跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃曲佑
研究生(外文):Huang, Qu-You
論文名稱:有機氯化合物種類及培養階段對孤雌激活豬胚後續發育能力及基因表現之影響
論文名稱(外文):Effects of different organochlorine compounds and stages of exposure on the development and related gene expressions in parthenogenetic porcine embryos
指導教授:沈朋志沈朋志引用關係余祺余祺引用關係
指導教授(外文):Shen, Perng-ChihYu, Chi
口試委員:陳立人
口試委員(外文):Chen, Lih-Ren
口試日期:2021-07-08
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:動物科學與畜產系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:89
中文關鍵詞:胚發育率基因表現體外培養體外成熟卵母細胞成熟率PCB 126TCDD
外文關鍵詞:Embryonic development rateGene expressionin vitro culturein vitro maturationOocyte maturation ratePCB 126PorcineTCDD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
有機氯化合物 (Organochloride) 因其結構的不同有許多的異構物,包括戴奧辛 (Dioxin) 類的2,3,7,8,-TCDD及多氯聯苯 (polychlorinated biphenyl, PCBs) 等,為穩定親脂性的化合物,並具有生物累積及放大的作用,過量蓄積將負面影響動物之生長、代謝與生殖。因此,本研究以豬卵母細胞作為試驗材料,將探討不同濃度之PCB 126及相同毒性當量 (Toxic Equivalency Quantity, TEQ) 條件之PCB 126 (250 ng/mL) 與TCDD (25 ng/mL) 在體外成熟 (in vitro maturation, IVM) 及體外培養 (in vitro culture, IVC) 階段添加對孤雌激活豬胚發育能力及其相關基因表現量之影響。在不同PCB 126濃度之探討結果顯示,於IVM階段添加之PCB 126濃度低於500 ng/mL時均不影響 (P > 0.05) 豬卵母細胞之成熟率 (65.7-74.7%),但250 ng/mL PCB 126組之囊胚率 (17.1%) 顯著 (P < 0.05) 低於陰性對照組 (29.1%)。在IVC全階段 (培養7天) 添加25-500 ng/mL PCB 126,其孤雌激活豬胚之囊胚率 (16.2-27.2%) 均顯著 (P < 0.05) 低於陽性 (49.3%) 與陰性對照組 (52.2%)。在比較相同TEQ條件之PCB 126 與TCDD之結果顯示,於IVM階段添加PCB 126及TCDD均顯著 (P < 0.05) 降低豬卵母細胞之成熟率及其囊胚率;於在IVC全階段添加相同TEQ之PCB 126 (28.1%) 與TCDD (25.4%),其孤雌激活豬胚之囊胚率於2處理組別間無顯著 (P > 0.05) 差異,但均顯著 (P < 0.05) 低於陽性對照組 (53.1%)。在IVC階段不同培養時距之探討結果顯示,於胚早期發育階段 (培養開始之前2天) 添加PCB 126 (PCB 126-1-2組,43.0%) 及TCDD (TCDD-1-2組,39.6%) 之囊胚率均分別與胚中期發育階段 (培養開始之第3-4天) 添加PCB 126 (PCB 126-3-4組,43.3%) 及TCDD (TCDD-3-4組,36.5%) 間無顯著 (P > 0.05) 差異。有關在IVM及IVC階段添加PCB 126之基因表現結果顯示,在IVM階段添加PCB 126不致影響 (P > 0.05) 所培養卵丘細胞之Ahr及其卵母細胞之Ahr及Cyp1a1基因相對表現量,但卵丘細胞之Cyp1a1基因相對表現量則顯著 (P < 0.05) 增加。在IVC階段,添加PCB 126組孤雌激活豬胚之Ahr及Cyp1a1基因相對表現量於不同胚期間無顯著差異 (P > 0.05) 。而IVC階段添加PCB 126之相同胚期不同處理組別間Zar1、Npm2及Dppa3等基因之相對表現量均無顯著差異 (P > 0.05),Nanog、Sox、Bcl2l1等基因之相對表現量及Bcl2l1/Bax比值在PCB 126之NC組 (陰性對照組,Negative control, NC組) 與IVC處理PCB 126組之孤雌激活豬囊胚間均無顯著 (P > 0.05) 差異;但IVC處理PCB 126組孤雌激活豬囊胚之Bax基因相對表現量則顯著高於PCB 126之NC組囊胚。有關在IVM及IVC階段添加TCDD之基因表現結果顯示,在IVM階段添加TCDD (TCDD組) 不致影響 (P > 0.05) 所培養卵丘細胞之Ahr及Cyp1a1基因之相對表現量;但於卵母細胞中添加TCDD其Ahr基因相對表現量顯著 (P < 0.05) 降低,而Cyp1a1基因相對表現量則顯著 (P < 0.05) 增加。在IVC階段,添加TCDD組孤雌激活囊胚之Cyp1a1基因相對表現量顯著 (P < 0.05) 高於TCDD之NC組囊胚。相同胚期孤雌激活豬胚之Zar1、Npm2及Dppa3基因均具有相近 (P > 0.05) 之相對表現量,而孤雌激活豬胚經PCB 126或TCDD培養7天後Nanog基因相對表現量,雖與對照組間無顯著差異,但PCB 126或TCDD添加組則均具有較低之Sox2基因相對表現量。綜合之結果說明,在IVM階段添加PCB 126會顯著提高卵丘細胞Cyp1a1基因相對表現量;添加TCDD則顯著提高卵母細胞Cyp1a1基因相對表現量,進而降低豬卵母細胞之囊胚率;而孤雌激活豬胚在IVC階段添加PCB126及TCDD則導致囊胚之Sox2基因表現降低,因此具有較低之囊胚發育率。
Organochloride has many isomers due to its structure, including dioxin 2,3,7,8,-TCDD and polychlorinated biphenyl (PCBs)...etc. They are stable lipophilic compounds and with bioaccumulations. The excessive accumulations of these compounds negatively affect growth, metabolism and reproduction of animals. Therefore, this study used porcine oocytes to explore the effects of different levels of PCB 126 and in same toxic equivalency quantity (TEQ) conditions of PCB 126 (250 ng/mL) and TCDD (25 ng/mL) on in vitro maturation (IVM) and in vitro culture (IVC) phases; moreover, to define their toxicities on the development and genes expressions of parthenogenetic porcine embryos. Treatments of different PCB 126 concentrations (25-500 ng/mL ) showed that only 250 ng/mL PCB 126 decreased blastocyst rates (22.1%), but the other concentrations did not affect the oocytes maturation rates (65.7-74.7%) during IVM, but the blastocyst rates of 250 ng/mL of PCB 126 (17.1%) were significantly lower than the negative control (NC) group (29.1%) (P<0.05). After adding 25-500 ng/mL PCB 126 during IVC, the blastocyst rates of PCB 126-treated parthenogenetic embryos (16.2-27.2%) were significantly (P<0.05) lower than the positive control (49.3%) and the negative control (52.2%). Under the same TEQ conditions, oocyte maturation rates and blastocyst rates were both significantly decreased by PCB 126 and TCDD in the IVM stage (P<0.05). By adding the same TEQ of PCB 126 (28.1%) and TCDD (25.4%) during IVC, the blastocyst rate of parthenogenetic embryos was not changed between two groups (P>0.05), however, the blastocyst rates were both significantly (P<0.05) lower than positive control group (53.1%). Different culture time intervals in IVC stage demonstrated that adding PCB 126 (PCB 126-1-2 group, 43.0%)/ TCDD (TCDD-1-2 group, 39.6%) at early embryonic development (2 days before culture), or with PCB 126 (PCB 126-3-4 group, 43.3%)/ TCDD (TCDD-3-4 group, 36.5%) at mid-embryo development (day 3-4 from the start of culture), there were no significantly (P> 0.05) difference in blastocyst rates. The addition of PCB 126 in IVM did not affect (P>0.05) expression levels of Ahr in cultured cumulus cells, or Cyp1a1 in oocytes, but Cyp1a1 expressions in cumulus cells were significantly increased (P<0.05). In IVC, Ahr and Cyp1a1 expressions in the PCB 126-treated parthenogenetic embryos were not affected during different embryonic periods (P>0.05). During IVC, the relative expressions of Zar1, Npm2 and Dppa3 in the PCB 126-treated parthenogenetic embryos were not affected (P>0.05). And relative expression levels of Nanog, Sox2, Bcl2l1 and Bcl2l1/Bax ratio were no significant difference (P>0.05) between the parthenogenetic blastocysts of IVC-treated PCB 126-treated and NC group (negative control) (P>0.05); but the Bax expressions in IVC-treated PCB 126 of parthenogenetic blastocysts were significantly higher than PCB 126 NC group. The TCDD addition in the IVM did not affect (P>0.05) the relative expression levels of Ahr and Cyp1a1 in the cultured cumulus cells; but the Ahr expressions in oocytes were significantly reduced (P<0.05) by TCDD, while Cyp1a1 expressions were significantly increased (P<0.05). At the IVC, Cyp1a1 expressions in TCDD treated-parthenogenetic blastocysts group were significantly (P<0.05) higher than TCDD NC group. With TCDD addition at the IVC, levels of Zar1, Npm2 and Dppa3 in parthenogenetically activated embryos at same embryonic stages all shared similar expression patterns (P>0.05). However, the relative expression level of Nanog of parthenogenetic blastocysts cultured with PCB 126 or TCDD for 7 days was not significantly different from that of the control group, but the Sox2 expression levels were significantly (P<0.05) lower in PCB 126 and TCDD. The results showed that the addition of PCB 126 in the IVM significantly increased Cyp1a1 expressions in cumulus cells; the addition of TCDD also significantly enhanced Cyp1a1 expressions in oocytes, thereby reducing the blastocyst rate of porcine oocytes after activation. On porcine parthenogenetic embryos at the IVC, the additions of PCB 126 and TCDD leaded to a major decrease of the Sox2 expressions in blastocysts, therefore, the lower blastocyst development rates were observed at the end of IVC.
目 錄
中文摘要 I
Abstract III
誌謝 VI
目 錄 VII
圖目錄 IX
表目錄 XI
壹、前言 1
貳、文獻回顧 3
一、戴奧辛與多氯聯苯之產生 3
二、戴奧辛與多氯聯苯化學架構及特性 3
三、毒性當量計算 7
四、戴奧辛之毒理作用 9
五、戴奧辛對卵丘細胞及卵母細胞之影響 11
(一) 卵丘細胞在卵母細胞成熟之作用 11
(二) 戴奧辛對卵丘細胞之影響 11
(三) 戴奧辛對卵母細胞成熟之影響 12
六、戴奧辛對胚發育能力之影響 12
(一) 胚發育之調控 12
(二) 戴奧辛對胚發育能力之影響 14
參、試驗研究 16
一、材料方法 16
(一) 豬卵丘卵母細胞複合體之收集 16
(二) 豬卵母細胞之體外成熟培養 (in vitro maturation, IVM) 17
(三) 豬卵母細胞之孤雌激活 (Parthenogenetic activation) 19
(四) 孤雌激活豬胚之體外培養 (in vitro culture, IVC) 20
(五) 豬孤雌激活囊胚之細胞計數 22
(六) PCB 126試驗之卵丘、卵母細胞及不同細胞期胚之基因表現量分析 23
(七) TCDD試驗卵丘、卵母細胞及不同細胞期胚之表現量分析 25
(八) 基因表現量計算 27
(九) 試驗設計 27
(十) 統計分析 34
二、結果 38
三、討論 70
肆、結論 75
伍、參考文獻 76
陸、作者簡介 89

圖目錄
圖 1 PCDDs、PCDFs和PCB之結構。 6
圖 2 戴奧辛毒理作用機制。 10
圖 3 體外成熟階段添加250 ng/mL PCB 126對卵丘細胞Ahr (A) 及Cyp1a1 (B) 基因表現之影響。 50
圖 4 體外成熟階段添加250 ng/mL PCB 126對卵母細胞Ahr (A) 及Cyp1a1 (B) 基因表現之影響。 51
圖 5 體外培養階段添加250 ng/mL PCB 126對孤雌激活豬不同細胞期Ahr基因表現之影響。 52
圖6 體外培養階段添加250 ng/mL PCB 126對孤雌激活豬不同細胞期Cyp1a1基因表現之影響。 53
圖 7 體外培養階段添加250 ng/mL PCB 126對孤雌激活豬不同細胞期Zar1基因表現之影響。 54
圖 8 體外培養階段添加250 ng/mL PCB 126對孤雌激活豬不同細胞期Npm2基因表現之影響。 55
圖 9 體外培養階段添加250 ng/mL PCB 126對孤雌激活豬不同細胞期Dppa3基因表現之影響。 56
圖 10 體外培養階段添加250 ng/mL PCB 126對孤雌激活囊胚 Nanog (A)及Sox2 (B)基因表現之影響。 57
圖 11體外培養階段添加250 ng/mL PCB 126對孤雌激活囊胚Bax (A)、Bcl2l1 (B)及Bcl2l1/Bax (C) 基因表現之影響。 58
圖 12 體外成熟階段添加25 ng/mL TCDD對卵丘細胞Ahr (A) 及CYP1A1 (B) 基因表現之影響。 61
圖 13 體外成熟階段添加25 ng/mL TCDD對卵母細胞Ahr (A) 及CYP1A1 (B) 基因表現之影響。 62
圖 14 體外培養階段添加25 ng/mL TCDD對孤雌激活豬不同細胞期Ahr基因表現之影響。 63
圖15 體外培養階段添加25 ng/mL TCDD對孤雌激活豬不同細胞期Cyp1a1基因表現之影響。 64
圖 16 體外培養階段添加25 ng/mL TCDD對孤雌激活豬不同細胞期Zar1基因表現之影響。 65
圖 17 體外培養階段添加25 ng/mL TCDD對孤雌激活豬不同細胞期Npm2基因表現之影響。 66
圖 18 體外培養階段添加25 ng/mL TCDD對孤雌激活豬不同細胞期Dppa3基因表現之影響。 67
圖 19 體外培養階段添加25 ng/mL TCDD對孤雌激活豬囊胚之Nanog (A) 及Sox2 (B) 基因表現之影響。 68
圖20 體外培養階段添加25 ng/mL TCDD對孤雌激活豬囊胚之Bax (A)、Bcl2 (B)及Bcl2/Bax (C) 基因表現之影響。 69


表目錄
表 1 戴奧辛異構物種類及數量 5
表 2 世界衛生組織所訂戴奧辛及戴奧辛類多氯聯苯毒性當量因子 8
表 3 不同動物於體外培養之阻滯期 15
表 4 豬胚體外培養液 (PZM-3) 成分表 35
表 5 PCB 126即時定量聚合酶連鎖反應所使用之引子對序列 36
表 6 TCDD即時定量聚合酶連鎖反應所使用之引子對序列 37
表 7 體外成熟階段添加不同濃度之PCB 126對孤雌激活豬胚後續發育能力之影響 39
表 8 體外培養階段添加不同濃度之PCB 126對孤雌激活豬胚後續發育能力之影響 40
表 9 體外成熟階段添加250 ng/mL PCB 126及25 ng/mL TCDD對孤雌激活豬胚後續發育能力之影響 44
表 10 體外培養前2天階段添加250 ng/mL PCB 126及25 ng/mL TCDD對孤雌激活豬胚後續發育能力之影響 45
表 11體外培養不同階段添加250 ng/mL PCB 126及25 ng/mL TCDD對孤雌激活豬胚後續發育能力之影響 46
馬春祥、楊錫坤。1999。生殖學要義。國立編譯館,鼎文書局股份有限公司。台北縣。
陳則佑。2018。體外培養之不同階段所添加抗氧化劑種類對孤雌激活及ICSI豬胚發育能力之影響。碩士論文,國立屏東科技大學動物科學與畜產系所。屏東縣。
陳彥宏。2018。蛋中注射2,3,7,8-四氯聯苯戴奧辛對白肉雞孵化率、生長性能、血液生化值及肝臟戴奧辛濃度之影響。碩士論文,國立屏東科技大學動物科學與畜產系所。屏東縣。
Abeydeera, L. R., W. H. Wang, T. C. Cantley, R. S. Prather, and B. N. Day. 1998a. Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology 50 (5): 747-756.
Abeydeera, L. R., W. H. Wang, T. C. Cantley, A. Rieke, and B. N. Day. 1998b. Coculture with follicular shell pieces can enhance the developmental competence of pig oocytes after in vitro fertilization: relevance to intracellular glutathione. Biol. Reprod. 58 (1): 213-218.
Ahlborg, U, G., A. Brouwer, M. A. Fingerhut, J. L. Jacobson, S. W. Jacobson, S. W. Kennedy, A. A. Kettrup, J. H. Koeman, H. Poiger, and C. Rappe. 1992. Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental health, with special emphasis on application of the toxic equivalency factor concept. Eur. J. Pharmacol. 228 (4): 179-199.
Ahlborg, U. G., G. C. Becking, L. S. Birnbaum, A. Brouwer, H. Derks, M. Feeley, G. Golor, A. Hanberg, J. C. Larsen, A. Liem, S. H. Safe, C. Schlatter, F. Waern, M. Younes, and E. Yrjänheikki. 1994. Toxic equivalency factors for dioxin-like PCBs. Chemosphere. 28: 1049-1067.
Ahmed, R. G., A. W. El-Gareib, and H. M. Shaker. 2018. Gestational 3,3',4,4',5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sci. 192: 213-220.
Ahn, N. S., H. Hu, J. S. Park, J. S. Park, J. S. Kim, S. An, G. Kong, O. I. Aruoma, Y. S. Lee, and K. S. Kang. 2005. Molecular mechanisms of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced inverted U-shaped dose responsiveness in anchorage independent growth and cell proliferation of human breast epithelial cells with stem cell characteristics. Mutat. Res. 579 (1-2): 189-199.
Alm, H., H. Torner, U. Tiemann, and W. Kanitz. 1998. Influence of organochlorine pesticides on maturation and postfertilization development of bovine oocytes in vitro. Reprod. Toxicol. 12 (5): 559-563.
Avilion, A. A., S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian, and R. Lovell-Badge. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17 (1): 126-140.
Baars, A. J., M. I. Bakker, R. A. Baumann, P. E. Boon, J. I. Freijer, L. A. P. Hoogenboom, R. Hoogerbrugge, J. D. Klaveren, A. K. D. Liem, W. A. Traag, and J. Vries. 2004. Dioxins, dioxin-like PCBs and non-dioxin-like PCBs in foodstuffs: occurrence and dietary intake in The Netherlands. Toxicol Lett. 151 (1): 51-61.
Bakhtari A., and P. J. Ross. 2014. DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos. Epigenetics. 9 (9): 1271-1279.
Barsotti, D. A., R. J. Marlar, and J. R. Allen. 1976. Reproductive dysfunction in rhesus monkeys exposed to low levels of polychlorinated biphenyls (Aoroclor 1248). Food Cosmet. Toxicol. 14 (2): 99-103.
Basham, K. J., C. J. Leonard, C. Kieffer, D. N. Shelton, M. E. McDowell, V. R. Bhonde, R. E. Looper, and B. E. Welm. 2015. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicol. Sci. 143 (1): 36-45.
Battershill, J. M. 1994. Review of the safety assessment of polychlorinated biphenyls (PCBs) with particular reference to reproductive toxicity. Hum. Exp. Toxicol. 13 (9): 581-597.
Bavister, B. D. 1988. Role of oviductal secretions in embryonic growth in vivo and in vitro. Theriogenology 29 (1): 143-154.
Bavister, B. D. and J. M. Squirrell. 2000. Mitochondrial distribution and function in oocytes and early embryos. Hum. Reprod. 2: 189-198.
Beischlag, T. V., J. L. Morales, B. D. Hollingshead, and G. H. Perdew. 2008. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 18 (3): 207-250.
Berg, M. V., L. S. Birnbaum, M. Denison, M. D. Vito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tysklind, N. Walker, and R. E. Peterson. 2006. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 93 (2): 223-241.
Brevini, T. A. L., R. Vassena, A. Paffoni, C. Francisci, U. Fascio, and F. Gandolfi. 2004. Exposure of pig oocytes to PCBs during in vitro maturation: effects on developmental competence, cytoplasmic remodelling and communications with cumulus cells. Eur. J. Histochem. 48: 347-356.
Bumb, R. R., W. B. Crummett, S. S. Cutie, J. R. Gledhill, R. H. Hummel, R. O. Kagel, L. L. Lamparski, E. V. Luoma, D. L. Miller, T. J. Nestrick, L. A. Shadoff, R. H. Stehl, and J. S. Woods. 1980. Trace chemistries of fire: a source of chlorinated dioxins. Science 210: 385-390.
Burns, K. H., M. M. Viveiros, Y. Ren, P. Wang, F. J. DeMayo, D. E. Frail, J. J. Eppig, and M. M. Matzuk. 2003. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300 (5619): 633-636.
Camous, S., V. Kopecný, and J. E. Fléchon. 1986. Autoradiographic detection of the earliest stage of [3H]-uridine incorporation into the cow embryo. Biol. Cell. 58 (3): 195-200.
Campagna, C., M. A. Sirard, P. Ayotte, and J. L. Bailey. 2001. Impaired maturation, fertilization, and embryonic development of porcine oocytes following exposure to an environmentally relevant organochlorine mixture. Biol. Reprod. 65: 554-560.
Campagna, C., P. Ayotte, M. Sirard, and J. L. Bailey. 2008. An environmentally relevant mixture of organochlorines, their metabolites and effects on preimplantation development of porcine embryos. Reprod. Toxicol. 25 (3): 361-366.
Chen, Y., H. Q. Xie, R. Sha., T. Xu, S. Zhang, H. Fu, Y. Xia, Y. Liu, L. Xu, and B. Zhao. 2020. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and up-regulation of neurofilament expression in neuronal cells: Evaluation of Ahr and MAPK pathways. Environ. Int. 134:105193.
Chen, Y., K. Shen, C. Shen, L. Chen, and X. Chen. 2010. Comparison of structure-dependent hormetic cytotoxicity induced by coplanar and non-coplanar PCB congeners. J. Hazard. Mater. 180 (1-3): 773-776.
Cheng, L., Y. Qin, X. Hu, L. Ren, C. Zhang, X. Wang, W. Wang, Z. Zhang, J. Hao, M. Guo, Z. Wu, J. Tian and, L. An. 2019. Melatonin protects in vitro matured porcine oocytes from toxicity of Aflatoxin B1. J. Pineal. Res. 66 (4): e12543.
Conney, A. H. 1982. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer. Res. 42 (12): 4875-4917.
Dai, J., C. Wu, C. W. Muneri, Y. Niu, S. Zhang, R. Rui, and D. Zhang. 2015. Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology. 71 (2): 291-298.
Dong, L., Q. Ma, and JP. Jr. Whitlock. 1996. DNA binding by the heterodimeric Ah receptor. Relationship to dioxin-induced CYP1A1 transcription in vivo. Comparative Study. 271 (14): 7942-7948.
Du, J., H. S. Di, L. Guo, Z. H. Li, and G. L. Wang. 2008. Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J. Therm. Biol. 33: 37-47.
Francisco, A. H., A. V. Elisa, M. P. Gabriela, V. C. David, and T. T. Jimena. 2011. Molecular markers associated with the biological response to aromatic hydrocarbons from urban air in humans. Air pollution - New developments. Accessed AUG. 20, 2019. DOI: 10.5772/17999.
Gao, C. Q., Y. L. Zhao, H. C. Li, W. G. Sui, H. C. Yan, and X. Q. Wang. 2015. Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells. J. Zhejiang Univ-Sc. B. 16: 549-559.
Giavini, E., M. Prati, and C. Vismara. 1982. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin administered to pregnant rats during the preimplantation period. Environ. Res. 29: 185-189.
Haimes, J. and M. Kelley. 2010. Demonstration of a ΔΔCq calculation method to compute relative gene expression from qPCR data. Thermo Scientific Tech Note. 104.
Hanlon, P. R., L. G. Ganem, Y. C. Cho, M. Yamamoto, and C. R. Jefcoate. 2003. Ahr- and ERK-dependent pathways function synergistically to mediate 2,3,7,8-tetrachlorodibenzo-p-dioxin suppression of peroxisome proliferator-activated receptor-gamma1 expression and subsequent adipocyte differentiation. Toxicol. Appl. Pharmacol. 189 (1): 11-27.
Heiden, T. K., R. J. Hutz, and M. J. Carvan. 2005. Accumulation, tissue distribution, and maternal transfer of dietary 2,3,7,8,-tetrachlorodibenzo-p-dioxin: impacts on reproductive success of zebrafish. Toxicol. Sci. 87: 497-507.
He, Q. L., X. Y. Wei, X. Y. Han, Q. Zhou, H. Q. Wang, N. Z. Ding, X. Q. Meng , H. Schatten, Q. Y. Sun, and S. Z. Liu. 2019. Effects of 2,3',4,4'5-pentachlorobiphenyl exposure during pregnancy on epigenetic imprinting and maturation of offspring's oocytes in mice. Arch. Toxicol. 93 (9): 2575-2592.
Jarrell, V. L., B. N. Day, and R. S. Prather. 1991. The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol. Reprod. 44 (1): 62-68.
Jones, K. C. 1988. Determination of polychlorinated biphenyls in human foodstuffs and tissues: Suggestions for a selective congener analytical approach. Sci. Total Environ. 68: 141-159.
Kholkute, S. D., J. Rodriguez, and W. R. Dukelow. 1994. Reproductive toxicity of Aroclor-1254: effects on oocyte, spermatozoa, in vitro fertilization, and embryo development in the mouse. Reprod. Toxicol. 8 (6): 487-493.
Kholkute, S. D. and W. R. Dukelow. 1997. Effects of polychlorinated biphenyl (PCB) mixtures on in vitro fertilization in the mouse. Bull. Environ. Contam. Toxicol. 59 (4): 531-536.
Krogenaes, A. K., I. Nafstad, J. U. Skåre, W. Farstad, and A. L. Hafne. 1998. In vitro reproductive toxicity of polychlorinated biphenyl congeners 153 and 126. Reprod. Toxicol. 12 (6): 575-580.
Küchenhoff, A., R. Eckard, K. Buff, and B. Fischer. 1999. Stage-specific effects of defined mixtures of polychlorinated biphenyls on in vitro development of rabbit preimplantation embryos. Mol. Reprod. Dev. 54(2): 126-134.
Larsen, J. C. 2006. Risk assessments of polychlorinated dibenzo- p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in food. Mol. Nutr. Food Res. 50 (10): 885-896.
Linder, R. E., T. B. Gaines, and R. D. Kimbrough. 1974. The effect of polychlorinated biphenyls on rat reproduction. Food Cosmet. Toxicol. 12 (1): 63-77.
Liu, J., Q. C. Wang, J. Han, B. Xiong, and S. C. Sun. 2015. Aflatoxin B1 is toxic to porcine oocyte maturation. Mutagenesis. 30 (4): 527-535.
Liu, S., G. Bou, R. Sun, S. Guo, B. Xue, R. Wei, A. J. Cooney, and Z. Liu. 2015. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev Dyn. 244 (4): 619-627.
Magnani, L., and R. A. Cabot. 2008. In vitro and in vivo derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog, and Sox2 mRNA expression during cleavage development. Mol. Reprod. Dev. 75 (12): 1726-1735.
McFarland, V. A., and J. U. Clarke. 1989. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ. Health Perspect. 81: 225-239.
Meric. F., K. Matsumoto, and A. P. Wolffe. 1997. Regulated unmasking of in vivo synthesized maternal mRNA at oocyte maturation. A role for the chaperone nucleoplasmin. J. Biol. Chem. 272 (19): 12840-12846.
Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda, and S. Yamanaka. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 113 (5): 631-642.
Mori, T., T. Amano, and H. Shimizu. 2000. Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol. Reprod. 62 (4): 913-9.
Mullins, M. D., C. M. Pochini, S. M. Crindle, M. Romkes, S. H. Safe, and L. M. Safe. 1984. High-resolution PCB analysis: synthesis and chromatographic properties of all 209 PCB congeners. Environ. Sci. Technol. 18 (6): 468-476.
Murray, F. J., F. A. Smith., K. D. Nitschke, C. G. Humiston, R. J. Kociba, and B. A. Schwetz. 1979. Three-generation reproduction study of rats given 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the diet. Toxicol. Appl. Pharmacol. 50 (2): 241-252.
Nakamura, T., Y. Arai, H. Umehara, M. Masuhara, T. Kimura, H. Taniguchi, T. Sekimoto, M. Ikawa, Y. Yoneda, M. Okabe, S. Tanaka, K. Shiota, and T. Nakano. 2007. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9 (1): 64-71.
Nakatani, T., K. Yamagata, T. Kimura, M. Oda, H. Nakashima, M. Hori, Y. Sekita, T. Arakawa, T. Nakamura, and T. Nakano. 2015. Stella preserves maternal chromosome integrity by inhibiting 5hmC-induced γH2AX accumulation. EMBO Rep. 16 (5): 582-589.
Nestler, D., M. Risch, B. Fischer, and P. Pocar. 2007. Regulation of aryl hydrocarbon receptor activity in porcine cumulus–oocyte complexes in physiological and toxicological conditions: the role of follicular fluid. Reproduction. 133: 887-897.
Nicolopoulou-Stamati, P., and M. A. Pitsos. 2001. The impact of endocrine disrupters on the female reproductive system. Hum. Reprod. Update. ;7 (3): 323-330.
Nour, M. S., and Y. Takahashi. 1999. Preparation of young preactivated oocytes with high enucleation efficiency for bovine nuclear transfer. Theriogenology 51 (3): 661-666.
Nynca, A., A. Sadowska, L. Paukszto, T. Molcan, M. Ruszkowska, S. Swigonska, K. Orlowska, K. Myszczynski, J. P. Jastrzebski, and R. E. Ciereszko. 2019. Temporal changes in the transcriptomic profile of granulosa cells of pigs treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anim. Reprod. Sci. 207:83-94.
Olie, K., P. L. Vermeulen, and O. Hutzinger. 1977. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in The Netherlands. Chemosphere. 8: 455-459.
Orlowska, K., S. Swigonska, A. Sadowska, M. Ruszkowska, A. Nynca, T. Molcan, and R. E. Ciereszko. 2018. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the proteome of porcine granulosa cells. Chemosphere. 212: 170-181.
Orlowska, K., S. Swigonska, A. Sadowska, M. Ruszkowska, A. Nynca, T. Molcan, A. Zmijewska, and R. E. Ciereszko. 2019. Proteomic changes of aryl hydrocarbon receptor (Ahr) -silenced porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). PLoS One. 14 (10): e0223420.
Payer B., M. Saitou, S. C. Barton, R. Thresher, J. P. C. Dixon, D. Zahn, W. H. Colledge, M. B. L. Carlton, T. Nakano, and M. A. Surani. 2003. Stella is a maternal effect gene required for normal early development in mice. Comparative Study. 13 (23): 2110-2117.
Pisani, L. F., P. Ramelli, B. Lazzari, S. Braglia, F. Ceciliani, and P. Mariani. 2010. Characterization of maternal antigen that embryos require (MATER/NLRP5) gene and protein in pig somatic tissues and germ cells. J. Reprod. Dev. 56 (1): 41-48.
Platonow, N. S. and L. H. Karstad. 1973. Dietary effects of polychlorinated biphenyls on mink. Can. J. Comp. Med. 37 (4): 391-400.
Pocar, P., A. Berrini, A. D. Giancamillo, B. Fischer, and V. Borromeo. 2020. Regulation of the aryl hydrocarbon receptor activity in bovine cumulus-oocyte complexes during in vitro maturation: The role of EGFR and post-EGFR ERK1/2 signaling cascade. Theriogenology 156: 59-69.
Pocar, P., D. Nestler, M. Risch, and B. Fischer. 2005. Apoptosis in bovine cumulus-oocyte complexes after exposure to polychlorinated biphenyl mixtures during in vitro maturation. Reproduction. 130: 857-868.
Pocar, P., F. Perazzoli, A. M. Luciano, and F. Gandolfi. 2001. In vitro reproductive toxicity of polychlorinated biphenyls: effects on oocyte maturation and developmental competence in cattle. Mol. Reprod. Dev. 58 (4): 411-416.
Pocar, P., R. Augustin, and B. Fischer. 2004. Constitutive expression of CYP1A1 in bovine cumulus oocyte-complexes in vitro: mechanisms and biological implications. Endocrinology. 145 (4): 1594-1601.
Pocar, P., T. A. L. Brevini, S. Antonini, and F. Gandolfi. 2006. Cellular and molecular mechanisms mediating the effect of polychlorinated biphenyls on oocyte in vitro maturation. Reprod. Toxicol. 22 (2): 242-249.
Poland, A., and J. C. Knutson. 1982. 2,3,7,8-Tetrachlorodibenzo-P-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu. Rev. Pharmacol. Toxicol. 22: 517-554.
Reijnders, P. J. 1986. Reproductive failure in common seals feeding on fish from polluted coastal waters. Nature. 324 (6096): 456-457.
Ruszkowska, M., A. Nynca, L. Paukszto, A. Sadowska, S. Swigonska, K. Orlowska, T. Molcan, J. P. Jastrzebski, and R. E. Ciereszko. 2018. Identification and characterization of long non-coding RNAs in porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-pdioxin. J. Anim. Sci. 72: 2-13.
Ruszkowska, M., A. Sadowska, A. Nynca, K. Orlowska, S. Swigonska, T. Molcan, L. Paukszto, J. P. Jastrzebski, and R. E. Ciereszko. 2020. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the transcriptome of aryl hydrocarbon receptor (Ahr) knock-down porcine granulosa cells. PeerJ. 8: e8371.
Sadowska, A., A. Nynca, M. Ruszkowska, L. Paukszto, K. Myszczynski, K. Orlowska, S. Swigonska, T. Molcan, J. P. Jastrzebski, and R. E. Ciereszko. 2017. Transcriptional profiling of porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chemosphere. 178: 368-377.
Safe, S. H. 1986. Comparative toxicology and mechanism of action of polychlorinated dibenzo-p-dioxins and dibenzofurans. Annu. Rev. Pharmacol. Toxicol. 26: 371-399.
Seiler, P., B. Fischer, A. Lindenau, and H. M. Beier. 1994. Effects of persistent chlorinated hydrocarbons on fertility and embryonic development in the rabbit. Hum. Reprod. 9 (10): 1920-1926.
Smith, L. C., I. Wilmut, and R. H. Hunter. 1988. Influence of cell cycle stage at nuclear transplantation on the development in vitro of mouse embryos. J. Reprod. Fertil. 84 (2): 619-624.
Srogi, K. 2008. Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environ. Chem. Lett. 6: 1-28.
Stanmore, B. R. 2004. The formation of dioxins in combustion systems. Combust. Flame. 136: 398-427.
Sun, Q. Y., G. M. Wu, L. Lai, K. W. Park, R. Cabot, H. T. Cheong, B. N. Day, R. S. Prather, and H. Schatten. 2001. Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction. 122 (1): 155-163.
Swedenborg, E. and I. Pongratz. 2010. Ahr and ARNT modulate ER signaling. Toxicology. 268 (3): 132-138.
Tomizawa. S., J. Nowacka-Woszuk, and G. Kelsey. 2012. DNA methylation establishment during oocyte growth: mechanisms and significance. Int. J. Dev. Biol. 56 (10-12): 867-75.
Tsutsumi. O., H. Uechi, H. Sone, J. Yonemoto, Y. Takai, M. Momoeda, C. Tohyama, S. Hashimoto, M. Morita, and Y. Taketani. 1998. Presence of dioxins in human follicular fluid: their possible stage-specific action on the development of preimplantation mouse embryos. Biochem. Biophys. Res. Commun. 250 (2): 498-501.
Vitale, A. M., M. E. K. Calvert, M. Mallavarapu, P. Yurttas, J. Perlin, J. Herr, and S. Coonrod. 2007. Proteomic profiling of murine oocyte maturation. Mol. Reprod. Dev. 74 (5): 608-616.
Vogel, C. F. A., W. L. W. Chang, S. Kado, K. McCulloh, H. Vogel, D. Wu, T. Haarmann-Stemmann, G. Yang, P. S. C. Leung, F. Matsumura, and M. E. Gershwin. 2016. Transgenic overexpression of aryl hydrocarbon receptor repressor (AhrR) and Ahr-mediated induction of CYP1A1, cytokines, and acute toxicity. Environ. Health Perspect. 124 (7): 1071-1083.
Wang, Ying., Y. Fan, and A. Puga1. 2010. Dioxin exposure disrupts the differentiation of mouse embryonic stem cells into cardiomyocytes. Toxicol. Sci. 115 (1): 225-237.
Wasielak, M., T. Wiesak, I. Bogacka, B. M. Jalali, and M. Bogacki. 2016. Zygote arrest 1, nucleoplasmin 2, and developmentally associated protein 3 mRNA profiles throughout porcine embryo development in vitro. Theriogenology 86: 2254-2262.
Wasielak, M., T. Więsak, I. Bogacka, B. M. Jalali, and M. Bogacki. 2017. Maternal effect gene expression in porcine metaphase II oocytes and embryos in vitro: effect of epidermal growth factor, interleukin-1β and leukemia inhibitory factor. Zygote. 25 (2): 120-130.
Wessels, J. M., A. K. Edwards, K. Khalaj, R. T. Kridli, M. Bidarimath, and C. Tayade. 2013. The microRNAome of pregnancy: deciphering miRNA networks at the maternal-fetal interface. PLoS One. 8 (11): e72264.
Whitlock, J. P. 1993. Mechanistic aspects of dioxin action. Chem. Res. Toxicol. 6 (6): 754-763.
WHO. 2003. Polychlorinated biphenyls: human health aspects. Geneva, Switzerland: World Health Organization. pp. 1-64.
Wong, M. H., M. A. Armour, R. Naidu, and M. Man. 2012. Persistent toxic substances: Sources, fates and effects. Rev. Environ. Health. 27 (4): 207-213.
Wu, Q., S. Ohsako, T. Baba, K. Miyamoto, and C. Tohyama. 2002. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on preimplantation mouse embryos. Toxicology. 174 (2): 119-129.
Wu, X., P. Wang, C. A. Brown, C. A. Zilinski, and M. M. Matzuk. 2003. Zygote arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate ovaries. Comparative Study. 69 (3): 861-867.
Wu, X., M. M. Viveiros, J. J. Eppig, Y. Bai, S. L. Fitzpatrick, and M. M. Matzuk. 2003. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Comparative Study. 33 (2): 187-191.
Xiao, H., Y. Ru, Z. Peng, D. Yan, L. Li, K. H. Karstensen, N. Wang, and Q. Huang. 2018. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln. Chemosphere. 210: 779-788.
Yellon, S. M., D. Singh, T. M. Garrett, O. R. Fagoaga, and S. L. Nehlsen-Cannarella. 2000. Reproductive, neuroendocrine, and immune consequences of acute exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in the Siberian hamster. Biol. Reprod. 63 (2): 538-543.
Yoshioka, K., C. Suzuki, A. Tanaka, I. M. K. Anas, and S. Iwamura. 2002. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66 (1): 112-119.
Yu, K., X. Zhang, X. Tan, M. Ji, Y. Chen, Y. Tao, M. Liu, and Z. Yu. 2019. Transgenerational impairment of ovarian induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) associated with Igf2 and H19 in adult female rat. Toxicology. 428: 1-7.
Yu, X. l., X. Z, H. W, and B. M. A. 2015. Expression patterns of OCT4, NANOG, and SOX2 in goat preimplantation embryos from in vivo and in vitro. J. Integr. Agr. 14 (7): 1398-1406.
Zanger, U. M. and M. Schwab. 2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138 (1): 103-141.
Zhang, W., R. M. Sargis, P. A. Volden, C. M. Carmean, X. J. Sun, and M. J. Brady. 2012. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor. PLoS One. 7 (5): e37103.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊