跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高麒傑
研究生(外文):Chi-Chieh Kao
論文名稱:大量再生能源匯入後電力系統慣量與熱機備轉容量探討
論文名稱(外文):Investigation on Inertia and Responsive Reserve Service for Power Systems with High Penetration of Renewable Energy Resources
指導教授:鄧人豪鄧人豪引用關係
指導教授(外文):Teng, Jen-hao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:118
中文關鍵詞:再生能源系統慣量熱機備轉容量初級頻率響應快速頻率響應
外文關鍵詞:Renewable Energy ResourceSystem InertiaResponsive Reserve ServicePrimary Frequency ResponseFast Frequency Response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統電力系統中,系統頻率可由同步發電機組的轉子慣量決定,在電力系統發生功率變動時,轉子的旋轉慣量可提供功率支撐系統頻率,提升電力系統的頻率響應能力。但再生能源占比將逐漸提高,其慣量要比傳統機組的慣量小,在負載變動時,易使頻率偏離目標值。尤其未來白天時段傳統同步發電機組出力大幅降低,許多傳統同步發電機組可能待機或解聯,進一步導致系統慣量不足。在此情境下,如又發生跳機或短路等偶發事故時,易造成系統穩定度問題。因此需要強化系統的即時供需能力,如快速反應電源、儲能系統、熱機備轉等輔助服務,來提升電網運轉彈性。

本文收集再生能源加入對電力系統慣量影響之案例與應用對策,並參考美國德州電力可靠性委員會對熱機備轉容量最小需求量的量化方法,透過Python與PSS®E連結進行程式撰寫,探討大量再生能源匯入對電力系統慣量與熱機備轉容量之衝擊。文中以北歐電網為例,分析於加入不同比例再生能源後,估測之系統慣量常數以及所需的熱機備轉容量最小需求量,該最小需求量將透過初級頻率響應和快速頻率響應的容量組合來實現。本文所得結果可提供未來再生能源占比提高後,電力系統運轉調度與熱機備轉容量規劃之參考依據。
The system frequency of conventional power systems is mainly determined by the rotor inertia of the synchronous generators. When the load changes, the rotational inertia can provide the energy to support the system frequency and improve the frequency response of power systems. The renewable energy resources will gradually increase in the foreseeing future. The inertia of renewable energy is smaller than that of traditional units; therefore, the frequency will easily deviate from the target value when the load changes. Especially, the output of synchronous generators will be greatly reduced during the daytime and many traditional synchronous generators may be on standby or disconnected, which will further lead to insufficient system inertia. Insufficient system inertia will make the frequency response worse. In this situation, if accidents such as tripping or short circuit happen, system stability problems are likely to occur. Therefore, it is vital to strengthen the real-time supply and demand capabilities, such as the auxiliary services of fast-response power supply, energy storage system, responsive reserve service etc. for power systems to improve the operation flexibility.

This thesis collects examples and application countermeasures of the impact of renewable energy resources on the system inertia and the method of Electric Reliability Council of Texas (ERCOT) used for quantifying the minimum requirements of responsive reserve service. The Python linking to PSS®E is used for programming to simulate the impact of the high penetration of renewable energy resource on the inertia and responsive reserve service. Taking the Nordic power grid as an example, the estimated system inertias and the minimum required responsive reserve services with respect to the different proportions of renewable energy resources are simulated and analyzed. The minimum required responsive reserve service can be achieved through the capacity combination of primary frequency response and fast frequency response. The results obtained in this thesis can provide references for power system operation and responsive reserve service for future high penetration of renewable energy resources.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 ix
表次 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 4
第二章 電力系統慣量計算 6
2.1 系統頻率與慣量 6
2.1.1 搖擺方程式 7
2.1.2 頻率響應 8
2.1.3 慣量響應 9
2.2 系統慣量計算方式 10
2.3 不同量測地點對頻率之影響 17
2.4 系統慣量太低可能導致的問題與解決方案 20
2.4.1 再生能源加入對各國電力系統的影響 20
2.4.2 常見解決方案 29
第三章 輔助服務與熱機備轉容量 33
3.1 輔助服務的類型與可解決問題 33
3.2 ERCOT因應大量再生能源併網的輔助服務架構 36
3.2.1 ERCOT現有的輔助服務 36
3.2.2 ERCOT的慣量趨勢與初級頻率控制 39
3.2.3 ERCOT初級頻率響應的計算方式 42
3.2.4 ERCOT的新型輔助服務市場 43
3.3 ERCOT熱機備轉容量的計算方式 46
3.3.1 熱機備轉容量之最小需求量 46
3.3.2 已知系統慣量下熱機備轉容量的需求量 48
3.4 台灣輔助服務規劃與預計解決問題探討 53
第四章 PSS®E模擬流程與設置 55
4.1 PSS®E簡介 55
4.1.1 模擬軟體簡介 55
4.1.2 Python連結PSS®E之實現 56
4.1.3 程式前置流程 58
4.2 運用PSS®E進行系統慣量計算 58
4.3 運用PSS®E進行熱機備轉容量計算 61
4.3.1 Python調速器設置 62
4.3.2 Python可跳脫負載資源設置 63
4.3.3 Python初級頻率響應計算與機組限制 64
第五章 系統模擬與分析 66
5.1 模擬模型 66
5.2 分析結果 71
5.2.1 慣量計算結果 71
5.2.2 熱機備轉容量計算結果 77
5.3 分析與討論 94
第六章 結論與未來研究方向 96
6.1 結論 96
6.2 未來研究方向 96
參考文獻 98
[1]IRENA, Renewable capacity highlights, March 2021.
[2]行政院全球資訊網,106年能源及減碳辦公室第2次委員會議,能源轉型路徑規劃,https://www.ey.gov.tw/File/FE659A8C337D69EB?A=C 2017年。
[3]全國法規資料庫,電業法,
https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0030011 2019年。
[4]National Grid, Interim Report into the Low Frequency Demand Disconnection (LFDD) following Generator Trips and Frequency Excursion on 9 Aug. 2019, 2019.
[5]AEMO, Black System South Australia 28 September 2016 – Final Report, Mar. 2017.
[6]J. H. Eto, ‘‘Use of frequency response metrics to assess the planning and operating requirements for reliable integration of variable renewable generation,” Lawrence Berkeley Nat. Lab., Berkeley, CA, USA, Tech. Rep., 2011.
[7]NERC Frequency Response Initiative, Apr. 2010.
[8]M. Dreidy, H. Mokhlis, and S. Mekhilef, ‘‘Inertia response and frequency control techniques for renewable energy sources: A review,” Renew. Sustain. Energy Rev., vol. 69, pp. 144_155, Mar. 2017.
[9]Essential Reliability Services and the Evolving Bulk-Power System-Primary Frequency Response, FERC, document 842, 2018.
[10]Svenska Kraftnät, “A status update on the state of the power system, system development plan 2020-2029,” 2019.
[11]N. Hatziargyriou, J. V. Milanovi, C. Rahmann, V. Ajjarapu, C. Canizares, I. Erlich, D. Hill, I. Hiskens, I. Kamwa, B. Pal, P. Pourbeik, J. J. Sanchez-Gasca, A. Stankovic, T. V. Cutsem, V. Vittal, and C. Vournas, “Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies,” IEEE Power System Dynamic Performance Committee (PSDP), Tech. Rep. PES-TR77, May 2020.
[12]Hadi Saadat (著),陳在相、吳瑞南、張宏展(譯),“電力系統分析”,臺灣東華書局股份有限公司,2011年
[13]Nguyen, Ha Thi, et al. “Challenges and research opportunities of frequency control in low inertia systems,” E3S Web of Conferences. Vol. 115. EDP Sciences, 2019.
[14]G. Hug and A. Ulbig, Power System Dynamics, Control and Operation. Zürich: ETH Zürich, Feb. 2017
[15]台電系統規劃處,“台電系統慣量(H值)分析”,民國107年7月16日。
[16]ERCOT, “Inertia: Basic Concepts and Impacts on the ERCOT Grid,” 2018.
[17]T. Inoue, H. Taniguchi, Y. Ikeguchi and K. Yoshida, “Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients,” IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 136-143, Feb. 1997.
[18]National Grid, “System Operability Framework 2015 - UK electricity transmission,” November 2015.
[19]P. M. Ashton, C. S. Saunders, G. A. Taylor, A. M. Carter, and M. E. Bradley, "Inertia Estimation of the GB Power System Using Synchrophasor Measurements," IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 701-709, March 2015.
[20]E. Ørum, M. Kuivaniemi, M. Laasonen, A. I. Bruseth, E. A. Jansson, A. Danell, K. Elkington, and N. Modig, “Future system inertia,” ENTSO-E, 2018.
[21]P. M. Ashton, G. A. Taylor, A. M. Carter, M. E. Bradley and W. Hung, “Application of Phasor Measurement Units to Estimate Power System Inertial Frequency Response”, Power and Energy Society General Meeting, Vancouver, Canada, 21-25 July, 2013.
[22]M. Kuivaniemi, M. Laasonen, K. Elkington, A. Danell, N. Modig, A. I. Bruseth, E. A. Jansson and E. Orum, “Estimation of System Inertia in the Nordic Power System Using Measured Frequency Disturbances”, Cigre Conference, Lund, Sweden, 27-28 May, 2015.
[23]DGA Consulting, “International Review of Frequency Control Adoption Australian Energy Market Operator”, 2016/10/14
[24]EirGrid/SONI, “All Island TSO Facilitation of Renewables Studies,” 2010.
[25]EirGrid/SONI, “Ensuring a Secure, Reliable and Efficient Power System in a Changing Environment,” June 2011.
[26]EirGrid/SONI, “RoCoF Modification Proposal - TSOs'' Recommendations,” 4 September 2012.
[27]CER, “Rate of Change of Frequency (RoCoF) Modification to the Grid Code - Decision Paper,” Commission for Energy Regulation, Dublin, 4 April 2014.
[28]EirGrid/SONI, “Northern Ireland System Separation Studies,” November 2012.
[29]EirGrid/SONI, “DS3 RoCoF Alternative Solutions Project Phase 1 Summary Report,” 25 June 2015.
[30]G. Stein and T. Derry, “Presentation: Rapid Frequency Response - BSSG/CBSG,” National Grid, 4 September 2013.
[31]Ofgem, “Changes to the Distribution Code and Engineering Recommendation G59: Frequency Changes during Large Disturbances and their Impact on the Total System,” 23 July 2014.
[32]REN21, “Renewables 2016 Global Status Report,” Renewable Energy Policy Network for the 21st Century, 2016.
[33]Transpower, “System Operator TASC - TASC 033 Report,” Transpower New Zealand Ltd - The National Grid, July 2014.
[34]S. Wittrup, “Siemens-generatorer skal redde elnettet fra ustabile vindmøller,” Ingeniøren, 28 June 2013. https://ing.dk/artikel/siemens-generato%20rer-skal-redde-elnettet-fra-ustabile-vindmoeller-160124.
[35]M. Gannon, G. Swier and R. Gordon, “Emerging Rate-of-Change-of-Frequency Problem in the NEM - Best-practice Regulatory Analysis of Options,” University of Melbourne, Melbourne, 31 October 2014.
[36]Energinet.dk, “Technical Regulation for Thermal Power Station Units of 1.5MW and Higher,” 1 October 2008.
[37]Energinet.dk, “Technical regulation 3.2.5 for wind power plants with a power output above 11kW,” 10 June 2015.
[38]Eskom, “Grid Connection Code for Renewable Power Plants (RPPs) Connected to the Electricity Transmission System (TS) or the Distribution System (DS) in South Africa - Version 28,” July 2014.
[39]EirGrid/SONI, “DS3 RoCoF Alternative Solutions Phase 1 Concluding Note,” 17 August 2015.
[40]DNV-GL, “Final Report Phase 1 - RoCoF Alternative Solutions Technology Assessment,” EirGrid, 17 August 2015.
[41]Promoting Wholesale Competition Through Open Access Nondiscrimina-tory Transmission Services by Public Utilities, FERC, document 888, 1996.
[42]M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Hoboken, NJ, USA: Wiley, 2003.
[43]許志義、王大成,電力輔助服務市場之探討,經濟情勢暨評論第五卷第四期,財團法人中華經濟研究院,2000年。
[44]陳智豪,“以增強型蜂群演算法結合多目標規劃法應用於輔助服務調度”,國立中山大學電機研究所碩士論文,民國一零八年六月。
[45]P. Du, N. V. Mago, W. Li, S. Sharma, Q. Hu and T. Ding, "New Ancillary Service Market for ERCOT," in IEEE Access, vol. 8, pp. 178391-178401, 2020
[46]P. Du, H. Hui, and N. Lu, ‘‘Procurement of regulation services for a grid with high-penetration wind generation resources: A case study of ERCOT,” IET Gener., Transmiss. Distrib., vol. 10, no. 16, pp. 4085_4093, Dec. 2016.
[47]P. Du and J. Matevosyan, ‘‘Forecast system inertia condition and its impact to integrate more renewables,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1531_1533, 2017.
[48]B.C. Vancouver,‘‘ERSTF Loads and Resources Balance”, Clyde Loutan, Senior Advisor – Renewable Energy Integration, CAISO, September 17 & 18
https://www.nerc.com/comm/Other/essntlrlbltysrvcstskfrcDL/ERSTF%20September%2017-18,%202014%20Meeting%20Presentations.pdf
[49]W. Li, P. Du, and N. Lu, “Design of a new primary frequency control market for hosting frequency response reserve offers from both generators and loads,” IEEE Trans Smart Grid, vol. 9, no. 5, pp. 4883–4892, 2017.
[50]C. Liuand P. Du, “Participation of load resources in day-ahead market to provide primary-frequency response reserve,” IEEE Trans Power Syst., vol. 33, no. 5, pp. 5041–5051, 2018.
[51]J. O''Sullivan, A. Rogers, D. Flynn, P. Smith, A. Mullane, and M. O''Malley, ‘‘Studying the maximum instantaneous non-synchronous generation in an island system—Frequency stability challenges in Ireland,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2943_2951, Nov. 2014.
[52]A. S. Ahmadyar, S. Riaz, G. Verbic, A. Chapman, and D. J. Hill, ‘‘A framework for assessing renewable integration limits with respect to frequency performance,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4444_4453, Jul. 2018.
[53]M. Yu, A. J. Roscoe, A. Dysko, C. D. Booth, R. Ierna, J. Zhu, and H. Urdal, ‘‘Instantaneous penetration level limits of non-synchronous devices in the British power system,” IET Renew. Power Gener., vol. 11, no. 8, pp. 1211_1217, Jun. 2017.
[54]Y. Liu, S. You, J. Tan, Y. Zhang, and Y. Liu, ‘‘Frequency response assessment and enhancement of the US power grids toward extra-high photovoltaic generation penetrations—An industry perspective,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3438_3449, May 2018.
[55]S. You, Y. Liu, J. Tan, M. T. Gonzalez, X. Zhang, Y. Zhang, and Y. Liu, ‘‘Comparative assessment of tactics to improve primary frequency response without curtailing solar output in high photovoltaic interconnection grids,” IEEE Trans. Sustain. Energy, vol. 10, no. 2, pp. 718_728, Apr. 2019.
[56]ERCOT, Module 5 Resources in Real-Time Operations,
http://www.ercot.com/content/wcm/training_courses/123737/Resource301_-_5_RT.pdf
[57]ERCOT, glossary, http://www.ercot.com/glossary/h
[58]N. Rajbhandari, W. Li, P. Du, S. Sharma, and B. Blevins, ‘‘Analysis of net-load forecast error and new methodology to determine non-spin reserve service requirement,” in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), Jul. 2016, pp. 1_5.
[59]P. Du, and W. Li. "Frequency response impact of integration of HVDC into a low-inertia AC power grid." IEEE Transactions on Power Systems, 2020.
[60]吳進忠,“台灣電力交易平台之發展與規劃”,2020年
[61]Siemens, PSS®E 33.4 Application Program Interface (API), March 2013.
[62]Siemens, PSS®E 33.4 Model Library, March 2013.
[63]N. Modig (Lead Editor), “Technical requirements for fast frequency reserve provision in the nordic synchronous area,” Inertia2020 Working Group, Entso-E, Tech. Rep. ver 1.0, March 2019.
[64]Nordic電網PSSE檔案
https://github.com/ALSETLab/Nordic44-Nordpool/tree/master/nordic44/models
[65]S. W. Nordhagen, “Reliability analysis of the nordic44 model and modelling of corrective actions in OPAL,” Master thesis, NTNU, Trondheim, 2017.
電子全文 電子全文(網際網路公開日期:20260813)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top