跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳孟哲
研究生(外文):Meng-Che Wu
論文名稱:海底底床表面波震測系統開發與建置
論文名稱(外文):Development and implementation of the systems for a underwater seismic surface wave testing
指導教授:林俊宏林俊宏引用關係
指導教授(外文):Lin, Chun - Hung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:90
中文關鍵詞:地球物理調查方法淺海域調查水下表面波震測法海底震測接收系統往復衝擊式重錘震源
外文關鍵詞:geophysical survey methodshallow sea surveyunderwater seismic surface wave methodsubmarine seismic receiving systemSeabed impacting seismic source
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
海洋工程為國內近年的發展重心,調查海洋地質資訊對於海洋工程的設計影響甚大,能掌握海底地形、地質狀態及強度等重要參數,能大幅提升設計的可靠度及施工的安全性;常見應用於海底地質調查方法多以地工調查技術結合地球物理調查方法進行調查,地球物理調查方法中又以反射類震測之聲學技術最為常見,此些方法雖可獲得土層剖面,無法直接提供海底地質工程參數。相較於此,地球物理調查方法中水下表面波震測方法,可定量提供海床之剪力波速,其可反映海床強度,提供工程設計之參數,然而國內目前尚未有相關技術之應用,本研究之目的為建構水下表面波震測法之量測系統,以應用水下表面波震測法於淺海域(水深<50公尺)之調查,期望透過調查取得淺海域及潮間帶的地質資訊,提供海底電纜鋪設及管線上岸處之工程設計。
建立水下表面波震測系統,包含水下主動式震源系統及海底震測接收系統,根據文獻應用數值模擬結果顯示,震源需可產生5Hz低頻率的能量,而接收器需能接收5Hz之訊號。震源系統之建置上,檢討現有之水下主動式震源,考量實際應用的難點、系統複雜性及建置的難易程度,選定重錘進行初期設備開發,為進行重錘設計,規劃陸域實驗研究影響頻率範圍5~15Hz含量之重錘參數,包含重錘質量、撞擊底板之材質與厚度、撞擊能量、撞擊動量等,結果顯示重錘質量為頻率含量主要影響因素,撞擊能量或動量略有影響但非主控,並透過陸域試驗驗證重錘之行為,進行頻散曲線分析,結果顯示以95.5公斤重錘確實能於頻散曲線反映低頻率(5~35Hz)的能量。根據實驗結果將95.5公斤重錘結合機構提出往復衝擊式重錘震源之系統構想。
而在海底震測接收系統建置上,海底震測接收系統之接收單元,設計水深以50公尺為目標,參考前述文獻觀點選擇自然頻率4.5Hz-3向度接收器,水密艙外型設計圓盤狀,水中質量13.7公斤可達到沉底;將設計結果透過數值模擬進行應力分析,在100公尺水深1MPa壓力之情境下,水密艙結構之結構安全係數最小值4.13另進行材料共振頻率估算約為165Hz,與陸域共振頻率試驗所得之共振頻率約158Hz結果接近,此共振頻率不影響調查目標5~30Hz之頻率範圍;建置之海底震測接收系統符合調查需求。
In recent years, the development of the domestic marine engineering industry, marine geological information has a great impact on the design of marine engineering, to master the submarine geological state, can greatly enhance the reliability of the design and construction safety. Commonly used in submarine geological survey methods are mostly geotechnical survey techniques combined with geophysical survey methods. The most common geophysical survey methods are reflection-wave based acoustic techniques (e.g., marine seismic reflection wave method, sub-bottom profiler, etc.). Although these methods can obtain soil profiles, they cannot directly provide submarine geological engineering parameters. Underwater seismic surface wave method is one of the marine geophysical techniques. It can measure the shear wave velocity of the seabed, which can relate to the strength of the seabed and provide parameters for engineering design. Currently, no applications of underwater surface wave testing in Taiwan yet. The aim of the study is to development and implementation of the systems for conducting underwater seismic surface wave seismic testing. It is designed to survey in shallow waters (water depth <50m), hoping to obtain the geological information both in shallow waters and intertidal zone to support engineering designs for submarine cable laying and pipeline landing.
The system for underwater seismic surface wave testing includes seabed active seismic source system and submarine seismic receiving system. According to the literature, the seismic source should be able to generate energy at a low frequency of 5Hz and the receiver should be able to receive the signal at 5Hz also. The reception type of seismic source is fixed in the seabed, and the characteristic frequency band (5~30Hz) is sufficient to reflect the seabed stratigraphic properties. Considering the difficulties of practical applications, system complexity, and ease of implementation, the weight drop is suitable for self-development. The parameters of the heavy hammer affecting the low frequency range of 5~15 Hz were studied by inshore experiment. The results showed that the mass of the weight drop is a significant factor affecting the frequency content rather than impacting energy or impacting momentum. 95.5 kg weight drop could indeed generate sufficient low frequency (5~35 Hz) energy, and a conceptual design of the seabed impacting source were designed based on it.
3 directional 4.5Hz geophone was selected as the sensor of the submarine seismic receiving system. A disc shaped watertight cabin was designed to contain the units of sensor, recorder and battery. Its weight in water is 13.7 kg and can resist at least 50 m depth water pressure. The resonance frequency of the receiver system is 158Hz according to numerical estimation and field experiment in land. The receiver system can achieve the goal of the measurement for frequency range from 5 to 30 Hz.
The conceptual model of the active source system of the underwater seismic surface wave testing was proposed. It still need further design and manufacture for prototype. Currently, combined with the developed seabed receiver system, manually generated the impact source with 95.5kgw weight drop can be worked to conduct underwater seismic surface wave testing when the water depth less than 10 m.
論文審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 前言 1
1.1 動機 1
1.2 目的 2
第二章 文獻回顧 3
2.1 水下多頻道表面波震測方法介紹 3
2.1.1 水下表面波震測法原理 3
2.1.2 水下表面波震測法施測考量 5
2.2 水下人工震源介紹 8
2.2.1 水下人工震源基本概論 8
2.2.2 水下震源型式 8
2.2.3 水下人工震源綜合評估 12
2.3 重錘震源實驗 15
2.3.1 重錘震波特徵描述 15
2.3.2 現地試驗研究大槌震源參數 17
2.3.3 重錘實驗文獻結果評析 19
2.4 海底震測接收系統介紹 20
2.4.1 接收器概論與接收類型 20
2.4.2 海底震測接收系統型式 21
2.5 海底震測接收系統綜合分析 27
2.6 應用案例 29
2.6.1 地質調查案例-1 29
2.6.2 地質調查案例-2 32
2.6.3 地質調查案例-3 34
2.7 小結 40
第三章 研究方法 41
3.1 研究流程 41
3.2 實驗設備 42
3.2.1 震測儀 42
3.2.2 接收器及震測纜線 42
3.2.3 試驗用重錘震源 43
3.2.4 研究過程應用之電腦軟體程式 44
3.3 震源參數實驗規劃 46
3.3.1 底板材料對頻率的影響 47
3.3.2 底板厚度對頻率的影響 47
3.3.3 重錘能量與質量對頻率的影響 48
3.4 震源機構設計 51
3.4.1 震源機構作動原理 51
3.4.2 震源架結構強度模擬 51
3.5 海底震測接收系統水密艙設計 52
3.5.1 水密艙應力分析 52
3.5.2 材料共振模擬評估 52
3.6 現地試驗 53
第四章 結果與討論 54
4.1 重錘震源參數實驗結果 54
4.1.1 底板材料對頻率的影響 54
4.1.2 底板厚度對頻率的影響 56
4.1.3 重錘能量對頻率的影響 59
4.1.4 重錘震源參數實驗-結論 60
4.2 重錘震源機構設計及主結構強度模擬結果 61
4.2.1 重錘震源作動機構設計 61
4.2.2 震源主結構設計與模擬結果 62
4.3 海底震測接收系統設計結果 64
4.3.1 海底震測接收系統-接收系統選用及水密艙設計 65
4.3.2 海底震測接收系統-水密艙應力分析與共振評估 66
4.3.3 海底震測接收系統-水密艙實體建置及陸域共振實驗 69
4.4 現地試驗-陸域測試 70
第五章 結論與建議 72
5.1 結論 72
5.2 建議 73
參考文獻 74
1.林俊宏、薛憲文、吳泓毅(2020)。淺海域地球物理調查方法:回顧與展望。未出版手稿。
2.林俊宏、洪湘詒(2020)。水下表面波震測可行性探討—數值模擬。載於國立屏東科技大學土木工程系主編。2020第十八屆大地工程研討會論文集(頁441-445),屏東縣:國立屏東科技大學。
3.Abe, S., Kobayashi, Y., & Ikawa, T. (1990). Seismic Characteristics of the Weight-Dropping Source. Journal of Physics of the Earth, 38, 189–212. doi:10.1111/j.1365-246X.2011.04960.x
4.Beaudoin, G. & Michell, S. (2006). The Atlantis OBS Project: OBS Nodes-Defining the Need, Selecting the Technology, and Demonstrating the Solution. 10.4043/17977-MS.
5.Dondurur, D. (2018). Acquisition and Processing of Marine Seismic Data(pp.41-107). United States: Elsevier.
6.Gulland, A., & Walker, D. T. (1998 June). MARINE SEISMIC OVERVIEW. Paper presented at the Proceedings of the Seismic and Marine Mammals Workshop, London.
7.Hurrell, A., & Beard, P. (2012). Piezoelectric and fibre-optic hydrophones.
8.Iskander, M. (2018). Geotechnical Underground Sensing and Monitoring. (Pamukcu.S & L. Cheng, Ed.). United States: Elsevier. doi:https://doi.org/10.1016/B978-0-12-803139-1.00003-5
9.Keiswetter, D. A., & Steeples, D. W. (1995). A Field Investigation of Source Parameters for the Sledgehammer. GEOPHYSICS, 60(4), 1051–1057. doi:https://doi.org/10.1190/1.1443833
10.Kita, T., Inazaki, T., & Hayashi, K. (2018). Application of the Hybrid Surface-Wave Method to Marine Geotechnical Surveys. Paper presented at the The 13th SEGJ International Symposium, Tokyo, Japan. doi:https://doi.org/10.1190/SEGJ2018-097.1
11.Klein, G., Bohlen, T., Theilen, F., Kugler, S., & Forbriger, T. (2002). Acquisition and Inversion of Dispersive Seismic Waves in Shallow Marine Environments. Marine Geophysical Researches, 26, 287–315. doi:10.1007/s11001-005-3725-6
12.Kluesner, J., Brothers, D., Hart, P., Miller, N., & Hatcher, G. (2019). Practical Approaches to Maximizing the Resolution of Sparker Seismic Reflection Data. Marine Geophysical Research, 40, 279–301.doi: https://doi.org/10.1007/s11001-018-9367-2
13.Long, A., & Tenghamn, R. (2018). Marine Vibrator Concepts for Modern Seismic Challenges. ASEG Extended Abstracts, 1(1). doi:10.1071/ASEG2018abW9_2A
14.Long, M., Trafford, A., McGrath, T., & O''Connor, P. (2020). Multichannel analysis of surface waves (MASW) for offshore geotechnical investigations. Engineering Geology, 272, 105649.
15.Mouton, E., & Robert, D. (2014 September).Combination of Seismic Refraction and Marine Surface Wave to Characterize Near Surface Marine Sediments. Paper presented at the First Applied Shallow Marine Geophysics Conference, Athens, Greece.
16.Park, C., Miller, R.D., Xia, J., Ivanov, J., Hunter, J., Good, R.L., & Burns, R.A. (2000). Multichannel Analysis of Underwater Surface Waves Near Vancouver, B.C., Canada. Seg Technical Program Expanded Abstracts.
17.Rabbel, W., & Wilken, D. (2015). Artificial Offshore Seismic Sources. Encyclopedia of Earthquake Engineering, 148–151. doi:10.1007/978-3-642-35344-4_381
18.Scarselli, N., Adam, J. and Chiarella, D. (2020). Regional geology and tectonics. 2nd ed. pp.571-603.
19.Suarez, C. R., (2000). Advanced marine seismic methods: Ocean-bottom and vertical cable analyses: Ph.D. thesis, Univ. of Calgary.
20.Takahashi, N., Shimizu, S., watanabe, yoshitaka, Hatakeyama, K., & Maekawa, T. (2013). An Evaluation of Seismic Response of a New Generation Ocean Bottom Seismometer For Large-Scale Operation. Paper presented at the Offshore Technology Conference , Rio de Janeiro, Brazil.
21.Vanneste, M et al,. (2011). On the Use of the Norwegian Geotechnical Institute’s Prototype Seabed-Coupled Shear Wave Vibrator for Shallow Soil Characterization – I. Acquisition and Processing of Multimodal Surface Waves. Eophysical Journal International, 185(1), 221–236. doi:10.1111/j.1365-246X.2011.04960.x
22.Zhu, Zhongben & Wu, Zheyuan & Deng, Zhongchao & Qin, Hongde & Wang, Xiangqian. (2018). An Ocean Bottom Flying Node AUV for Seismic Observations. doi:1-5. 10.1109/AUV.2018.8729726.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top