跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施紀帆
研究生(外文):Zevon Julio Seymour
論文名稱:草莓植株在熱馴化與致死溫度逆境下之型態、生理及生化變化
論文名稱(外文):Morphological, Physiological and Biochemical Changes in Strawberry Plants Following Heat Acclimation and Lethal Temperature Stress
指導教授:方中宜
指導教授(外文):Jong-Yi Fang
口試委員:林振祥顏才博方中宜
口試委員(外文):Jeng-Shane LinTsair-Bor YenJong-Yi Fang
口試日期:2021-01-22
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業暨國際合作系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:102
中文關鍵詞:抗氧化物活性氣候變遷熱逆境耐熱性誘導草莓活性 氧物質
外文關鍵詞:antioxidant activityclimate changeheat stressheat tolerance inductionstrawberryreactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣候變遷所引起的氣溫劇變常引起植物的非生物性逆境,特別是高溫逆境,耐熱性誘導進而讓草莓植株在高溫逆境下存活與維持產量是有其必要性的。本研究採用熱馴化來提升草莓植株耐熱性,’“桃園一號’草莓組培苗先經30至40℃熱馴化(依每個溫階處理時間長短可分成T1、T2、T3及T4組),而後暴露於致死溫度(48℃-4小時),最後移回25℃待其恢復,控制組植株全程維持在25℃,而未經熱馴化組植株則直接暴露於致死溫度,為試圖闡明草莓植株耐熱機制,進行了馴化及未馴化植株的形態、生理及生化學參數分析。未馴化草莓植株在恢復期第14天的存活率為0% ,而T3及T4組植株存活率為100%。在根的部分,T3和控制組植株於恢復期第49及56日的初級根數分別為4.7、6.5及4.8、6.8,兩者間無顯著差異;T3及控制組植株的第一及第二初級根生成日分別為15.2、19.3日及7.3、10.6日;所有經馴化的植株與控制組植株相比有較多的次級根生成(T1至T4分別為4.6、6.1、7.2及7.9;控制組1.5),T2、T3及T4植株次級根生成速度相仿。在葉的部分,相對於控制組植株在恢復期第21至42日的葉片數(2.1、3.5、4.4及5),T2組有較多葉片生成(3.5、4.8、6及6.5),而T3組在第21至28日時有較多葉片生成(3.5及4.6);葉片生成速度方面,T3組自第4到第7片新葉生成所花的時間分別為22.9、27.3、30.6及32.2日,皆快於控制組的30.4、37.2、43.3及51.6日。在四個熱馴化組別中,T3組植株具有高存活率、多次級根生成及葉片生長快速的優勢,因此被選為下一階段生理及生化分析的處理組別。在電解質滲漏分析方面,未馴化組植株有較高的滲漏率(38.3%),高於馴化組的22.5%與控制組的10.85%。馴化組植株每克鮮重所累積的脯胺酸較多(3.3 mg),高於未馴化組的1.7 mg及控制組的1.4 mg。控制組植株每克鮮重總葉綠素含量(3.9 mg) 於試驗期間無變化,而馴化組植株於暴露在致死溫度後的0~48小時由3.6 mg 降至2.5 mg隨後無變化,未馴化組植株每克鮮重總葉綠素含量在致死溫度處理後48小時為2.4 mg,於144小時後再降至0.7 mg;馴化植株在致死溫度處理後0小時每克鮮重葉綠素a含量與控制組無差異(2.6及2.8 mg),而未馴化植株降至2.2 mg,於後續的48至144小時僅未馴化植株由1.8 mg降至0.5 mg;在致死溫度處理後0小時所有植株每克鮮重葉綠素b含量均無差異(~1 mg),唯未馴化植株由48小時後的0.6 mg 降至144小時後的0.2 mg,其餘組別葉綠素b含量均維持不變。在馴化期間各項抗氧化酵素監測方面,超氧化物歧化酶(SOD)活性維持在25~27單位,僅在暴露於致死溫度後激增至43.7單位;抗壞血酸過氧化酶(APX)活性於25℃升至39℃時由545.5 nmol增加至791.8 nmol,隨後持續降低至致死溫度處理後的368 nmol;穀胱甘肽還原酶(GR)活性於25℃升至42℃時由30 nmol增加至43 nmol,暴露於致死溫度後則降至23.8 nmol;過氧化氫酶(CAT)活性在25℃升至42℃時由19.2 nmol增加至34.1 nmol,暴露於致死溫度後降至29 nmol:過氧化酶(POD)活性在25℃升至42℃間由1.38 nmol 急遽上升至13.9 nmol,暴露於致死溫度後降至3.62 nmol;以上可見除了APX的活性高峰出現在39℃外,其餘酵素活性在42℃時達到高峰。而比照對照組、未馴化和馴化植株之酵素活性後發現,對照組植株的SOD (26.3 單位)與POD (1.4 nmol)較馴化及未馴化植株低;相反地,對照組植株的APX (545.5 nmol)、GR (30 nmol)及CAT (19.4 nmol)活性均比馴化及未馴化植株高;此外,馴化植株的SOD (43.7單位)、APX (368 nmol)、GR (23.8 nmol)、CAT (20 nmol)及POD (3.6 nmol)活性均比未馴化植株的SOD (32.8單位)、APX (340.6 nmol)、GR (18.1 nmol)、CAT (17.1 nmol)及POD (2.4 nmol)高。綜上所述,T3熱馴化處理被證實可有效提升草莓組培苗的耐熱性,其特徵包含了100% 植株存活率、高脯胺酸含量及高抗氧化酵素活性以清除逆境下所產生的過量活性氧物質。本研究讓我們在草莓熱逆境防衛機制上有進一步的了解,在草莓育種上,更可協助開發高耐熱性的新品種,以因應未來越發不可預測的高溫。
Climate change-derived temperature alterations would cause various abiotic stresses to the plants, notably the heat stress (HS). Induction of heat tolerance in strawberry is imperative to allow the plants to survive under HS conditions while remaining productive. Heat acclimation was conducted to induce heat tolerance in strawberry plants. In vitro ‘Taoyuan No.1’ strawberry plants were subjected to different heat acclimation treatments namely T1, T2, T3 and T4 (30 to 42°C) for different durations before lethal temperature exposure (48°C for 4 hours) and 35-56 days recovery. Plants kept at 25°C without heat acclimation were used as controls and plants subjected directly to the lethal temperature without prior heat acclimation were considered as non-acclimated. Morphological, physiological and biochemical analyses were performed on both treated and non-treated plants to elucidate the mechanisms behind thermotolerance acquisition in strawberry plants. The non-acclimated plants had 0% survival, while plants from the T3 and T4 treatments had 100% recovery after 14 days. The T3 plants produced a similar amount of primary roots (4.70 and 4.80) as the control plants (6.50 and 6.80) at day 49 and 56. The T3 and control plants produced their first and second primary roots at 15.2, 19.3, 7.3, and 10.6 days respectively. All the acclimated plants produced more secondary roots (4.60, 6.10, 7.20 and 7.90) than the control plants (1.50). The T2, T3 and T4 plants produced the secondary roots at a similar speed. Plants from the T2 treatment produced more leaves from day 21 to 42 (3.50, 4.80, 6 and 6.50), while plants from the T3 treatment produced leaves faster at 21 to 28 days (3.50 and 4.60) over controls (2.10, 3.50, 4.40 and 5). Plants from the T3 treatment produced the fourth to the seventh leaf faster (22.9, 27.3, 30.6 and 32.2 days) than the control plants (30.4, 37.2, 43.4 and 51.6 days). The T3 treatment which showed high survival, a high number of secondary roots and fast leaf regrowth were selected as the treatment for subsequent analyses of physiological and biochemical parameters. The extent of electrolyte leakage was higher in the non-acclimated plants (38.3%) than the acclimated (22.5%) plants and control (10.85%). The proline content was also higher in the acclimated plants (3.3 mg/g) over the non-acclimated plants (1.7 mg/g) and control (1.4 mg/g). The total chlorophyll content remained stable in the control plants (3.9 mg/g) at 0, 48, 96 and 144 h, while in the acclimated plants it decreased from 3.6 to 2.5 mg/g at 0 to 48 h where it remained unchanged from 48 to 144 h. The total chlorophyll content of the non-acclimated plants decreased from 2.4 mg/g at 48 h to 0.7 mg/g at 144 h. The chlorophyll a content in the acclimated plants was similar to control (2.6-2.8 mg/g) as compared to non-acclimated plants (2.2 mg/g) at 0 h. The content of chlorophyll a in the acclimated plants remained stable while it decreased from 1.8 to 0.5 mg/g in the non-acclimated plants from 48 to 144 h. The chlorophyll b content remained unchanged in plants from all the treatments at 0 h (~1 mg/g). It remained unchanged in the acclimated plants throughout 0, 48, 96 and 144 h, while in the non-acclimated plants the chlorophyll b content decreased from 0.6 mg/g at 48 h to 0.2 mg/g at 144 h. The activity of superoxide dismutase (SOD) remained stable at 25-42℃ (25 ~ 27 units). A significant increase in SOD activity was observed after exposure to 48℃/4 h (43.7 units). The ascorbate peroxidase (APX) activity increased from 545.5 nmol at 25℃ to 791.8 nmol at 39℃ but started to drop afterwards reaching 368 nmol at 48℃. The activity of glutathione reductase (GR) increased from 30 nmol at 25℃ to 43 nmol at 42℃ before decreasing to 23.8 nmol at 48℃. The catalase (CAT) activity also increased significantly from 19.2 nmol at 25℃ to 34.1 nmol at 42℃ before declining to 29 nmol at 48℃. The peroxidase (POD) activity significantly increased from 1.38 nmol at 25℃ to 13.9 nmol at 42℃, before declining to 3.62 nmol at 48℃. It can be seen that for most of the enzymes analysed, the maximum enzyme activity was recorded at 42℃ except for APX whose activity peaked at 39℃. When comparing between the control, acclimated and non-acclimated plants, Lower activities of SOD (26.3 units) and POD (1.4 nmol) were noticed in control plants compared to the acclimated and non-acclimated plants. Conversely, the activity of APX (545.5 nmol), GR (30.0 nmol) and CAT (19.4 nmol) were higher in the control plants followed by the acclimated and non-acclimated plants. Additionally, higher activities of SOD (43.7 units), APX (368.0 nmol), GR (23.8 nmol), CAT (20.0 nmol) and POD (3.6 nmol) were observed in the acclimated plants as compared to the activities of SOD (32.8 units), APX (340.6 nmol), GR (18.1 nmol), CAT (17.1 nmol) and POD (2.4 nmol) in the non-acclimated plants. In conclusion, the T3 heat acclimation treatment proved to be effective for inducing heat tolerance in in vitro strawberry plants and it was characterized by 100% plant recovery, high proline content and high antioxidant enzyme activities which can help to scavenge reactive oxygen species (ROS) during heat stress conditions. Armed with this information, a better knowledge of the heat stress defence mechanism in strawberry plants was acquired and the heat-tolerant strawberry plants obtained in this study may be exploited in future breeding programs for evolving varieties suitable for growing under ever-changing high-temperature conditions.
摘要 I
Abstract IV
Acknowledgements VII
List of Tables X
List of Figures XI
1. Introduction 1
2. Literature Reviews 3
2.1 Origin and history 3
2.2 Scientific classification 6
2.3 Morphology 7
2.4 Climate Change and Heat stress 18
2.5 Plant responses to heat stress 20
2.6 Oxidative stress and reactive oxygen species 27
2.7 Plant thermotolerance 29
2.8 Acquired thermotolerance 32
3. Materials and Methods 34
3.1 Plant materials 34
3.2 Heat acclimation treatments 35
3.3 Analysis of morphological parameters 37
3.3.1 Survival percentage 37
3.3.2 Root number and days to new root emergence 37
3.3.3 Leaf number and days to new leaf emergence 38
3.4 Analysis of physiological parameters 38
3.4.1 Electrolyte leakage 38
3.4.2 Proline content 39
3.4.3 Chlorophyll content 41
3.5 Analysis of biochemical parameters 42
3.5.1 Sample storage 42
3.5.2 Enzyme extraction 42
3.5.3 Spectrophotometric readings 43
3.5.4 Protein estimation 43
3.5.5 Superoxide dismutase (SOD, EC: 1.15.1.1) 44
3.5.6 Ascorbate Peroxidase (APX, EC: 1.11.1.11) 46
3.5.7 Glutathione reductase (GR, EC: 1.6.4.2) 47
3.5.8 Catalase (CAT, EC: 1.11.1.6) 47
3.5.9 Peroxidase (POD, EC: 1.11.1.7) 48
3.6 Experimental design and data analysis 49
4. Results 50
4.1 Morphological parameters 50
4.1.1 Survival percentage 50
4.1.2 Root number and days to new root emergence 52
4.1.3 Leaf number and days to new leaf emergence 61
4.2 Physiological parameters 67
4.2.1 Electrolyte leakage 67
4.2.2 Proline content 68
4.2.3 Chlorophyll content 68
4.3 Biochemical parameters 71
5. Discussions 76
6. Conclusions 84
7. References 86
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105:121-126.
Agarwal, S., R. K. Sairam, G. C. Srivastava, A. Tyagi and R. C. Meena. 2005. Role of ABA, Salicylic Acid, Calcium and Hydrogen Peroxide on Antioxidant Enzymes Induction in Wheat Seedlings. Plant Science 169:559-570.
Agrawal, S. B., S. Singh and M. Agrawal. 2009. Ultraviolet-B Induced Changes in Gene Expression and Antioxidants in Plants. Advances in Botanical Research 52:48-86.
Ahuja, I., R. C. H. de Vos, A. M. Bones and R. D Hall. 2010. Plant Molecular Stress Responses Face Climate Change. Trends in Plant Science 15(12):664-674.
Almeselmani, M., P. S. Deshmukh and R. K. Sairam. 2009. High temperature Stress Tolerance in Wheat Genotypes: Role of Antioxidant Defence Enzymes. Acta Agronomic Hungaria 57:1-14.
Almeselmani, M., P. S. Deshmukh, R. K. Sairam, S. R. Kushwaha and T. P. Singh. 2006. Protective Role of Antioxidant Enzymes under High Temperature Stress. Plant Science 171:382-388.
Ange, U. M., S. Srividhya, C. Vijayalakshmi and B. Parasuraman. 2016. Temperature Induction Response Reveals Intrinsic Thermotolerant Genotypes in Soybean. Legume Research- An International Journal (39):926-930
Apel, K. and H. Hirt. 2004. Reactive Oxygen Species: Metabolism, Oxidative Stress and Signal Transduction. Annual Review of Plant Biology 55:373-399.
Ashraf, M. 2009. Biotechnological Approach of Improving Plant Salt Tolerance Using Antioxidants as Markers. Biotechnology Advances 27:84-93
Ashraf, M. and M. Hafeez. 2004. Thermotolerance of Pearl Millet and Maize at Early Growth Stages: Growth and Nutrient Relations. Biologia Plantarum 48:81-86.
Babu, N. R, and V. R. Devraj. 2008. High Temperature and Salt Stress Response in French Bean (Phaseolus Vulgaris). Australian Journal of Crop Science 2:40-48.
Bajji, M., J-M. Kinet and S. Lutts. 2001. The Use of Electrolyte Leakage Method for Assessing Cell Membrane Stability as a Water Stress Tolerance test in Durum Wheat. Plant Growth Regulation 00:1-10.
Bañon, S., J. Fernandez, A. Franco, A. Torrecillas, J. J. Alarcon, and M. J. Sánchez-Blanco. 2004. Effects of Water Stress and Night Temperature Preconditioning on Water Relations and Morphological and Anatomical Changes of Lotus Creticus Plants. Scientia Horticulturae 101:333-342.
Basu, A., A. Nguyen, N. M. Betts and T. J. Lyons. 2014. Strawberry as a Functional Food: An Evidence-Based Review. Critical Reviews in Food Science and Nutrition 54(6):790-806.
Bates, L. S., L. P. Waldren and I. D. Teare. 1973. Rapid determination of Free Proline for Water-stress Studies. Plant and Soil Science 39:205-207.
Beam, A. 2019. Strawberry Garden Lesson. Retrieved on Dec. 2, 2020, from the World Wide Web: https://ohtheplacesyoullgrow.com/school-garden/strawberry-garden-.
Bertsch, K. and F. Bertsch. 1947. Geschichte der Kulturpflanzen, Wissenschaftliche Verlagsgesellschaft, Stuttgart, p. 152-156
Blumward, E. and R. Mittler. 2018. Abiotic Stress. In: Plant Physiology and Development, Sixth Edition, L. Taiz, E. Zeiger, I. M. Moller and A. Murphy (eds.), New York: Oxford University Press, 731-760.
Bowler, C., B. Vanmontagu and D. Inze. 1992. Superoxide Dismutase and Stress Tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43:83-116.
Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry 72:248-254.
Bray, E. A., J. Bailey-Serres and E. Weretilnyk. 2000. Responses to Abiotic Stresses. In: Biochemistry and molecular biology of plants, W. Gruissem, B. Buchannan and R. Jones (eds.) Rockville, Maryland, USA: American Society of Plant Physiologists, p. 1158-1249
Cao, Y.Y.; Duan, H.; Yang, L.N.; Wang, Z.Q.; Zhou, S.C.; Yang, J.C. 2008. Effect of Heat Stress During Meiosis on Grain Yield of Rice Cultivars Differing in Heat Tolerance and Its physiological mechanism. Acta Agronomica Sinica 34:2134-2142.
Centre for Agriculture and Bioscience International (CABI). 2019. Fragaria ananassa (Strawberry). Retrieved on Nov. 9, 2020, from the World Wide Web: https://www.cabi.org/isc/datasheet/24406
Chakraborty, U., and D. Pradhan. 2011. High Temperature-induced Oxidative Stress in Lens Culinaris, Role of Antioxidants and Amelioration of Stress by Chemical Pre-treatments. Journal of Plant Interaction 6:43-52
Chalapathi Rao, A. S. V. and A. R. Reddy. 2008. Glutathione Reductase: A Putative Redox Regulatory System in Plant Cells. In: Sulfur Assimilation and Abiotic Stress in Plants, N. A. Khan, S. Singh and S. Umar (eds.), Berlin, Heidelberg: Springer, 111-147.
Chance, B. and A. C. Maehly. 1955. Assay of Catalase and Peroxidase. Methods in enzymology 2:764-775
Chandola, A. 2015. Temperature Induction Response of Tomato Cultivars in Mitigation of Water and Heat Stress. Master Thesis, Banaras Hindu University.
Chen, B. L., W. A. Baase, and J. A. Schellman. 1989. Low-temperature Unfolding of a Mutant of Phage T4 lysozyme. 2. Kinetic investigations in Biochemistry 28(2):691-699.
Chen, D. 2013. The Effect of Heat on Fruit Size of Day-neutral Strawberries. Master thesis, University of Guelph.
Crafts-Brandner, S. J., and M. E. Salvucci. 2002. Sensitivity of Photosynthesis in a C4 plant, Maize, to Heat Stress. Plant Physiology 129:1773-1780.
Cui, LJ., JL. Li, Y. Fan, S. Xu and Z. Zhang. 2006. High Temperature Effects on Photosynthesis, PSII Functionality and Antioxidant Activity of Two Festuca arundinacea Cultivars with Different Heat Susceptibility. Botanical Studies 47:61-69.
Dalal, M. 2014. Manual for Oxidative Stress Studies in Plants. National Research Centre on Plant Biotechnology, New Delhi: International E-Publications p. 22-32
Darrow G. M. 1966. The Strawberry: History, Breeding and Physiology. New York: Holt, Rinehart and Winston, p. 314-354.
De Ronde, J. A. D., W. A. Cress, G. H. J. Kruger, R. J. Strasser and J. V. Staden. 2004. Photosynthetic Response of Transgenic Soybean Plants Containing an Arabidopsis P5CR Gene, During Heat and Drought Stress. Journal of Plant Physiology 61:1211-1244
Department of Agriculture, Forestry and Fisheries, Republic of South Africa (DAFF). 2010. Strawberries Production Guide, South Africa: DAFF, 1-19.
Dhankher, O. M. and C. H. Foyer. 2018. Climate Resilient Crops for Improving Global Food Security and Safety. Plant Cell and Environment. 4:877-884.
Ergin, S., M. Kesici, E. Turhan, A. Ipek and N. Kökosal. 2016. Effects of High Temperature Stress on Enzymatic and Nonenzymatic Antioxidants and Proteins in Strawberry Plants. Turkish Journal of Agriculture and Forestry 40: 908-917.
Fahad, S., A. A. Bajawa, U. Nazir, S. A. Anjum, A. Farooq. A. Zohaib, S. Sadia, W. Nasim, S. Adkins, S. Saud, M. Z. Ihsan, H. Alharby, C. Wu, D. Wang and J. Huang. 2017. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science 8:1147.
Fitter, A. H. and Hay R.K.M. 2002. Environmental Physiology of Plants, 3rd edition. London: Academic Press.
Flachowsky, H., M. Hofer and M. V. Hanke. 2011. Strawberry. Fruit, Vegetable and Cereal Science and Biotechnology 5:8-26.
Foyer, C, and G. Noctor. 2000. Oxygen Processing in Photosynthesis: Regulation and Signaling. The New Phytologist 146:359-388.
Garg, N. and H. Kaur. 2012. Response of Antioxidant Enzymes, Phytochelatins and Glutathione Production Towards Cd and Zn Stresses in Cajanus cajan (L.) Millsp. Genotypes Colonized by Arbuscular Mycorrhizal Fungi. Journal of Agronomy and Crop Science 199:118-133
Gill, S. S. and N. Tuteja, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909-930.
Gomathi, R., S. Shiyamala, S. Vasantha and A. Suganya. 2014. Optimization of Temperature Conditions for Screening Thermotolerance in Sugarcane Through Temperature Induction (TIR) Technique. International Journal of Sciences 3(3):5-18
Gulen H., E. Turhan and A. Eris. 2016. Molecular and Physiological Responses of Strawberry Plants to Abiotic Stress. In: Strawberry: Growth, Development and Diseases, A. M. Husaini, and F. A. Zaki, (eds.), Boston, MA: CABI, p. 288-301.
Gulen, H. and A. Eris. 2003. Some Physiological Changes in Strawberry (Fragaria × ananassa ‘Camarosa’) Plants Under Heat Stress. The Journal of Horticultural Science and Biotechnology 78(6): 894-898
Gulen, H. and A. Eris. 2004. Effects of Heat Stress on Peroxidase Activity and Total Protein Content in Strawberry Plants. Plant Science 166(3):739-744.
Gupta, M., P. Sharma, N. B. Sarin, A. K. Sinha. 2009. Differential Response of Arsenic Stress in Two Varieties of Brassica juncea L., Chemosphere 74:1201-1208
Gupta, S. C, A. Sharma, M. Mishra and D. K. Chowdhuri. 2010. Heat Shock Proteins in Toxicology: How Close and How Far? Life Sciences. 83:377-384.
Hall, A. E. Crop Responses to Environment. Boca Raton: CRC Press; (2001).
Halliwell, B. 2006. Oxidative Stress and Neurodegeneration: Where Are We Now? Journal of Neurochemistry 97:1634-1658.
Hancock J. F., C. Finn and C. Heider. 1997. A Farmer Based Approach to Conserve the Historic Andean Strawberry. Chronica Horticulturae 37:14-16
Hasanuzzaman M., Nahar K., Fujita M. 2013b. Extreme Temperatures, Oxidative Stress and Antioxidant Defence in Plants. In: Vahdati K., Leslie C., editors. Abiotic Stress Plant Responses and Applications in Agriculture. InTech; Rijeka, Croatia: p. 169-205.
Hasanuzzaman, M., K. Nahar and M. Fujita. 2013a. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences 14:9643–9684.
Hasanuzzaman, M., M. A. Hossain, J. A. T. da Silva, and M. Fujita. 2012. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defence Is a Key Factor. In: Crop Stress and its Management: Perspectives and Strategies. V. Bandi, A. K. Shanker, C. Shanker and M. Mandapaka (eds.), Berlin: Springer, 261-316.
Honjo, M., S. Kataoka, S. Yui. 2009. Maternal Lineages of the Cultivated Strawberry, Fragaria × ananassa, Revealed by Chloroplast DNA Variation. Horticulture Science 44:1562-1565.
Hoque, M. A. O. E., M. N. A. Banu, Y. Nakamura, Y. Shimoishi and Y. Murata, 2007. Exogenous Proline Mitigates the Detrimental Effects of Salt Stress more than the Betaine by Increasing Antioxidant Enzyme Activities. Journal of Plant Physiology 164:553-561.
Hörtensteiner, S. 2009. Stay-green Regulates Chlorophyll and Chlorophyll-binding Protein Degradation During Senescence. Trends in Plant Science 14(3):155-162.
Hossain, M.A., Hasanuzzaman, M., Fujita, M., 2011. Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Frontiers in Agriculture China 5:1-14.
Hua, B. and W. Y. Guo. 2002. Effect of Exogenous Proline on SOD and POD Activity of Soybean Callus Under Salt Stress. Acta Agriculturae Boreali Sinica 17:37-40.
Hummer, K. 2008. Global Conservation Strategy for Fragaria (Strawberry). Scripta Horticulturae 6:1-87
Hummer, K. E. and J. Hancock. 2009. Strawberry Genomics: Botanical History, Cultivation, Traditional Breeding, and New Technologies. In: Genetics and Genomics of Rosaceae, Plant Genetics and Genomics: Crops and Models, K. M. Folta and S. E. Gardiner (eds.), USA: Springer Science.
Hummer, K. E. N. Bassil, and W. Njuguna. 2011. "Chapter 2: Fragaria" (2011). Publications from USDAARS / UNL Faculty. p. 1258.
Husaini, A. M. and F. A. Zaki. 2016. Strawberry: Growth, Development and Diseases. Boston, MA: CABI, p. 1-4.
IPCC, Working Group 1, Fifth Assessment Report on Climate Change 2013: The Physical Science Basis, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2013; IPCC, in: Core Writing Team, R.K. Pachauri,
IPCC.2007. Climate Change 2007: Impacts, Adaptation, and Vulnerability. In Jacob, P., H. Hirt and A. Bendahmane. 2017. The Heat-shock Protein/Chaperone Network and Multiple Stress Resistance. Plant Biotechnology Journal. 15: 405-414.
Jones, J. K. 1994. Strawberry. In: Smartt J., Simmonds N. W. (eds.) Evolution of Crop Plants, Longman, Scientific Technical, p. 412-418
Karuppanapandian, T., H. W. Wang, N. Prabakaran, K. Jeyalakshmi, M. Kwon, K. Manoharan and W. Kim. 2011. 2,4- Dichlorophenoxyacetic Acid-induced Leaf Senescence in Mung Bean (Vigna radiata L. Wilczek) and Senescence Inhibition by Co-treatment With Silver Nanoparticles. Plant Physiology and Biochemistry 49:68-177.
Karuppanapandian, T., J. C. Moon, C. Kim, K. Manoharan, and W. Kim. 2011. Reactive Oxygen Species in Plants: Their Generation, Signal Transduction, and Scavenging Mechanisms. Australian Journal of Crop Science 5:709-725.
Karuppanapandian, T., J. C. Moon, C. Kim, K. Manoharan, and W. Kim. 2011b Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5:709-725.
Kaur, G. and B. Asthir. 2015. Proline: a Key Player in Plant Abiotic Stress Tolerance. Biologia plantarum 59:609-619.
Kheir, E. A., M. S. Sheshshayee, T. G. Prasad and M. Udayakumar. 2012. Temperature Induction Response as a Screening Technique for Selecting High Temperature-Tolerant Cotton Lines. The Journal of Cotton Science 16:190-199.
Kolb, P. F, and R. Robberecht. 1996. High temperature and Drought Stress Effects on Survival of Pinus ponderosa Seedlings. Tree Physiology 16:665-672.
Kozai, N., K. Beppu, R. Mochioka, U. Boonprakob, S. Subhadrabandhu, and I. Kataoka. 2004. Adverse Effects of High Temperature on the Development of Reproductive Organs in ‘Hakuho’ Peach Trees. Journal of Horticultural Science and Biotechnology 79:533-537.
Kumar, G., B. T. Krishnaprasad, M. Savitha, R. Gopalakrishna, K. Mukhopadhyay, G. Romamohan and M. Udayakumar. 1999. Enhanced Expression of Heat-shock Proteins in Thermo-tolerant Lines of Sunflower and Their Progenies Selected on the Basis of Temperature Induction Response. Theoretical and Applied Genetics 99:359-367.
Kumar, S, Kaur, R, Kaur, N, Bhandhari, K, Kaushal, N, Gupta, K, Bains, T. S, and Nayyar, H. 2011. Heat-stress Induced Inhibition in Growth and Chlorosis in Mungbean (Phaseolus aureus Roxb.) is Partly Mitigated by Ascorbic Acid Application and is Related to Reduction in Oxidative Stress. Acta Physiologiae Plantarum, 33:2091-2101.
Kumar, V. S. and P. A. Wigge. 2010. H2A.Z-containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cellpress 140(1):136-47.
L.A. Meyer. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, p. 151.
Ledesma, N. A., M. Nakata, and N. Sugiyama. 2008. Effect of High Temperature Stress on the Reproductive Growth of Strawberry cvs. ‘Nyoho’ and ‘Toyonoka’. Scientia Horticulturae, 116:186-193.
Ledesma, N. and N. Sugiyama. 2005. Pollen Quality and Performance in Strawberry Plants Exposed to High-temperature Stress. Journal of the American Society for Horticultural Science 130(3):341-347.
Lee, C. M. (1990). New Strawberry Cultivar 'Taoyuan No.1'. Harvest. Taipei, Taiwan, AgriHarvest. 40:33-34.
Lichtenthaler, H. K. 1987. Chlorophylls and Carotenoids, the Pigments of Photosynthetic Biomembranes. In: Methods Enzymol, R. Douce and L, Packer (eds.), New York: Academic Press Inc., p. 148:350-382.
Liston, A., R. Cronn and T. L. Ashman. 2014. Fragaria: A Genus with Deep Historical Roots and Ripe for Evolutionary and Ecological Insights. American Journal of Botany. 10: 1686-1699.
Lobell, D. B., and C. B. Field. 2007. Global Scale Climate–crop Yield Relationships and the Impacts of recent warming. Environment Research Letters 2(1):1-8.
Lobell, D.B., and G.P. Asner. 2003. Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields. Science, 299(5609): p. 1032.
Lobell, D.B., W. Schlenker, and J. Costa-Roberts. 2011. Climate Trends and Global Crop Production Since 1980. Science 333:616-620.
Malgorzata, B., S. Nevena, Z. Zlatko, and G. Daniela. 2009. Physiological Response of Some Tomato Genotypes (Lycopersicon Esculentum L.) to High Temperature Stress. Journal of Central European Agriculture 9:723-732.
Mall, R. K., A Gupta and G. Sonkar. 2017. Effect of Climate Change on Agricultural Crops. In: Current Developments in Biotechnology and Bioengineering Chapter: Effect of Climate Change on Agricultural Crops, S. K. Dubey, A. Pandey, R. S. Sangwan, Elsevier, p. 23-46.
Marchand, F.L., S. Mertens, F. Kockelbergh, L. Beyens, and I. Nijs. 2005. Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Global Change Biology 11:2078-2089.
Masouleh, S. S. S. and Y. N. Sassine. 2020. Molecular and Biochemical Responses of Horticultural Plants and Crops to Heat Stress. Ornamental Horticulture 26:148-158.
Matysik, J., B. B. Alia and P. Mohanty. 2002. Molecular Mechanisms of Quenching of Reactive Oxygen Species by Proline Under Stress in Plants. Current Science 82:525-532.
Maxwell, K. and G. N. Johnson. 2000. Chlorophyll Fluorescence- a Practical Guide. Journal of Experimental Botany 51:659-668.
Mazorra L. M., M. Núñez1, M. Hechavarria, F. Coll and M. J. Sánchez-Blanco. 2002. Influence of Brassinosteriods and Antioxidant Enzymes Activity in Tomato under Different Temperatures. Plant Biology 45:593-596.
Mckee, J and A. J. Richards. 1998. The effect of Temperature on Reproduction in Five Primula species. Annals of Botany 82:359-374.
Mercedes de la Cruz, J. F. 2019. The Effects of Temperature Induction Response (TIR) on Survival Rate and Antioxidant Enzyme Activities of Strawberry Plants under Heat Stress. Master thesis, National Pingtung University of Science and Technology.
Miller, G., N. Suzuki, S. Ciftci-yilmaz and S. Mittler. 2010. Reactive Oxygen Species Homeostasis and Signaling During Drought and Salinity Stresses. Plant Cell Environment 33:453-467.
Mittler, R. 2002. Oxidative Stress. Antioxidants and Stress Tolerance. Trends in Plant Science 7: 405-10.
Mittler, R. 2006. Abiotic Stress, The Field Environment and Stress Combination. Trends in Plant Science, 11, 15-19.
Mittler, R. and E. Blumwald. 2010 Genetic Engineering for Modern Agriculture: Challenges and Perspectives. Annual Review of Plant Biology 6:443-462.
Mittler, R., and E. Blumwald. 2010. Genetic Engineering for Modern Agriculture: Challenges and Perspectives. Annual Review of Plant Biology, 61:443-462.
Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive Oxygen Gene Network of Plants. Trends in Plant Science 9:490-498.
Moller, I. M., P. E. Jensen and A. Hansson. 2007. Oxidative Modifications to Cellular Components in Plants. Annual Review of Plant Biology 58:459-481.
Morales, D., P. Rodriguez, J. Dell’amico, E. Nicolas, A. Torrecillas and M. J. Sanchez-Blanco. 2003. High Temperature Pre-conditioning and Thermal Shock Imposition Affects Water Relations, Gas Exchange and Root Hydraulic Conductivity in Tomato. Biologia Plantarum 47:203-208.
Nakano, Y. and K. Asada 1981. Hydrogen Peroxide is Scavenged by Ascorbate Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiology 22:867-880
National Aeronautics and Space Administration (NASA). 2020. Overview: Weather, Global Warming and Climate Change. Retrieved on Oct. 23, 2020 from the World Wide Web: https://climate.nasa.gov/resources/global-warming-vs-climate-change/
Ogweno, J. O., Y. H. Zhou and J. Q. Yu. 2009. Changes in Activities of Antioxidant Enzymes and Photosynthesis in Detached Leaves of Tomato After Exposure to Different Temperatures. African Journal of Horticultural Science 2:124-13.
Panawala, L. 2017. Difference Between Chlorophyll A and B. Retrieved on Oct. 10, 2020 from the World Wide Web: https://www.researchgate.net/publication/316584030_Home_Science_Biology_Cell_Biology_Difference_Between_Chlorophyll_A_and_B_Difference_Between_Chlorophyll_A_and_B_Main_Difference_-_Chlorophyll_A_vs_Chlorophyll_B
Partheeban, C., C. N. Chandrasekhar, P. Jeyakumar, R. Ravikesavan and G. Ramasamy. 2017. Effect of PEG Induced Drought Stress on Seed Germination and Seedling Characters of Maize (Zea mays L.) Genotypes. International Journal of Current Microbiology and Applied Sciences 6(5):1095-1104.
Pires. M. V., A. F. Almeida, A. L. Figueiredo, F. P. Gomes and M. M. Souza. 2011. Photosynthetic Characteristics of Ornamental Passion Flowers Grown under Different Light Intensities. Photosynthetica 49(4): 593-602.
Prasad, P. V. V., K. J. Boote, and L. H Jr Allen. 2006. Adverse High Temperature Effects on Pollen Viability, Seed-set, Seed Yield and Harvest Index of Grain-sorghum [Sorghum Bicolor (L.) Moench] are More Severe at Elevated Carbon Dioxide Due to Higher Tissue Temperatures. Agri cultural and Forest Meteorology 139:237-251.
Prasad, P.V.V., S. A. Staggenborg, and Z. Ristic. 2008. Impacts of Drought And/Or Heat Stress on physiological, Developmental, Growth, And Yield Processes of Crop Plants In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes. In: Advances in Agricultural Systems Modeling Series 1. L. H. Ahuja and S. A. Saseendran, (eds), Madison, WI, USA, p. 301-355.
Premachandra, G. S., H. Saneoka, K. Fujita, and S. Ogata. 1992. Cell Membrane Stability, Leaf Water Relations, Osmotic Adjustment, Epicuticular Wax Load and Growth as Affected by Increasing Water Deficits in Sorghum. Journal of Experimental. Botany 43:1569-1576
Rani, B., K. Dhawan, V. Jain, M. L. Chhabra, and D. Singh. High Temperature Induced Changes in Antioxidative Enzymes in Brassica juncea (L) Czern & Coss. Retrieved on Nov. 3, 2020 from the World Wide Web: Available online: http://www.australianoilseeds.com/__data/assets/pdf_file/0003/6861/46_High_temperature_induced_ changes_in_antioxidative_enzymes_in_Brassica_juncea.pdf
Reda, F. and H. M. H. Mandoura. 2011. Response of Enzymes Activities, Photosynthetic Pigments, Proline to Low or High Temperature Stressed Wheat Plant (Triticum aestivum L.) in the Presence or Absence of Exogenous Proline or Cysteine. International Journal of Academic Research 3(4):108-115
Rejeb, K. B., C. Abdelly and A. Savouré. 2014. How Reactive Oxygen Species and Proline Face Stress Together. Plant Physiology and Biochemistry 80:278-284.
Robson, C.A. and G. C. Vanlerberghe. 2002. Transgenic Plant Cells Lacking Mitochondrial Alternative Oxidase Have Increased Susceptibility to Mitochondria-dependent and Independent Pathway of programmed Cell Death, Plant physiology 129:1908-1920.
Rohacek K. 2002. Chlorophyll Fluorescence Parameters: The Definitions, Photosynthetic Meaning, and Mutual Relationships. Photosynthetica 40: 13-29.
Satbhai, R., A. Kale and R. Naik. 2014. Cell Viability, Time Lapse Study and Membrane Stability Index Curing Temperature Induction Response in Wheat. The Ecoscan 4:245-252.
Sato, S. M., M. Peet and J. F. Thomas. 2000. Physiological Factors Limit Fruit Set of Tomato (Lycopersicon esculentum Mill.) Under Chronic, Mild Heat Stress. Plant, Cell & Environment 23, 719-726.
Savicka, M and N. Škute. 2010. Effects of High Temperature on Malondialdehyde Content, Superoxide Production and Growth Changes in Wheat Seedlings (Triticum aestivum L.) Ekologija, 56:26-33.
Scandalios, J. G. 1993. Oxygen Stress and Superoxide Dismutases. Plant Physiology 101:7-12.
Schaedle, M., J. A. Bassham. 1977. Chloroplast Glutathione Reductase. Plant Physiology 59:1011-1012
Schuster, W. S, and R. K. Monson. 1990. An Examination of the Advantages of C3-C4 Inter‐ Mediate Photosynthesis in Warm Environments. Plant, Cell & Environment 13:903-912.
Seeram, N. P. 2015. Strawberry Phytochemicals and Human Health: A Review. Retrieved on Oct. 23, 2020 from the World Wide Web: https://www.researchgate.net/publication/228983423
Senthil-Kumar, M., V. Shrikanthbabu, B. M. Raju, Ganeshkumar, N. Shivaprakash and M. Udayakumar. 2003. Screening of Inbred Lines to Develop a Thermotolerant Sunflower Hybrid Using the Temperature Induction Response (TIR) Technique: a Novel Approach by Exploiting Residual Variability. Journal of Experimental Botany 54:2569-2578
Sharma, P., A. B. Jha, R. S Dubey and M. Pessarakli. 2012. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany 2012:1-26.
Staudt G. 1961. Die Entstehung und Geschichte der großfrüchtigen Gartenerdbeere Fragaria :× ananassa Duch. Der Züchter 31:212-218
Staudt, G. 2003. Les dessins d'A.N. Duchesne pour son Histoire Naturelle des Fraisiers. Publications Scientifiques du Museum, Paris, p. 16-27
Sujatha, B., P. Sirisha and Y. V. Bharathi. 2018. Screening of Acquired Thermotolerant Ragi [Eluesina coracana (L.) Gaertn] Genotypes Using T.I.R. Technique. International Journal of Plant Sciences 13(1):165-170
Sumithra, K., P. P. Jutur, B. D. Carmel and A. R. Reddy. 2006. Salinity-Induced Changes in two Cultivars of Vigna radiata: Responses of Antioxidative and Proline Metabolism, Plant Growth Regulation 50:11-22
Susumu, H., S. Katsutomo, I. Hiroyuki, O. Yuko and H. Matsui Matsui. 2008. A large family of Class III plant peroxidases. Plant and Cell Physiology 42(5):462-8.
Suzuki, N, and R. Mittler. 2006. Reactive Oxygen Species and Temperature Stresses: A Delicate Balance Between Signaling and Destruction. Physiologia Plantarum, 126:45-51.
Suzuki, N., G. Miller, J. Morales, V. Shulaev, M. A. Torres, and R. Mittler. 2011. Respiratory Burst Oxidases: The Engines of ROS Signaling. Current Opinion in plant biology 14(6):691-699.
Suzuki, N., S. Koussevitzky, R. Mittler and G. Miller. 2012. ROS and Redox Signalling in the Response of plants to Abiotic Stress. Plant Cell Environment 35:259-270.
T. Trejo and M. Gómez. 2014. Nutrient Management in strawberry. Effects on yield, quality and plant health. In: Strawberries, N. Malone, New York, United States: Nova Science Publishers Inc, p. 239-266.
Tan, W., Q. W. Meng, M. Brestic, K. Olsovska, and X. Yang. 2011. Photosynthesis is Improved by Exogenous Calcium in Heat-stressed Tobacco Plants. Journal of Plant Physiology 168:2063-2071.
U.S. Department of Agriculture (USDA), Fooddata Central. 2019. Strawberries, Raw. Retrieved on Oct. 23, 2020 from the World Wide Web: https://fdc.nal.usda.gov/fdc-app.html#/food-details/167762/nutrients
University of Connecticut (UCCON). 2019. Heat Acclimatization. Retrieved on Oct. 23, 2020 from the World Wide Web: https://ksi.uconn.edu/prevention/heat-acclimatization/#:~:text=Heat%20acclimation%20is%20a%20broad,better%20cope%20with%20heat%20stress.
Vidya, S. M., H. S. Vijay Kumar, R. M. Bhatt, R. H. Laxman, and K. V. Ravishankar. 2018. Transcriptional Profiling and Genes Involved in Acquired Thermotolerance in Banana: A Non-Model Crop. Scientific Reports. 8:1-10.
Vidya, S. M., R. H. Laxman, R. M. Bhatt, A. Rekha, V. S. J. Sunoj and K. V. Ravishankar. 2018. Temperature Induction Response Technique: a Screening Tool for Evaluation of Banana Cultivars for Thermotolerance. Indian Journal of Plant Physiology 22(1): 79-84
Wahid, A and T. J. Close. 2007. Expression of Dehydrins Under Heat Stress and Their Relationship with Water Relations of Sugarcane Leaves. Biologia Plantarum 51:104-109.
Wahid, A. 2007. Physiological Implications of Metabolites Biosynthesis in Net Assimilation and Heat Stress Tolerance of Sugarcane (Saccharum officinarum) Sprouts. Journal of Plant Research 120:219-228.
Wahid, A., S. Gelani, M. Ashraf and M. R. Foolad. 2007. Heat Tolerance in Plants: An Overview. Environmental and Experimental Botany 61:199-223.
Wang, J. Z., L. J. Cui, Y. Wang and J. L. Li. 2009. Growth, Lipid Peroxidation and Photosynthesis in Two Tall Fescue Cultivars Differing in Heat Tolerance. Biologia Plamtarum, 53:237-242.
Wang, W. X., B. Vinocur, O. Shoseyov and A. Altman. 2001. Biotechnology of Plant Osmotic Stress Tolerance: Physiological and Molecular Considerations. Acta Horticulturae 560:285-292.
Wang, W., B. Vinocur, O. Shoseyov, and A. Altman. 2004. Role of Plant Heat-shock Proteins and molecular Chaperones in the Abiotic Stress Response. Trends Plant Science 9:244-252.
Wang, X., F. L. Liu and D. Jiang. 2017. Priming: A Promising Strategy from Crop Production in Response to Future Climate. Journal of Integrative Agriculture 16:2709-2716.
Wu, B., Q. W. Jiang, T. T. Gu, M. Zhao and L.W. Liu. 2010. Physiological Response to High Temperature Stress in Radish Seedlings with Different Heat Tolerance. China Vegetables 10, 25-28.
Xu, J., H. X. Yin and X. Li. 2009. Protective Effects of Proline against Cadmium Toxicity in Micropropagated Hyperaccumulator, Solanum nigrum L. Plant Cell Report 28:325-333.
Xu, S., J. Li, X. Zhang, H. Wei, and L. Cui. 2006. Effects of Heat Acclimation Pretreatment on Changes of Membrane Lipid Peroxidation, Antioxidant Metabolites, And Ultrastructure of Chloroplasts in Two Cool-season Turfgrass Species Under Heat Stress. Environmental and Experimental Botany 56:274-285.
Yan, Z., Guo, S., Shu, S., Sun, J., Tezuka, T. 2011. Effects of Proline on Photosynthesis, Root Reactive Oxygen Species (ROS) Metabolism in Two Melon Cultivars (Cucumis melo L.) Under NaCl Stress. African Journal of Biotechnology 10:18381-18390.
Yang, X., X. Chen, Q. Ge, B. Li, Y. Tong, A. Zhang, Z. Li, T. Kuang, and C. Lu. 2006. Tolerance of Photosynthesis to Photoinhibition, High Temperature and Drought Stress in Flag Leaves of Wheat: A Comparison Between A Hybridization Line and Its Parents Grown Under Field Conditions. Plant Science 171:389-397.
Yin D., S. Chen, F. Chen, Z. Guan and W. Fang. 2009. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environmental and Experimental Botany 67:87-93
Zróbek-sokolnik, A. 2012. Temperature Stress and Responses of Plants. In: Ahmad P, Prasad MNV (Eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. New York: Springer, p. 113-134.
電子全文 電子全文(網際網路公開日期:20260205)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊