跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/09/25 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李培源
研究生(外文):Pei-Yuan Li
論文名稱:在出平面磁場中的內稟自旋霍爾電流
論文名稱(外文):Intrinsic spin-Hall current in the presence of the out-of-plane magnetic field
指導教授:陳宗緯陳宗緯引用關係
指導教授(外文):Tsung-Wei Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:62
中文關鍵詞:自旋連續方程式傳統自旋電流密度傳統自旋霍爾電導率內稟自旋霍爾效應自旋電流
外文關鍵詞:spin currentconventional spin-Hall conductivityconventional spin current densityspin continuity equationintrinsic spin-Hall effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在二維線性系統與絕對零度的條件下,研究半導體中的內稟自旋霍爾效應(Rashba系統以及Rashba-Dresslhaus系統)與自旋電流。根據自旋連續方程式,自旋密度隨時間變化的量等於傳統自旋電流密度的散度加上自旋矩密度,因為實驗中尚未觀察到自旋矩密度,本文主要專注討論傳統自旋電流密度。我們利用久保公式(Kubo formula)來計算施加一垂直磁場在此二維線性系統中的傳統自旋霍爾電導率。我們發現垂直二維線性系統的磁場與自旋霍爾電導率的確相關,但意外地發現磁場的方向並不影響自旋霍爾電導率的正負方向,只與磁場的絕對值大小有關,系統的時間反演對稱確實被磁場破壞,我們發現二維平面中的自旋分量的方向會隨著磁場方向的不同而反向,但因為自旋的大小必須保持不變所以(z)方向的自旋分量的方向卻反常地維持不變,最後得到自旋霍爾電導率與磁場方向無關只與磁場的大小有關。我們也發現在磁場趨於無限大時,自旋霍爾電導率也會趨於零,原因是磁場的增加使得能隙也跟著變大。
In the two-dimensional systems, we investigate the intrinsic spin-Hall effect (Rashba
system and Rashba-Dresslhaus system) and spin current in the semiconductors at
zero temperature. According to the spin continuity equation, the rate of change in spin density equals the divergence of the conventional spin current denstiy plus the spin torque density. However, the spin torque density has not yet been found in any experiment. In this sense, this paper only focuses on the discusssion of the conventional spin current denstiy. We use the Kubo formula to compute the conventional spin-Hall conductivity in the two-dimensional systems with a perpendicular magnetic field. We show the magnetic field in the system indeed changes the magnitude of spin-Hall conductivity but surprisingly the change in direction of the magnetic field does not change the sign of spin-Hall conductivity. The spin-Hall conductivity depends only on the absolute value of the magnetic field. The time-reversal symmetry is indeed been broken in this system. We show that the in-plane spin changes sign when the orientation of the applied magnetic field is changed. Furthermore, because the magnitude of spin must be preserved, the spin z component has an anomalous result that it depends on the magnitude of the magnetic field. The resulting spin-Hall conductivity depends only on the magnitude of the magnetic field. We also find that and the spin-Hall conductivity tends to zero when magnetic field comes infinite, which stems from the fact that the increasing magnetic field would increase the energy gap.
論文審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv
圖次 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v
第一章 介紹與研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1
自旋霍爾效應的發展簡史 . . . . . . . . . . . . . . . . . . . . . . . .1
1.2
自旋軌道作用與磁場 . . . . . . . . . . . . . . . . . . . . . . . . . . .4
第二章 基本定理與模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
從狄拉克方程式到包立方程式 . . . . . . . . . . . . . . . . . . . . . .8
2.2
k · p 微擾 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3
Kane 及 Rashba 模型 . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4
外加垂直磁場的哈米爾頓方程 . . . . . . . . . . . . . . . . . . . . . . 15
第三章 自旋霍爾電導率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1
久保公式 (Kubo formula) 中的電導率 . . . . . . . . . . . . . . . . . 18
3.2
傳統霍爾自旋電導率 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3
k-線性系統傳統自旋電導率 . . . . . . . . . . . . . . . . . . . . . . . 23
3.4
出平面磁場與傳統自旋電導率 . . . . . . . . . . . . . . . . . . . . . . 27
第四章 外加磁場下的自旋霍爾電導率 . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1
Rashba 系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2
Rashba - Dresselhaus 系統 . . . . . . . . . . . . . . . . . . . . . . . . 38
第五章 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
附錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
[1]W. Gerlach, O. Stern, Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Physik 9, 349–352 (1922).
[2]G. E. Uhlenbeck, S. Goudsmit, Naturwissenschaften 13, 953 (1925).
[3]C. T. Sebens, How Electrons Spin, University of California, San Diego (2018).
[4]Arnold Sommerfeld, Atombau und Spektrallinien, Braunschweig, Friedrich Vieweg und Sohn (德文原文) (1919). A. Sommerfeld, Atomic Structure and Spectral Lines, Methuen and Company(英文譯版) (1934).
[5]C. Møller, The Theory of Relativity, London, Oxford at the Claredon Press. (1952).
[6]G. Spavieri, M. Mansuripur, Origin of the Spin-Orbit Interaction, Phys. Scr. 90, 085501 (2015).
[7]M. I. Dyakonov and V. I. Perel, Current-induced spin orientation of electrons in semiconductors, Phys. Lett. A. 35 (1971).
[8]N. Mott,The wave mechanics of alpha-ray tracks, Proceedings of the Royal Society (1929).
[9]J. E. Hirsch, Spin Hall Effect, Phys. Rev. Lett. 83, 1834 (1999).
[10]S. Murakami, N. Nagaosa and S.C. Zhang, Dissipationless Quantum Spin Cur- rent at Room Temperature, Science 301, 1348 (2003).
[11]J. Sinova et al., Universal Intrinsic Spin-Hall Effect, Phys. Rev. Lett. 92, 126603 (2004).

[12]Y.A. Bychkov and E.I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , J. Phys. C 17, 6039 (1984).
[13]Y.K. Kato et al., Observation of the spin Hall effect in semiconductors, Science 306, 1910 (2004).
[14]J. Wunderlich et al., Experimental observation of the spin-Hall effect in a two dimensional spin-orbit coupled semiconductor system, Phys. Rev. Lett. 94, 047204 (2005).
[15]S. Murakami, N. Nagaosa and S.C. Zhang, Spin Hall Insulator, Phys. Rev. Lett. 93, 156804 (2004)
[16]F. Meier and D. Loss, Magnetization transport and quantized spin conductance, Phys. Rev. Lett. 90, 167204 (2003).
[17]H. J. Chang, T. W. Chen, J.W. Chen, W. C. Hong, W. C. Tsai, Y. F. Chen,
G. Y. Guo, Current and Strain-Induced Spin Polarization in InGaN/GaN Superlattices, Phys. Rev. Lett. 98, 136403 (2007).
[18]T.-W. Chen, C.-M. Huang, G. Y. Guo, Conserved spin and orbital angular momentum Hall current in a two-dimensional electron system with Rashba and Dresselhaus spin-orbit coupling, Phys. Rev. B 73, 235309 (2006).
[19]S. O. Valenzuela and M. Tinkham, Direct electronic measurement of the spin Hall effect, Nature 442, 176 (2006).
[20]J. L. Cheng, M. W. Wu , Kinetic investigation on extrinsic spin Hall effect induced by skew scattering, J. Phys.: Condens. Matter 20, 085209 (2008).
[21]Wang-Kong Tse, and S.Das Sarma, Phys. Rev. B 74, 245309 (2006).
[22]Sun Q F, Xie X C, Persistent spin current in spin-orbit coupling systems in the absence of an external magnetic field, Int. J. Mod. Phys. B ; 21: 3687- 3690(2007).
[23]G. Dresselhaus, Spin-Orbit Coupling Effects in Zinc Blende Structures , Phys Rev. 100, 580(1955).

[24]E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) [Solid State Ionics 2, 1109 (1960)].
[25]S. Zhang, Z. Yang, Intrinsic Spin and Orbital Angular Momentum Hall Effect, Phys. Rev. Lett. 94, 066602 (2005).
[26]P.-Q. Jin, Y.-Q. Li, F.-C. Zhang, SU(2)xU(1) unified theory for charge, orbit and spin currents, J. Phys. A : Math. Gen. 39, 7115 (2006).
[27] Q.-f. Sun and X.C. Xie, cond-mat/0502317 (2005).
[28]Frank E. Meijer, Rashba spin-orbit interaction in mesoscopic systems (2005).
[29]E.O. Kane, Band Structure of Indium Antimonide, J. Phys. Chem. Solids1, 249 (1957).
[30]E.O. Kane, “The k·p method", in Semiconductors and Semimetals, ed. by
R.K. Willardson, A.C. Beer, Vol. 1 ,Academic Press, New York (1966).
[31]E.O. Kane, “Energy band theory", in Handbook on Semiconductors, ed. by
T.S. Moss, W. Paul, Vol. 1 ,North-Holland, Amsterdam (1982).
[32]J.J. Sakurai,Advanced Quantum Mechanics,Addison-Wesley,Reading, MA(1967).
[33]G. Baym, Lectures on Quantum Mechanics, Chap. 23, Benjamin/Cummings Publishing Co. (1973).
[34]R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems ,Springer-Verlag (2003).
[35]黃昆, 韓汝琦, 固體物理學, 高等教育出版社 (1988).
[36]Charles Kittel, Quantum Theory of Solids Second Revised Printing, New York: Wiley (1987).
[37]P.O. Löwdin , A Note on the Quantum-Mechanical Perturbation Theory, J. Chem. Phys. 19, 1396 (1951).

[38]J.M. Luttinger and W. Kohn, Motion of Electrons and Holes in Perturbed Periodic Fields, Phys. Rev. 97, 869 (1955).
[39]H.R. Trebin, U. Rössler, and R. Ranvaud, Quantum resonances in the valence bands of zinc-blende semiconductors. I. Theoretical aspect, Phys. Rev. B 20, 686 (1979).
[40]F.J. Ohkawa and Y. Uemura, Quantized Surface States of a Narrow-Gap Semi- conductor, J. Phys. Soc. Jpn 37, 1325 (1974).
[41]T. Darnhofer and U. Rössler, Effects of band structure and spin in quantum dots, Phys. Rev. B 47, 16020 (1993).
[42]R. Lassnig, k→ p→ theory. effective-mass approach. and spin splitting for two- dimensional electrons in GaAs-GaAlAs heterostructures, Phys. Rev. B 31, 8076 (1985).
[43]G. Engels, J. Lange, Th. Schäpers, and H. Lüth, Experimental and theoretical approach to spin splitting in modulation-doped InGaAs/InP quantum wells for B→0, Phys. Rev. B 55, R1958 (1997).
[44]Th. Schäpers, G. Engels, J. Lange, Th. Klocke, M. Hollfelder, and H. Lüth, Effect of the heterointerface on the spin splitting in modulation doped InGaAs/ InP quantum wells for B→0, J. Appl. Phys. 83, 4324 (1998).
[45]P. Pfeffer and W. Zawadzki, Spin splitting of conduction subbands in III-V heterostructures due to inversion asymmetry, Phys. Rev. B 59, R5312 (1999).
[46]J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Gate Control of Spin- Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostruc- ture, Phys. Rev. Lett. 78, 1335 (1997).
[47]D. Grundler, Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers, Phys. Rev. Lett. 84. 6074 (2000).

[48]Kubo Ryogo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn. 12: 570-586 (1957).
[49] T.-W. Chen, J. Phys. : Condens. Matter, 25, 155801 (2013).
[50]Spivak, Michael ,Calculus (3ed.), Houston,Texas (1994). .
[51]T.-W. Chen, Conserved spin current with a perpendicular magnetic field, Phys. Lett. A. 384, 126454 (2020).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top