|
[1]W. Gerlach, O. Stern, Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Physik 9, 349–352 (1922). [2]G. E. Uhlenbeck, S. Goudsmit, Naturwissenschaften 13, 953 (1925). [3]C. T. Sebens, How Electrons Spin, University of California, San Diego (2018). [4]Arnold Sommerfeld, Atombau und Spektrallinien, Braunschweig, Friedrich Vieweg und Sohn (德文原文) (1919). A. Sommerfeld, Atomic Structure and Spectral Lines, Methuen and Company(英文譯版) (1934). [5]C. Møller, The Theory of Relativity, London, Oxford at the Claredon Press. (1952). [6]G. Spavieri, M. Mansuripur, Origin of the Spin-Orbit Interaction, Phys. Scr. 90, 085501 (2015). [7]M. I. Dyakonov and V. I. Perel, Current-induced spin orientation of electrons in semiconductors, Phys. Lett. A. 35 (1971). [8]N. Mott,The wave mechanics of alpha-ray tracks, Proceedings of the Royal Society (1929). [9]J. E. Hirsch, Spin Hall Effect, Phys. Rev. Lett. 83, 1834 (1999). [10]S. Murakami, N. Nagaosa and S.C. Zhang, Dissipationless Quantum Spin Cur- rent at Room Temperature, Science 301, 1348 (2003). [11]J. Sinova et al., Universal Intrinsic Spin-Hall Effect, Phys. Rev. Lett. 92, 126603 (2004).
[12]Y.A. Bychkov and E.I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , J. Phys. C 17, 6039 (1984). [13]Y.K. Kato et al., Observation of the spin Hall effect in semiconductors, Science 306, 1910 (2004). [14]J. Wunderlich et al., Experimental observation of the spin-Hall effect in a two dimensional spin-orbit coupled semiconductor system, Phys. Rev. Lett. 94, 047204 (2005). [15]S. Murakami, N. Nagaosa and S.C. Zhang, Spin Hall Insulator, Phys. Rev. Lett. 93, 156804 (2004) [16]F. Meier and D. Loss, Magnetization transport and quantized spin conductance, Phys. Rev. Lett. 90, 167204 (2003). [17]H. J. Chang, T. W. Chen, J.W. Chen, W. C. Hong, W. C. Tsai, Y. F. Chen, G. Y. Guo, Current and Strain-Induced Spin Polarization in InGaN/GaN Superlattices, Phys. Rev. Lett. 98, 136403 (2007). [18]T.-W. Chen, C.-M. Huang, G. Y. Guo, Conserved spin and orbital angular momentum Hall current in a two-dimensional electron system with Rashba and Dresselhaus spin-orbit coupling, Phys. Rev. B 73, 235309 (2006). [19]S. O. Valenzuela and M. Tinkham, Direct electronic measurement of the spin Hall effect, Nature 442, 176 (2006). [20]J. L. Cheng, M. W. Wu , Kinetic investigation on extrinsic spin Hall effect induced by skew scattering, J. Phys.: Condens. Matter 20, 085209 (2008). [21]Wang-Kong Tse, and S.Das Sarma, Phys. Rev. B 74, 245309 (2006). [22]Sun Q F, Xie X C, Persistent spin current in spin-orbit coupling systems in the absence of an external magnetic field, Int. J. Mod. Phys. B ; 21: 3687- 3690(2007). [23]G. Dresselhaus, Spin-Orbit Coupling Effects in Zinc Blende Structures , Phys Rev. 100, 580(1955).
[24]E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) [Solid State Ionics 2, 1109 (1960)]. [25]S. Zhang, Z. Yang, Intrinsic Spin and Orbital Angular Momentum Hall Effect, Phys. Rev. Lett. 94, 066602 (2005). [26]P.-Q. Jin, Y.-Q. Li, F.-C. Zhang, SU(2)xU(1) unified theory for charge, orbit and spin currents, J. Phys. A : Math. Gen. 39, 7115 (2006). [27] Q.-f. Sun and X.C. Xie, cond-mat/0502317 (2005). [28]Frank E. Meijer, Rashba spin-orbit interaction in mesoscopic systems (2005). [29]E.O. Kane, Band Structure of Indium Antimonide, J. Phys. Chem. Solids1, 249 (1957). [30]E.O. Kane, “The k·p method", in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer, Vol. 1 ,Academic Press, New York (1966). [31]E.O. Kane, “Energy band theory", in Handbook on Semiconductors, ed. by T.S. Moss, W. Paul, Vol. 1 ,North-Holland, Amsterdam (1982). [32]J.J. Sakurai,Advanced Quantum Mechanics,Addison-Wesley,Reading, MA(1967). [33]G. Baym, Lectures on Quantum Mechanics, Chap. 23, Benjamin/Cummings Publishing Co. (1973). [34]R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems ,Springer-Verlag (2003). [35]黃昆, 韓汝琦, 固體物理學, 高等教育出版社 (1988). [36]Charles Kittel, Quantum Theory of Solids Second Revised Printing, New York: Wiley (1987). [37]P.O. Löwdin , A Note on the Quantum-Mechanical Perturbation Theory, J. Chem. Phys. 19, 1396 (1951).
[38]J.M. Luttinger and W. Kohn, Motion of Electrons and Holes in Perturbed Periodic Fields, Phys. Rev. 97, 869 (1955). [39]H.R. Trebin, U. Rössler, and R. Ranvaud, Quantum resonances in the valence bands of zinc-blende semiconductors. I. Theoretical aspect, Phys. Rev. B 20, 686 (1979). [40]F.J. Ohkawa and Y. Uemura, Quantized Surface States of a Narrow-Gap Semi- conductor, J. Phys. Soc. Jpn 37, 1325 (1974). [41]T. Darnhofer and U. Rössler, Effects of band structure and spin in quantum dots, Phys. Rev. B 47, 16020 (1993). [42]R. Lassnig, k→ p→ theory. effective-mass approach. and spin splitting for two- dimensional electrons in GaAs-GaAlAs heterostructures, Phys. Rev. B 31, 8076 (1985). [43]G. Engels, J. Lange, Th. Schäpers, and H. Lüth, Experimental and theoretical approach to spin splitting in modulation-doped InGaAs/InP quantum wells for B→0, Phys. Rev. B 55, R1958 (1997). [44]Th. Schäpers, G. Engels, J. Lange, Th. Klocke, M. Hollfelder, and H. Lüth, Effect of the heterointerface on the spin splitting in modulation doped InGaAs/ InP quantum wells for B→0, J. Appl. Phys. 83, 4324 (1998). [45]P. Pfeffer and W. Zawadzki, Spin splitting of conduction subbands in III-V heterostructures due to inversion asymmetry, Phys. Rev. B 59, R5312 (1999). [46]J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Gate Control of Spin- Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostruc- ture, Phys. Rev. Lett. 78, 1335 (1997). [47]D. Grundler, Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers, Phys. Rev. Lett. 84. 6074 (2000).
[48]Kubo Ryogo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn. 12: 570-586 (1957). [49] T.-W. Chen, J. Phys. : Condens. Matter, 25, 155801 (2013). [50]Spivak, Michael ,Calculus (3ed.), Houston,Texas (1994). . [51]T.-W. Chen, Conserved spin current with a perpendicular magnetic field, Phys. Lett. A. 384, 126454 (2020).
|