跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭育伶
研究生(外文):Yu-Ling Kuo
論文名稱:以原子層磊晶成長法尋找二維MoS2/ZnS異質結構
論文名稱(外文):Seeking 2D compound MoS2/ZnS heterostructures by atomic layer deposition
指導教授:陳永松陳永松引用關係
指導教授(外文):Yung-Sung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:44
中文關鍵詞:X光反射率硫化鋅超晶格二硫化鉬原子層沉積系統
外文關鍵詞:Grazing Incidence X-ray ReflectivitySuperlatticeZinc sulfideALDMolybdenum disulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主旨為研究二硫化鉬與硫化鋅薄膜成長在c-面藍寶石基板的多層膜結構。此研究實驗方法係使用原子層沉積法(Atomic Layer Deposition, ALD)交互成長二硫化鉬與硫化鋅多層膜,起先為了解前驅物DMDS在常溫與-20℃下,蒸氣壓之變化是否影響膜之品質,先以成長單層二硫化鉬做為比較,發現低溫下成長之樣品在X光繞射儀的ω-2θ實驗中,振盪強度比室溫的要強很多,表示低溫之樣品介面粗糙度較小,膜的品質較好,厚度也較厚。再來成長多層膜的實驗中又分為室溫中先成長硫化鋅、室溫中成長二硫化鉬、低溫中成長硫化鋅、低溫中成長二硫化鉬,這四種樣品來分析比較,實驗中的樣品皆由低掠角(grazing angle) X光反射率(X-ray Reflectivity, XRR)量測膜厚及各基板與多層膜間的粗糙度,會發現以二硫化鉬為底層之樣品與以硫化鋅為底層之樣品相比,前者介面粗糙度較小;而低溫成長出之樣品在X光繞射儀的ω-2θ實驗中,皆出現週期峰,表示低溫成長下之樣品為超晶格結構。並由X光繞射儀的2θ-ω、Phi scan掃描模式來量測二硫化鉬與硫化鋅的晶性結構,其中單層二硫化鉬的103面Phi scan之chi值與理論值差五度,所以使用了GID scan來解釋實驗與理論之相差原因;再由拉曼光譜學(Raman spectroscopy)實驗,量測樣品之鍵結;最後將具有超晶格結構之樣品透過穿透式電子顯微鏡(Transmission Electron Microscope, TEM)比較兩材料中誰為第一層所製程的樣品晶體晶性。
其中本實驗的前驅物降溫是將銅線一端均勻纏繞在前驅物瓶身上,另一端浸泡在充滿液態氮的杜爾瓶中,以此達到需要的實驗條件-20℃;溫度量測部分是將熱敏電阻貼於銅線與前驅物瓶身間,透過Arduino記錄下每分鐘溫度之變化,以確保製程中前驅物皆在相通的溫度參數下。
The main purpose of this thesis is to study the multilayer structure of molybdenum disulfide and zinc sulfide films grown on c-plane sapphire substrates. The involved experiments use atomic layer deposition (ALD) to alternately grow molybdenum disulfide and zinc sulfide multilayer films. First, in order to understand whether the vapor pressure of the precursor dimethyl-disulfide (DMDS) affects the quality of the film, the growth was conducted with the DMDS precursor kept at room temperature and cooled to -20°C. Growth of a single layer of molybdenum disulfide was taken as a reference. The intensity of oscillations in the ω-2θ scans of the X-ray diffraction patterns for the sample grown with the DMDS precursor cooled is much stronger than those with the DMDS uncooled, suggesting the need of vapor pressure control of DMDS for smoother interfaces, better structural perfection, and thicker films.
Four types of multilayer films were prepared, namely, those started either with ZnS or with MoS2, and with the DMDS either cooled or uncooled. Grazing incidence X-ray reflectivity (XRR) measurement was also used to monitor the film thickness, roughness and chemical compositions revealed in mass density, the results for the nominal multilayer ZnS/MoS2 superlattices are consistent with the single layer reference films of MoS2.
The 2θ-ω XRD and Phi-scans of the (103) peak of the c-oriented MoS2 films were used to determine the epitaxial qualities of the obtained samples. The deviation of the Chi-angle value of the (103)-plane is about five degrees larger than what is documented for a bulk MoS2 crystal. Grazing incidence diffraction (GID) of crystallographic planes with the 2θ-circle coplanar with the film surface was used to verify the epitaxial relations. In addition, Raman spectroscopy was also used to characterize the bonding behaviors and cross-sectional transmission electron microscopy (TEM) was used to investigate the nanostructural properties of the two constituent materials and their alternating sequences of stacking.
The temperature control of the DMDS precursor in this work was by evenly winding one end of a braided copper wires around the precursor container, and soaking the other end of the copper braid in a Dewar bottle filled with liquid nitrogen to maintain it at -20°C. The temperature is monitored by a thermistor attached between the copper braids and the bottle of the precursor, while the temperature readings are recorded through an Arduino microcontroller.
目錄
論文審定書----------------------------------------------------------------i
致謝---------------------------------------------------------------------ii
中文摘要----------------------------------------------------------------iii
英文摘要-----------------------------------------------------------------iv
目錄----------------------------------------------------------------------v
圖表目錄----------------------------------------------------------------vii
表格目錄-----------------------------------------------------------------ix
第一章 簡介
1-1材料介紹
1-1.1 二硫化鉬-----------------------------------------------------1
1-1.2 硫化鋅-------------------------------------------------------2
1-1.3 藍寶石基板---------------------------------------------------2
第二章 基本原理與儀器介紹
2-1原子層沉積系統 (ATOMIC LAYER DEPOSITION‚ ALD)------------------------------4
2-2X光繞射儀(X-RAY DIFFRACTOMETER‚ XRD)
2-2.1 X-Ray生成原理-------------------------------------------------5
2-2.2 布拉格定理(Bragg’s law)----------------------------------------5
2-2.3 常見XRD掃描模式------------------------------------------------6
第三章 實驗設計
3-1實驗設計-------------------------------------------------------------10
3-2前驅物降溫實驗設計---------------------------------------------------11
第四章 結果與分析
4-1單層二硫化鉬
4-1.1 XRD Scan----------------------------------------------------12
4-1.2 PHI Scan----------------------------------------------------12
4-1.3 GID scan----------------------------------------------------13
4-1.4 XRR Scan----------------------------------------------------15
4-1.5 Raman-----------------------------------------------------17
4-2多層二硫化鉬/硫化鋅
4-2.1 XRD Scan--------------------------------------------------18
4-2.2 XRR Scan--------------------------------------------------19
4-2.3 Raman-----------------------------------------------------21
4-2.4 TEM-------------------------------------------------------22
4-3多層硫化鋅/二硫化鉬
4-3.1 XRD Scan--------------------------------------------------23
4-3.2 XRR Scan--------------------------------------------------24
4-3.3 Raman-----------------------------------------------------26
4-3.4 TEM-------------------------------------------------------27
第五章 結論--------------------------------------------------------------27
參考文獻-----------------------------------------------------------------28
附錄---------------------------------------------------------------------29

圖表目錄
圖(1-1.1a):單層二硫化鉬hexagonal結構-------------------------------------1
圖(1-1.1b):(2H-MoS2)(1T-MoS2)晶包結構----------------------------------1
圖(1-1.2a):硫化鋅之閃鋅礦結構(Zinc blende)--------------------------------2
圖 (1-1.2b):硫化鋅之纖鋅礦結構(wurtzite)----------------------------------2
圖(1-1.1):藍寶石基板各面向示意圖------------------------------------------3
圖(2-2.1): X-Ray生成原理示意圖-------------------------------------------5
圖(2-2.2):布拉格繞射示意圖------------------------------------------------6
圖(2-2.3) :立方體系晶格面之米勒指數表-------------------------------------6
圖(2-2.4): 2theta-omega模式示意圖----------------------------------------7
圖(2-2.5): Phi Scan模式示意圖--------------------------------------------7
圖(2-2.6):X-ray 以不同低掠角入射樣品表面----------------------------------8
圖(2-2.7): XRR資訊統整圖-------------------------------------------------9
圖(3-1.1):實驗設計流程圖-------------------------------------------------10
圖(3-1.2):DMDS溫度與壓力之關係圖----------------------------------------11
圖(3-1.3):前驅物降溫示意圖-----------------------------------------------11
圖(4-1.1):單層二硫化鉬 XRD 圖--------------------------------------------12
圖(4-1.2):單層二硫化鉬(103)面理論chi值之PHI Scan-----------------------12
圖(4-1.3):單層二硫化鉬(103)面實際chi值之PHI Scan-----------------------13
圖(4-1.4):GID中基板(104)面之PHI Scan------------------------------------13
圖(4-1.5):GID中基板a面的phi Scan --------------------------------------13
圖(4-1.6):PHI角固定在191.94deg之2theta scan圖-------------------------13
圖(4-1.7):DMDS為20℃時製程二硫化鉬之XRR--------------------------------15
圖(4-1.8):DMDS為-20℃時製程二硫化鉬之XRR--------------------------------16
圖(4-1.9):MoS2 E12g 峰值---------------------------------------------------17
圖(4-2.1):多層膜結構示意圖-----------------------------------------------18
圖(4-2.2):MoS2/ZnS的 XRD 圖----------------------------------------------18
圖(4-2.3):DMDS為20℃時製程MoS2/ZnS之XRR--------------------------------19
圖(4-2.4):DMDS為-20℃時製程MoS2/ZnS之XRR-------------------------------20
圖(4-2.5):MoS2 E12g 之峰值-------------------------------------------------21
圖(4-2.6):ZnS LO之峰值--------------------------------------------------21
圖(4-2.7):TEM繞射圖-----------------------------------------------------22
圖(4-2.8):TEM明視野影像-------------------------------------------------22
圖(4-2.9)HRTEM a-zone----------------------------------------------------22
圖(4-3.1):多層膜結構示意圖-----------------------------------------------23
圖(4-3.2):ZnS/MoS2之XRD圖-----------------------------------------------23
圖(4-3.3):DMDS為20℃時製程ZnS/MoS2之XRR--------------------------------24
圖(4-3.4):DMDS為-20℃時製程ZnS/MoS2之XRR-------------------------------25
圖(4-3.5):MoS2 E12g 之峰值-------------------------------------------------26
圖(4-3.6):ZnS LO之峰值--------------------------------------------------26
圖(4-3.7):TEM繞射圖-----------------------------------------------------27
圖(4-3.8):TEM明視野影像-------------------------------------------------27
圖(4-3.9)HRTEM a-zone----------------------------------------------------27

表格目錄
表格(3-1.1)MoS2製程參數--------------------------------------------------10
表格(3-1.2)ZnS製程參數--------------------------------------------------10
表格(4-1.1) XRR Fitting 之結果數據表-------------------------------------15
表格(4-1.2) XRR Fitting 之結果數據表-------------------------------------16
表格(4-2.1) XRR Fitting 之結果數據表-------------------------------------19
表格(4-2.2) XRR Fitting 之結果數據表-------------------------------------20
表格(4-3.1) XRR Fitting 之結果數據表-------------------------------------24
表格(4-3.2) XRR Fitting 之結果數據表-------------------------------------25
1. Few-Layer MoS2: A Promising Layered Semiconductor. doi.org/10.1021/nn405938z
2. ZnS quantum dots and their derivatives: Overview on identity, synthesis and challenge into surface modifications for restricted applications. doi.org/10.1016/j.jksus.2016.12.001
3. T. Suntola, J. Antson, US Patent No. 4-058-430, 1977
4. M. Leskela and M. Ritala, "Atomic layer deposition (ALD): from precursors
to thin film structures," Thin Solid Films, vol. 409, pp. 138-146, 2002
5. K. Inaba, "X-Ray Thin-Film Measurement Techniques I. Overview," The
Rigaku Journal, vol. 24, pp. 10-15, 2008
6. S. Kobayashi, "X-Ray Thin-Film Measurement Techniques IV. In-Plane
Diffraction Measurements," Rigaku Journal, vol. 26, pp. 3-11, 2010
7. M. Birkholz, "Principles of X-ray Diffraction," in Thin Film Analysis by X-
Ray Scattering: Wiley, 2006, Chap. 1
8. S. Kobayashi, "X-Ray Thin-Film Measurement Techniques IV. In-Plane
Diffraction Measurements," Rigaku Journal, vol. 26, pp. 3-11, 2010
9. low temperature heat capacity, heat of fusion, heat of vaporization, vapor pressure, entropy and thermodynamic functions, J. Am. Chem. Soc., 1950, 72, 2424-2430
電子全文 電子全文(網際網路公開日期:20250903)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊