跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王志軒
研究生(外文):Jhih-Syuan Wang
論文名稱:二流體噴嘴之噴霧冷卻在不同氣液比及鍍膜表面之散熱性能分析
論文名稱(外文):Cooling Performance Analysis of A Two-fluid Spray Impinged on The Thin Film Surface with Different Air to Liquid Ratios
指導教授:楊儒楊儒引用關係謝曉星
指導教授(外文):Ru YangShou-Shing Hsieh
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:158
中文關鍵詞:CHF奈米鍍膜表面沸騰曲線二流體噴嘴噴霧冷卻
外文關鍵詞:CHFNanocoating surfacesBoiling curveTwo-fluid nozzlesSpray cooling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究
主要目的 在 探討使用 不同材質 的奈米等級厚度 鍍膜表面 增強流體噴
嘴的噴霧冷卻系統之冷卻性能。 以 及 探討孔徑為 1.6 mm的二流體噴嘴,經由改
變不同的空氣與液體質量比 (R=0.083、 0.097、 0.119、 0.129、 0.172、 0.194、 0.258、
0.323、 0.332、 0.431、 0.465、 0.575)在固定噴霧高度 H= 50 mm,觀 察 溫度場 之 變
化。
實驗中,加熱系統由銅塊及加熱棒組成,
以銅 為 測試表面 基底, 在 其 表面鍍
上不同之材質薄膜 ,如 :石墨烯 (graphene)轉印 、 石墨烯 (graphene)沉積。加熱銅塊
至指定溫度 350℃ 進行焠火冷卻 實驗, 使用 DI water做為工作流體 。 溫度場量
測, 使用 K-Type熱電偶進行量測,並透過計算、分 析以獲得最佳的 CHF (Critical Heat flux)定義沸騰曲線區域。
實驗結果顯示,不同奈米鍍膜表面下熱傳增強效果最好達到
23.4%,然而最
佳臨界熱通量發生在鍍膜表面為石墨烯沉積時氣液比為 0.119,其 溫度最大的降
幅來到 93.2oC/sec。
關鍵詞:二流體噴嘴、噴霧冷卻、沸騰曲線
、 奈米鍍膜表面 、 CHF
This aim of study used coating surfaces with nano-scale thickness of various materials to explore the cooling performance of spray cooling systems which contain reinforced fluid nozzles. It also observes changes in a temperature field using two-fluid nozzles with a bore diameter of 1.6 mm by changing the air-to-liquid mass ratios (R = 0.083, 0.097, 0.119, 0.129, 0.172, 0.194, 0.258, 0.323, 0.332, 0.431, 0.465, and 0.575) at the fixed spray height of 50 mm.
In the experiment, the heating system comprised copper bars and heating rods. Copper was used as the base for the surface being tested; its surface was coated in thin films of various materials via graphene transfer and deposition. Copper bars were heated to the designated temperature of 350°C to conduct the quenching and cooling experiment, while DI water was used as the working fluid. The temperature field was measured using a type K thermocouple. The highest critical heat flux (CHF) was obtained via calculation and analysis to define the boiling curve regions.
The experiment results showed that the reinforcing effects of heat transfer on different nanocoating surfaces could achieve 23.4% at best. However, the highest CHF occurred when the air-to-liquid mass ratio was 0.119 on the coating surface with graphene deposition. The largest temperature drop reached 93.2oC/sec.
iv
Keywords: Two-fluid nozzles, Spray cooling, Boiling curve, Nanocoating surfaces, CHF
論文審定書
i
中文摘要
ii
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
NOMENCLATURE xiii
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Motivation and background 1
1.3 Research purposes 3
1.4 Literature Review 3
1.4.1 Boiling regimes 7
1.4.2 Enhanced effects 13
1.4.3 Twin-fluid nozzle 20
CHAPTER 2 EXPERIMENT SYSTEM AND EQUIPMENT 26
2.1 Heater system 26
2.2 Fluid circulation system 26
2.2.1 Two-fluid nozzle 26
2.2.2 Working medium 26
2.2.3 Working platform 27
vi
2.3 Data acquisition system ................................................................................................................................................ 27
2.3.1 Temperature record module ................................................................................................................ 27
2.3.2 LabVIEW ........................................................................................................................................................................ 27
2.4 Other experimental peripheral equipment ........................................................................................ 28
2.4.1 Gas flow meter ........................................................................................................................................................ 28
2.4.2 Liquid flow meter ................................................................................................................................................ 28
2.4.3 Power supply .............................................................................................................................................................. 28
CHAPTER 3 EXPERIMENTAL METHODSAND PROCEDURE............................................ 37
3.1 Spray cooling circulation system .................................................................................................................... 37
3.1.1 Two-fluid nozzle .................................................................................................................................................. 37
3.1.2 Spray test area .......................................................................................................................................................... 37
3.1.3 Fluid circulation system ............................................................................................................................ 38
3.2 Test surface preparation ................................................................................................................................................ 38
3.3 Temperature measurement system ................................................................................................................ 40
CHAPTER 4 THEORETICAL ANALYSIS .................................................................................................................... 43
4.1 Air to liquid ratio (R) ........................................................................................................................................................ 43
4.2 Heat flux (q") ................................................................................................................................................................................ 43
4.3 Heat transfer coefficient (h) .................................................................................................................................... 43
CHAPTER 5 UNCERTAINTY ANALYSIS .................................................................................................................... 44
CHAPTER 6 RESULTS AND DISCUSSION .............................................................................................................. 47
6.1 The cooling measurements ...................................................................................................................................... 47
vii
6.1.1. Quench curve of the polished copper surface .......................................................... 48
6.1.2. Quench curve of the single-layer graphene transfer on copper surface .................................................................................................................................................................................. 53
6.1.3. Quench curve of the graphene deposition on copper surface ............ 59
6.1.4. Boiling curve of the polished copper surface ............................................................ 64
6.1.5. h and q' vs ΔT of the polished copper surface ........................................................ 67
6.1.6. Boiling curve of the single-layer graphene transfer on copper surface .................................................................................................................................................................................. 70
6.1.7. h and q' vs ΔT of the single-layer graphene transfer on copper surface .................................................................................................................................................................................. 73
6.1.8. Boiling curve of the graphene deposition on copper surface ............ 76
6.1.9. h and q' vs ΔT of the graphene deposition on copper surface ........ 79
6.1.10. Heat flux under different ratio of smooth and nanotextured surface .................................................................................................................................................................................. 82
6.1.11. Nanotextured surface heat transfer effect enhancement .......................... 83
CHAPTER 7 CONCLUSION AND RECOMMENDATION .......................................................... 128
7.1 Conclusions ................................................................................................................................................................................ 128
7.2 Recommendations ............................................................................................................................................................ 130
REFERENCES .................................................................................................................................................................................................................... 131
APPENDIX A ........................................................................................................................................................................................................................ 139
viii
LIST OF TABLES
Table 2-1 Specifications of twin-fluid nozzle ............................................................................................................................ 30
Table 2-2 Specifications of gas flow meter .................................................................................................................................... 31
Table 2-3 Specifications of liquid flow meter ............................................................................................................................ 32
Table 2-4 Specifications of Power supply ...................................................................................................................................... 33
Table 3-1 Experimental parameters .......................................................................................................................................................... 41
Table 5-1 Uncertainty analysis .......................................................................................................................................................................... 46
Table 6-1 The parameters of critical heat flux under different ratio for smooth and nano-texted surface (CHF) ...................................................................................................................................................................... 86
Table 6-2 Boiling curve parameter under different ratio for smooth and nano-texted surface .................................................................................................................................................................................................................................... 87
Table 6-3 The parameters of heat transfer coefficient under different ratio for smooth and nano-texted surface .............................................................................................................................................................................. 88
ix
LIST OF FIGURES
Figure 1-1 The flow pattern map .................................................................................................................................................................. 25
Figure 1-2 Boiling curve ............................................................................................................................................................................................ 25
Figure 2-1 Fluid circulation system .......................................................................................................................................................... 34
Figure 2-2 Data acquisition system............................................................................................................................................................ 35
Figure 2-3 Other experimental peripheral equipment .................................................................................................... 36
Figure 3-1 Schematic of experimental setup .............................................................................................................................. 42
Figure 6-1 Integrated cooling curve of the polished copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 .................................................................................................................... 89
Figure 6-2 Integrated heat flux of the polished copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 .................................................................................................................... 90
Figure 6-3 Quench curve of the polished copper surface at Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129........................................................................................ 91
Figure 6-4 Quench curve of the polished copper surface at Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 ...................................................................................... 92
Figure 6-5 Quench curve of the polished copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 ...................................................................................... 93
Figure 6-6 Integrated cooling curve of the single-layer graphene transfer on copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 .................................................................................... 94
Figure 6-7 Integrated heat flux of the single-layer graphene transfer on copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 .................................................................................................. 95
Figure 6-8 Quench curve of the single-layer graphene transfer on copper surface at
x
Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129........................................................................................ 96
Figure 6-9 Quench curve of the single-layer graphene transfer on copper surface at Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 ...................................................................................... 97
Figure 6-10 Quench curve of the single-layer graphene transfer on copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 ...................................................................................... 98
Figure 6-11 Integrated cooling curve of the graphene deposition on copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 .................................................................................................................... 99
Figure 6-12 Integrated heat flux of the graphene deposition on copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 ................................................................................................................ 100
Figure 6-13 Quench curve of the graphene deposition on copper surface at Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129.................................................................................... 101
Figure 6-14 Quench curve of the graphene deposition on copper surface at Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 .................................................................................. 102
Figure 6-15 Quench curve of the graphene deposition on copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 .................................................................................. 103
Figure 6-16 Integrated heat transfer coefficient of the polished copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 ................................................................................................................ 104
Figure 6-17 Boiling curve of the polished copper surface at Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129.................................................................................... 105
Figure 6-18 Boiling curve of the polished copper surface at Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 .................................................................................. 106
Figure 6-19 Boiling curve of the polished copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 .................................................................................. 107
Figure 6-20 h and q' vs ΔT of the polished copper surface at
xi
Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129.................................................................................... 108
Figure 6-21 h and q' vs ΔT of the polished copper surface at Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 .................................................................................. 109
Figure 6-22 h and q' vs ΔT of the polished copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 .................................................................................. 110
Figure 6-23 Integrated heat transfer coefficient of the single-layer graphene transfer on copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 .............................................. 111
Figure 6-24 Boiling curve of the single-layer graphene transfer on copper surface at Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129.................................................................................... 112
Figure 6-25 Boiling curve of the single-layer graphene transfer on copper surface at Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 .................................................................................. 113
Figure 6-26 Boiling curve of the single-layer graphene transfer on copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 .................................................................................. 114
Figure 6-27 h and q' vs ΔT of the single-layer graphene transfer on copper surface at Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129.................................................................................... 115
Figure 6-28 h and q' vs ΔT of the single-layer graphene transfer on copper surface at Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 .................................................................................. 116
Figure 6-29 h and q' vs ΔT of the single-layer graphene transfer on copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 .................................................................................. 117
Figure 6-30 Integrated heat transfer coefficient of the graphene deposition on copper surface at Ratio= (a) 0.083~0.194 (b) 0.258~0.575 ................................................................................ 118
Figure 6-31 Boiling curve of the graphene deposition on copper surface at Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129.................................................................................... 119
Figure 6-32 Boiling curve of the graphene deposition on copper surface at
xii
Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 .................................................................................. 120
Figure 6-33 Boiling curve of the graphene deposition on copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 .................................................................................. 121
Figure 6-34 h and q' vs ΔT of the graphene deposition on copper surface at Ratio= (a) 0.083 (b) 0.097 (c) 0.119 (d) 0.129.................................................................................... 122
Figure 6-35 h and q' vs ΔT of the graphene deposition on copper surface at Ratio= (a) 0.172 (b) 0.194 (c) 0.258 (d) 0.323 .................................................................................. 123
Figure 6-36 h and q' vs ΔT of the graphene deposition on copper surface at Ratio= (a) 0.332 (b) 0.431 (c) 0.465 (d) 0.575 .................................................................................. 124
Figure 6-37 Heat flux under different ratio of the polished copper surface ............................ 125
Figure 6-38 Heat flux under different ratio of the single-layer graphene transfer on copper surface ........................................................................................................................................................................................................ 126
Figure 6-39 Heat flux under different ratio of the graphene deposition on copper surface ................................................................................................................................................................................................................................ 127
[1] Kim, Kwang-Soo, et al. "Heat pipe cooling technology for desktop PC CPU." Applied thermal engineering, Vol. 23, 2003, pp. 1137-1144.
[2] Tilton, Donald E., Martin R. Pais, and Louis C. Chow. "High power density spray cooling". No. UK-ME-88-07. KENTUCKY UNIV LEXINGTON DEPT OF MECHANICAL ENGINEERING, 1989.
[3] R. Kong and S. Kim, "Characterization of horizontal air–water two-phase flow," Nuclear Engineering and Design, vol. 312, 2017, pp. 266-276.
[4] S. M. De Corso and G. Kemeny, "Effect of Ambient and Fuel Pressure on Nozzle Spray Angle," Trans. ASME, Vol. 79, 1957, pp. 607-615.
[5] S. M. De Corso, "Efect of Ambient and Fuel Pressure on Spray Drop Size," Journal of Engineering for Power, Vol. 82, 1960, pp. 10-18.
[6] A. R. Jones, "Design Optimization of a Large Pressure-Jet Atomizer for Power Plant," Proceedings of the Second International Conference on Liquid Atomization and Spray Systems, 1982, pp. 181.
[7] K. A. Estes and I. Mudawar, "Correlation of sauter men diameter and critical heat flux for spray cooling of small surfaces," International Journal of Heat and Mass Transfer, vol. 38, 1995, pp. 2985-2996.
[8] A. R. Glover, S. M. Skippon, and R. D. Boyle, ' Interferometric Laser Imaging for Droplet Sizing: A Method for Droplet-Size Measurement in Sparse Spray Systems ', Applied Optics, Vol. 34, 1995, pp. 8409-8421.
[9] K. Sone, K. Yoshida, T. Oka, Y. Abe, Y. Miri, and A. Nagashima, "Spray Cooling Characteristics of Water and Fc-72 under Reduced and Elevated Gravity for Space Application," Energy Conversion Engineering Conference, 1996. IECEC 96., Proceedings of the 31st Intersociety, vol.1502, 1996, pp. 1500-1505
[10] J. D. Bernardin, C. J. Stebbins, and I. Mudawar, "Mapping of impact and heat transfer regimes of water drops impinging on a polished surface," International Journal of Heat and Mass Transfer, vol. 40, 1997, pp. 247-267.
[11] J. E. González and W. Z. Black, "Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface," Journal of Heat Transfer, vol. 119, 1997, pp. 279-287.
[12] K. i. Yoshida, Y. Abe, T. Oka, Y. H. Mori, and A. Nagashima, "Spray Cooling
132
`
Under Reduced Gravity Condition." Journal of Heat Transfer, Vol. 123, 2000, pp. 309-318.
[13] G. Aguilar, B. Majaron, W. Verkruysse, Y. Zhou, J. S. Nelson, and E. J. L. c, "Theoretical And Experimental Analysis Of Droplet Diameter, Temperature, And Evaporation Rate Evolution In Cryogenic Sprays," International Journal of Heat and Mass Transfer, vol. 44, 2001, pp. 320-3211.
[14] R. Chen, L. C. Chow, and J. E. Navedo, ' Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling ', International Journal of Heat and Mass Transfer, 2002, Vol. 45 pp. 4033-4043.
[15] S.-S. Hsieh and H.-H. Tsai, "Thermal and flow measurements of continuous cryogenic spray cooling," Archives of Dermatological Research, vol. 298, 2006, pp. 82-95.
[16] M. R. O. Panão, A. L. N. Moreira, and D. F. G. Durão, ' Thermal-Fluid Assessment of Multijet Atomization for Spray Cooling Applications ', Energy, Vol. 36, 2011, pp. 2302-2311.
[17] H.-Y. Wang, C. Huang, and C.-T. Chen, "Specific Design and Implementation of a Piezoelectric Droplet Actuator for Evaporative Cooling of Free Space," Nano/Micro Engineered and Molecular Systems (NEMS), 2012 7th IEEE International Conference on, 2012, pp. 419-422.
[18] H. D. Haustein, et al, ' Local Heat Transfer Coefficient Measurement through a Visibly-Transparent Heater under Jet-Impingement Cooling ', International Journal of Heat and Mass Transfer, Vol. 55 ,2012, pp. 6410-6424.
[19] B. H. Yang, H. Wang, X. Zhu, Q. Liao, Y. D. Ding, and R. Chen, "Heat Transfer Enhancement of Spray Cooling with Ammonia by Microcavity Surfaces," Applied thermal engineering, Vol. 50, 2013, pp. 245-250.
[20] L. H. J. Wachters and N. A. J. Westerling, "The Heat Transfer from a Hot Wall to Impinging Water Drops in the Spheroidal State," Chemical Engineering Science, Vol. 21, 1966, pp. 1047-1056.
[21] W. M. Grissom and F. A. Wierum, "Liquid Spray Cooling of a Heated Surface," International Journal of Heat and Mass Transfer, Vol. 24, 1981, pp. 261-271.
[22] K. J. Choi and S. C. Yao, "Mechanisms of Film Boiling Heat Transfer of Normally Impacting Spray," International Journal of Heat and Mass Transfer, Vol. 30, 1987, pp. 311-318.
133
`
[23] D. E. Tilton, M. R. Pais, and L. C. Chow, High Power Density Spray Cooling. 1989, Technical Report.
[24] T. Oka, Y. Abe, Y. H. Mori, and A. Nagashima, "Pool Boiling of n-Pentane, CFC-113, and Water under Reduced Gravity Parabolic Flight Experiments with a Transparent Heater," Journal of Heat Transfer, vol. 117, 1995, pp. 408-417.
[25] S. Chandra, M. Di Marzo, Y. Qiao, and P. Tartarini, "Effect of liquid-solid contact angle on droplet evaporation," Fire Safety Journal, vol. 27, 1996, pp. 141-158.
[26] I. Mudawar and K. A. Estes, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface," Journal of Heat Transfer, vol. 118, 1996, pp. 672-679.
[27] J. Yang, L. Chow, and M. Pais, "Nucleate boiling heat transfer in spray cooling," Journal of Heat Transfer, vol. 118, 1996, pp. 668-671.
[28] K. Oliphant, B. W. Webb, and M. Q. McQuay, "An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime," Experimental Thermal and Fluid Science, vol. 18, 1998, pp. 1-10.
[29] J. J. Huddle, et al, ' Thermal Management of Diode Laser Arrays ', Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE. 2000.
[30] W. Jia, and H. H. Qiu, ' Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling ', Experimental Thermal and Fluid Science, Vol. 27, 2003, pp. 829-838.
[31] L. Lin and R. Ponnappan, "Heat transfer characteristics of spray cooling in a closed loop," International Journal of Heat and Mass Transfer, vol. 46, 2003, pp. 3737-3746.
[32] B. Horacek, K. T. Kiger, and J. Kim, "Single nozzle spray cooling heat transfer mechanisms," International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 1425-1438.
[33] A. G. Pautsch and T. A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72," International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 3167-3175.
[34] T. A. Shedd and A. G. Pautsch, "Spray impingement cooling with single- and multiple-nozzle arrays. Part II: Visualization and empirical models," International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 3176-3184.
134
`
[35] J. R. Rybicki and I. Mudawar, "Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays," International Journal of Heat and Mass Transfer, vol. 49, 2006, pp. 5-16.
[36] Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, "Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime," Experimental Thermal and Fluid Science, vol. 34, 2010, pp. 933-942.
[37] T. Orzechowski and S. Wciślik, "Instantaneous heat transfer for large drops levitating over a hot surface," International Journal of Heat and Mass Transfer, vol. 73, 2014, pp. 110-117.
[38] M. Ghodbane and J. P. Holman, "Experimental study of spray cooling with Freon-113." International Journal of Heat and Mass Transfer, Vol. 34, 1991, pp. 1163-1174.
[39] M. S. Sehmbey, M. R. Pais, and L. C. Chow, ' A Study of Diamond Laminated Surfaces in Evaporative Spray Cooling ', Thin Solid Films, Vol. 212, 1992, pp. 25-29.
[40] M. S. Sehmbey, M. R. Pais, and L. C. Chow, "Effect of Surface Material Properties and Surface Characteristics Inevaporative Spray Cooling," Journal of Thermophysics and Heat Transfer, vol. 6, 1992, pp. 505-512.
[41] M. R. Pais, L. C. Chow, and E. T. Mahefkey, "Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling." Journal of Heat Transfer, Vol. 114, 1992, pp. 211-219.
[42] J. Tehver, H. Sui, and V. Temkina, 'Heat Transfer and Hysteresis Phenomena in Boiling on Porous Plasma-Sprayed Surface ', Experimental Thermal and Fluid Science, 1992, Vol. 5 pp. 714-727.
[43] P. Tartarini, G. Lorenzini, and M. R. Randi, ' Experimental Study of Water Droplet Boiling on Hot, Non-Porous Surfaces ', Heat and Mass Transfer, Vol. 34, 1999, pp. 437-447.
[44] J. Y. Murthy, C. H. Amon, K. Gabriel, P. Kumta, S. C. Yao, D. Boyalakuntla, C. C. Hsieh, A. Jain, S. V. J. Narumanchi, and K. Rebello, "MEMS-Based Thermal Management of Electronics Using Spray Impingement." Proc. Pacific Rim/International, Intersociety Electronic Packaging Technical/Business Conference and Exhibition, Vol. 2001, pp. 1-12.
[45] B. M. Pikkula, J. H. Torres, J. W. Tunnell, and B. Anvari, "Cryogen Spray
135
`
Cooling: Effects of Droplet Size and Spray Density on Heat Removal," Lasers in Surgery and Medicine, Vol. 28, 2001, pp. 103-112.
[46] S.-S. Hsieh, T.-C. Fan, and H.-H. Tsai, "Spray cooling characteristics of water and R-134a. Part I: nucleate boiling," International Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 5703-5712.
[47] S.-S. Hsieh, T.-C. Fan, and H.-H. Tsai, "Spray cooling characteristics of water and R-134a. Part I: nucleate boiling," International Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 5713-5724.
[48] J. H. Kim, S. M. You, and S. U. S. Choi, "Evaporative spray cooling of plain and microporous coated surfaces," International Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 3307-3315.
[49] S. S. Hsieh and C. H. Tien, "R-134a spray dynamics and impingement cooling in the non-boiling regime," International Journal of Heat and Mass Transfer, vol. 50, 2007, pp. 502-512.
[50] M. Visaria and I. Mudawar, "Effects of high subcooling on two-phase spray cooling and critical heat flux," International Journal of Heat and Mass Transfer, vol. 51, 2008, pp. 5269-5278.
[51] R. Srikar, et al, ' Nanofiber Coating of Surfaces for Intensification of Drop or Spray Impact Cooling ', International Journal of Heat and Mass Transfer, Vol. 52, 2009pp. 5814-5826.
[52] D. S. Zhu, J. Y. Sun, S. D. Tu, Z. D. Wang, L. Guo, D. D. Joseph, Y. Matsumoto, Y. Sommerfeld, and Y. Wang, "Experimental Study of Non-boiling Heat Transfer by High Flow Rate Nanofluids Spray," vol. 2010, pp. 476-482.
[53] S. Wiesche, U. Bardas, and S. Uhkötter, ' Boiling Heat Transfer on Large Diamond and Sic Heaters: The Influence of Thermal Wall Properties ', International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 1886-1895.
[54] H. Bellerová, A. A. Tseng, M. Pohanka, and M. Raudensky, "Spray cooling by solid jet nozzles using alumina/water nanofluids," International Journal of Thermal Sciences, vol. 62, 2012, pp. 127-137.
[55] H. Bostanci, et al, ' High Heat Flux Spray Cooling with Ammonia: Investigation of Enhanced Surfaces for Chf ', International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp. 3849-3856.
[56] Z. Zhang, J. Li, and P.-X. Jiang, "Experimental Investigation of Spray Cooling
136
`
on Flat and Enhanced Surfaces," Applied Thermal Engineering, vol. 51, 2013, pp. 102-111.
[57] Ahn, H. S. et al. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling. Sci. Rep. 4, 2014, 6276.
[58] S. S. Hsieh, S. Y. Luo, and R. Y. Lee, ' Spray Cooling Heat Transfer on Microstructured Thin Film Enhanced Surfaces ', Experimental Thermal and Fluid Science, Vol. 68, 2015, pp. 123-134.
[59] R. Guo, J. Wu, H. Fan, and X. Zhan, "The effects of spray characteristic on heat transfer during spray quenching of aluminum alloy 2024," Experimental Thermal and Fluid Science, vol. 76, 2016, pp. 211-220.
[60] K.K. Lay,B.M.Y. Cheong,W.L. Tong, M.K. Tan, Y.M.Hung, "Effective Micro-Spray Cooling for Light-Emitting Diode with Graphene Nanoporous Layers". 2017, 28:164003, doi: 10.1088/1361-6528/aa6385
[61] H. S. Jo, T. G. Kim, J.-G. Lee, M.-W. Kim, H. G. Park, S. C. James, S. S. Yoon, "Supersonically Sprayed Nanotextured Surfaces With Silver Nanowires for Enhanced Pool Boiling," International Journal of Heat and Mass Transfer, Vol .123, 2018, pp. 397-406.
[62] S.-S. Hsieh, W.-C, Chang, "Microspray Quenching on Nanotextured Surfaces Via a Piezoelectric Atomizer with Multiple Arrays of Micronozzles," International Journal of Heat and Mass Transfer, Vol .121, 2018, pp. 832-844.
[63] G. E. Lorenzetto and A. H. Lefebvre, "Measurements of Drop Size on a Plain-Jet Airblast Atomizer," AIAA Journal, vol. 15, 1977, pp. 1006-1010.
[64] A. H. Lefebvre, X. F. Wang, and C. A. Martin, "Spray characteristics of aerated-liquid pressure atomizers," Journal of Propulsion and Power, vol. 4, 1988, pp. 293-298.
[65] Byung-Joon Rho, S.-J. Kang, J.-H. Oh, and S.-G. Lee, "Swirl effect on the spray characteristics of a twin-fluid jet," KSME International Journal, vol. 12, 1998, pp. 899-906.
[66] A. Kuerath, B. Wende, and W. Leuckel, "Influence of Liquid Flow Conditions on Spray Characteristics of Internal-Mixing Twin-Fluid Atomizers," International Journal of Heat and Fluid Flow, vol. 20, 1999, pp. 513-519. [67] Babinsky, E., & Sojka, P. E. "Modeling Drop Size Distributions". Progess in Energy and Combustuin Science,vol. 28(4), 2002, pp 303-329.
137
`
[68] Hede, P. D., Bach, P., & Jensen, A. D. "Two-Fluid Spray Atomisation and Pneumatic Nozzles for Fluid bed Coating/agglomeration Purposes: A review".Chemical Engineering Science,vol 63, 2008, pp 3821-3842.
[69] N.P.Yadav and A. Kushari, "Behavior of Spray in a Twin- Fluid Atomizer," vol. 2011,
[70] P. Watanawanyoo, H. Hirahara, H. Mochida, T. Furukawa, M. Nakamura, and S. Chaitep, "Experimental Investigations on Spray Characteristics in Twin-Fluid Atomizer," Procedia Engineering, vol. 24, 2011, pp. 816-822.
[71] Z. Li, Y. Wu, C. Cai, H. Zhang, Y. Gong, K. Takeno, K. Hashiguchi, and J. Lu, "Mixing and Atomization Characteristics in an Internal-Mixing Twin-Fluid Atomizer," Fuel, vol. 97, 2012, pp. 306-314.
[72] P. Krawczyk, K. Badyda, and S. Młynarz, "Effect of The Air to Water Ratio on The Performance of Internal Mixing Two-Fluid Atomizer," Chemical and Process Engineering, vol. 37, 2016,
[73] Y. Xia, L. Khezzar, M. Alshehhi, and Y. Hardalupas, "Droplet Size and Velocity Characteristics of Water-Air Impinging Jet Atomizer," International Journal of Multiphase Flow, vol. 94, 2017, pp. 31-43.
[74] M. Zaremba, L. Weiß, M. Malý, M. Wensing, J. Jedelský, and M. Jícha, "Low-Pressure Twin-Fluid Atomization: Effect of Mixing Process on Spray Formation," International Journal of Multiphase Flow, vol. 89, 2017, pp. 277-289. [75] Poozesh, S., Setiawan, N., Akafuah, N. K., Saito, K., & Marsac, P. J. " Assessment of Predictive Models for Characterizing the Atomization Process in a Spray Dryer’s bi-Fluid Nozzle". Chemical Engineering Science, vol. 180, 2018, pp 42–51.
[76] Xia, Y., Alshehhi, M., Hardalupas, Y., & Khezzar, L. "Spray Characteristics of Free air-on-water Impinging Jests". International Journal of Multiphase Flow,vol 100, 2018, pp 86-103. [77] Xia, Y., Khezzar, L., Alshehhi, M., & Hardalupas, Y. "Atomization of Impinging Opposed Water Jets Interacting with an air Jet". Experimental Thermal and Fluid Science,vol 93, 2018, pp11–22.
[78] Xia, Yakang, et al. "Breakup of the Water Sheet Formed by Two Liquid Impinging Jets." International Journal of Chemical Engineering 2019.
138
`
[79] R. J. Moffat, "Describing the uncertainties in experimental results," Experimental Thermal and Fluid Science, vol. 1, 1988, pp. 3-17.
[80] J. R. Taylor, "An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements" University Science Books, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊