺膠體電泳 40
3.5.2.4 乳化活性及乳化穩定性測定 42
3.5.2.5 發泡能力及發泡穩定性測定 43
3.5.2.6 掃描式電子顯微鏡觀察 44
3.5.3 實驗數據整理及統計分析 44
第 4 章 結果與討論 45
4.1 基本成分分析 45
4.1.1 原料基本成分分析 45
4.1.2 冷凍乾燥蛋白粉萃取產率、蛋白質產率及蛋白質含量 45
4.1.3 噴霧乾燥蛋白粉萃取產率、蛋白質產率及蛋白質含量 47
4.2 蛋白粉物理性質分析 51
4.2.1 色澤分析 51
4.2.2 保水能力及保油能力測試 54
4.2.3 蛋白質溶解度 57
4.2.4 聚丙烯醯胺膠體電泳 59
4.2.5 乳化活性及乳化穩定性 61
4.2.5.1 乳化活性 61
4.2.5.2 乳化穩定性 64
4.2.6 發泡能力及發泡穩定性 67
4.2.7 自製蛋白粉之微觀結構 72
第 5 章 結論與建議 76
參考文獻 77
作者簡介 84
行政院農業委員會。2021。黑豆。農糧署作物生產組雜糧特作科。
陳經學。2020。豌豆蛋白的分離及其加工上特性的研究。國立屏東科技大學食品科學系碩士學位論文。
蔡寬慈。2020。白芝麻蛋白質的萃取與功能特性之探討。國立屏東科技大學食品科學系碩士學位論文。
Arntfield, S. D., & Maskus, H. D. (2011b). 9 - Peas and other legume proteins. In G. O. Phillips & P. A. Williams (Eds.), Handbook of Food Proteins (pp. 233–266). Woodhead Publishing.
Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347.
Boss, E. A., Filho, R. M., & de Toledo, E. C. V. (2004). Freeze drying process: Real time model and optimization. Chemical Engineering and Processing: Process Intensification, 43(12), 1475–1485.
Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431.
Brishti, F. H., Chay, S. Y., Muhammad, K., Ismail-Fitry, M. R., Zarei, M., Karthikeyan, S., & Saari, N. (2020). Effects of drying techniques on the physicochemical, functional, thermal, structural and rheological properties of mung bean (Vigna radiata) protein isolate powder. Food Research International, 138, 109783.
Chen, N., Zhao, M., Chassenieux, C., & Nicolai, T. (2016). Thermal aggregation and gelation of soy globulin at neutral pH. Food Hydrocolloids, 61, 740–746.
Chiang, J. H., Tay, W., Ong, D. S. M., Liebl, D., Ng, C. P., & Henry, C. J. (2021). Physicochemical, textural and structural characteristics of wheat gluten-soy protein composited meat analogues prepared with the mechanical elongation method. Food Structure, 28, 100183.
Dadi, D. W., Emire, S. A., Hagos, A. D., & Eun, J.-B. (2020). Physical and functional properties, digestibility, and storage stability of spray- and freeze-dried microencapsulated bioactive products from Moringa stenopetala Leaves Extract. Industrial Crops and Products, 156, 112891.
Day, L. (2013). Proteins from land plants – Potential resources for human nutrition and food security. Trends in Food Science & Technology, 32(1), 25–42.
Dekkers, B. L., Boom, R. M., & van der Goot, A. J. (2018). Structuring processes for meat analogues. Trends in Food Science & Technology, 81, 25–36.
Feyzi, S., Milani, E., & Golimovahhed, Q. A. (2018). Grass Pea (Lathyrus sativus L.) Protein Isolate: The effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocolloids, 74, 187–196.
Garcia-Amezquita, L. E., Welti-Chanes, J., Vergara-Balderas, F. T., & Bermúdez-Aguirre, D. (2016). Freeze-drying: The Basic Process. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 104–109). Academic Press.
Ge, J., Sun, C.-X., Mata, A., Corke, H., Gan, R.-Y., & Fang, Y. (2020). Physicochemical and pH-dependent functional properties of proteins isolated from eight traditional Chinese beans. Food Hydrocolloids, 106288.
Gong, K.-J., Shi, A.-M., Liu, H.-Z., Liu, L., Hu, H., Adhikari, B., & Wang, Q. (2016). Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate. Journal of Food Engineering, 170, 33–40.
Grabowska, K. J., Zhu, S., Dekkers, B. L., de Ruijter, N. C. A., Gieteling, J., & van der Goot, A. J. (2016). Shear-induced structuring as a tool to make anisotropic materials using soy protein concentrate. Journal of Food Engineering, 188, 77–86.
Habeych, E., Dekkers, B., van der Goot, A. J., & Boom, R. (2008). Starch–zein blends formed by shear flow. Chemical Engineering Science, 63(21), 5229–5238.
Hyeon, H., Xu, J. L., Kim, J. K., & Choi, Y. (2020). Comparative metabolic profiling of cultivated and wild black soybeans reveals distinct metabolic alterations associated with their domestication. Food Research International, 134, 109290.
Jiang, S., & Nail, S. L. (1998). Effect of process conditions on recovery of protein activity after freezing and freeze-drying. European Journal of Pharmaceutics and Biopharmaceutics, 45(3), 249–257.
Kim, S. Y., Wi, H.-R., Choi, S., Ha, T. J., Lee, B. W., & Lee, M. (2015). Inhibitory effect of anthocyanin-rich black soybean testa (Glycine max (L.) Merr.) on the inflammation-induced adipogenesis in a DIO mouse model. Journal of Functional Foods, 14, 623–633.
Lajnaf, R., Trigui, I., Samet-Bali, O., Attia, H., & Ayadi, M. A. (2020). Comparative study on emulsifying and physico-chemical properties of bovine and camel acid and sweet wheys. Journal of Food Engineering, 268, 109741.
Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147.
Lin, S., Huff, H. E., & Hsieh, F. (2002). Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. Journal of Food Science, 67(3), 1066–1072.
Liu, K., & Hsieh, F.-H. (2008). Protein–protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems. Journal of Agricultural and Food Chemistry, 56(8), 2681–2687.
Nishinari, K., Fang, Y., Nagano, T., Guo, S., & Wang, R. (2018). 6 - Soy as a food ingredient. In R. Y. Yada (Ed.), Proteins in Food Processing (Second Edition) (pp. 149–186). Woodhead Publishing.
Peng, Y., Kersten, N., Kyriakopoulou, K., & van der Goot, A. J. (2020). Functional properties of mildly fractionated soy protein as influenced by the processing pH. Journal of Food Engineering, 275, 109875.
Preece, K. E., Hooshyar, N., & Zuidam, N. J. (2017). Whole soybean protein extraction processes: A review. Innovative Food Science & Emerging Technologies, 43, 163–172.
Radix Astadi, I., & Paice, A. G. (2011). Chapter 27 - Black Soybean (Glycine max L. Merril) Seeds’ Antioxidant Capacity. In V. R. Preedy, R. R. Watson, & V. B. Patel (Eds.), Nuts and Seeds in Health and Disease Prevention (pp. 229–236). Academic Press.
Rahman, M. M., Byanju, B., Grewell, D., & Lamsal, B. P. (2020). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019.
Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170–184.
Samoto, M., Maebuchi, M., Miyazaki, C., Kugitani, H., Kohno, M., Hirotsuka, M., & Kito, M. (2007a). Abundant proteins associated with lecithin in soy protein isolate. Food Chemistry, 102(1), 317–322.
Samoto, M., Maebuchi, M., Miyazaki, C., Kugitani, H., Kohno, M., Hirotsuka, M., & Kito, M. (2007b). Abundant proteins associated with lecithin in soy protein isolate. Food Chemistry, 102(1), 317–322.
Schutyser, M. A. I., Pelgrom, P. J. M., van der Goot, A. J., & Boom, R. M. (2015). Dry fractionation for sustainable production of functional legume protein concentrates. Trends in Food Science & Technology, 45(2), 327–335.
Sha, L., & Xiong, Y. L. (2020). Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102, 51–61.
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49–67.
Vogelsang-O’Dwyer, M., Zannini, E., & Arendt, E. K. (2021). Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends in Food Science & Technology, 110, 364–374.
Wu, C., Hua, Y., Chen, Y., Kong, X., & Zhang, C. (2017). Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size. Food Hydrocolloids, 66, 389–395.
Yamashita, Y., Wang, L., Nakamura, A., Nanba, F., Saito, S., Toda, T., Nakagawa, J., & Ashida, H. (2020). Black soybean improves the vascular function through an increase in nitric oxide and a decrease in oxidative stress in healthy women. Archives of Biochemistry and Biophysics, 688, 108408.
Yuliarti, O., Kiat Kovis, T. J., & Yi, N. J. (2021). Structuring the meat analogue by using plant-based derived composites. Journal of Food Engineering, 288, 110138.
電子全文 電子全文(網際網路公開日期:20260818)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top