|
[1] Kim, Kwang-Soo, et al. "Heat pipe cooling technology for desktop PC CPU." Applied thermal engineering, Vol. 23, 2003, pp. 1137-1144. [2] Tilton, Donald E., Martin R. Pais, and Louis C. Chow. "High power density spray cooling". No. UK-ME-88-07. KENTUCKY UNIV LEXINGTON DEPT OF MECHANICAL ENGINEERING, 1989. [3] R. Kong and S. Kim, "Characterization of horizontal air–water two-phase flow," Nuclear Engineering and Design, vol. 312, 2017, pp. 266-276. [4] S. M. De Corso and G. Kemeny, "Effect of Ambient and Fuel Pressure on Nozzle Spray Angle," Trans. ASME, Vol. 79, 1957, pp. 607-615. [5] S. M. De Corso, "Efect of Ambient and Fuel Pressure on Spray Drop Size," Journal of Engineering for Power, Vol. 82, 1960, pp. 10-18. [6] A. R. Jones, "Design Optimization of a Large Pressure-Jet Atomizer for Power Plant," Proceedings of the Second International Conference on Liquid Atomization and Spray Systems, 1982, pp. 181. [7] K. A. Estes and I. Mudawar, "Correlation of sauter men diameter and critical heat flux for spray cooling of small surfaces," International Journal of Heat and Mass Transfer, vol. 38, 1995, pp. 2985-2996. [8] A. R. Glover, S. M. Skippon, and R. D. Boyle, ' Interferometric Laser Imaging for Droplet Sizing: A Method for Droplet-Size Measurement in Sparse Spray Systems ', Applied Optics, Vol. 34, 1995, pp. 8409-8421. [9] K. Sone, K. Yoshida, T. Oka, Y. Abe, Y. Miri, and A. Nagashima, "Spray Cooling Characteristics of Water and Fc-72 under Reduced and Elevated Gravity for Space Application," Energy Conversion Engineering Conference, 1996. IECEC 96., Proceedings of the 31st Intersociety, vol.1502, 1996, pp. 1500-1505 [10] J. D. Bernardin, C. J. Stebbins, and I. Mudawar, "Mapping of impact and heat transfer regimes of water drops impinging on a polished surface," International Journal of Heat and Mass Transfer, vol. 40, 1997, pp. 247-267. [11] J. E. González and W. Z. Black, "Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface," Journal of Heat Transfer, vol. 119, 1997, pp. 279-287. [12] K. i. Yoshida, Y. Abe, T. Oka, Y. H. Mori, and A. Nagashima, "Spray Cooling 132 ` Under Reduced Gravity Condition." Journal of Heat Transfer, Vol. 123, 2000, pp. 309-318. [13] G. Aguilar, B. Majaron, W. Verkruysse, Y. Zhou, J. S. Nelson, and E. J. L. c, "Theoretical And Experimental Analysis Of Droplet Diameter, Temperature, And Evaporation Rate Evolution In Cryogenic Sprays," International Journal of Heat and Mass Transfer, vol. 44, 2001, pp. 320-3211. [14] R. Chen, L. C. Chow, and J. E. Navedo, ' Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling ', International Journal of Heat and Mass Transfer, 2002, Vol. 45 pp. 4033-4043. [15] S.-S. Hsieh and H.-H. Tsai, "Thermal and flow measurements of continuous cryogenic spray cooling," Archives of Dermatological Research, vol. 298, 2006, pp. 82-95. [16] M. R. O. Panão, A. L. N. Moreira, and D. F. G. Durão, ' Thermal-Fluid Assessment of Multijet Atomization for Spray Cooling Applications ', Energy, Vol. 36, 2011, pp. 2302-2311. [17] H.-Y. Wang, C. Huang, and C.-T. Chen, "Specific Design and Implementation of a Piezoelectric Droplet Actuator for Evaporative Cooling of Free Space," Nano/Micro Engineered and Molecular Systems (NEMS), 2012 7th IEEE International Conference on, 2012, pp. 419-422. [18] H. D. Haustein, et al, ' Local Heat Transfer Coefficient Measurement through a Visibly-Transparent Heater under Jet-Impingement Cooling ', International Journal of Heat and Mass Transfer, Vol. 55 ,2012, pp. 6410-6424. [19] B. H. Yang, H. Wang, X. Zhu, Q. Liao, Y. D. Ding, and R. Chen, "Heat Transfer Enhancement of Spray Cooling with Ammonia by Microcavity Surfaces," Applied thermal engineering, Vol. 50, 2013, pp. 245-250. [20] L. H. J. Wachters and N. A. J. Westerling, "The Heat Transfer from a Hot Wall to Impinging Water Drops in the Spheroidal State," Chemical Engineering Science, Vol. 21, 1966, pp. 1047-1056. [21] W. M. Grissom and F. A. Wierum, "Liquid Spray Cooling of a Heated Surface," International Journal of Heat and Mass Transfer, Vol. 24, 1981, pp. 261-271. [22] K. J. Choi and S. C. Yao, "Mechanisms of Film Boiling Heat Transfer of Normally Impacting Spray," International Journal of Heat and Mass Transfer, Vol. 30, 1987, pp. 311-318. 133 ` [23] D. E. Tilton, M. R. Pais, and L. C. Chow, High Power Density Spray Cooling. 1989, Technical Report. [24] T. Oka, Y. Abe, Y. H. Mori, and A. Nagashima, "Pool Boiling of n-Pentane, CFC-113, and Water under Reduced Gravity Parabolic Flight Experiments with a Transparent Heater," Journal of Heat Transfer, vol. 117, 1995, pp. 408-417. [25] S. Chandra, M. Di Marzo, Y. Qiao, and P. Tartarini, "Effect of liquid-solid contact angle on droplet evaporation," Fire Safety Journal, vol. 27, 1996, pp. 141-158. [26] I. Mudawar and K. A. Estes, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface," Journal of Heat Transfer, vol. 118, 1996, pp. 672-679. [27] J. Yang, L. Chow, and M. Pais, "Nucleate boiling heat transfer in spray cooling," Journal of Heat Transfer, vol. 118, 1996, pp. 668-671. [28] K. Oliphant, B. W. Webb, and M. Q. McQuay, "An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime," Experimental Thermal and Fluid Science, vol. 18, 1998, pp. 1-10. [29] J. J. Huddle, et al, ' Thermal Management of Diode Laser Arrays ', Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE. 2000. [30] W. Jia, and H. H. Qiu, ' Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling ', Experimental Thermal and Fluid Science, Vol. 27, 2003, pp. 829-838. [31] L. Lin and R. Ponnappan, "Heat transfer characteristics of spray cooling in a closed loop," International Journal of Heat and Mass Transfer, vol. 46, 2003, pp. 3737-3746. [32] B. Horacek, K. T. Kiger, and J. Kim, "Single nozzle spray cooling heat transfer mechanisms," International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 1425-1438. [33] A. G. Pautsch and T. A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72," International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 3167-3175. [34] T. A. Shedd and A. G. Pautsch, "Spray impingement cooling with single- and multiple-nozzle arrays. Part II: Visualization and empirical models," International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 3176-3184. 134 ` [35] J. R. Rybicki and I. Mudawar, "Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays," International Journal of Heat and Mass Transfer, vol. 49, 2006, pp. 5-16. [36] Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, "Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime," Experimental Thermal and Fluid Science, vol. 34, 2010, pp. 933-942. [37] T. Orzechowski and S. Wciślik, "Instantaneous heat transfer for large drops levitating over a hot surface," International Journal of Heat and Mass Transfer, vol. 73, 2014, pp. 110-117. [38] M. Ghodbane and J. P. Holman, "Experimental study of spray cooling with Freon-113." International Journal of Heat and Mass Transfer, Vol. 34, 1991, pp. 1163-1174. [39] M. S. Sehmbey, M. R. Pais, and L. C. Chow, ' A Study of Diamond Laminated Surfaces in Evaporative Spray Cooling ', Thin Solid Films, Vol. 212, 1992, pp. 25-29. [40] M. S. Sehmbey, M. R. Pais, and L. C. Chow, "Effect of Surface Material Properties and Surface Characteristics Inevaporative Spray Cooling," Journal of Thermophysics and Heat Transfer, vol. 6, 1992, pp. 505-512. [41] M. R. Pais, L. C. Chow, and E. T. Mahefkey, "Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling." Journal of Heat Transfer, Vol. 114, 1992, pp. 211-219. [42] J. Tehver, H. Sui, and V. Temkina, 'Heat Transfer and Hysteresis Phenomena in Boiling on Porous Plasma-Sprayed Surface ', Experimental Thermal and Fluid Science, 1992, Vol. 5 pp. 714-727. [43] P. Tartarini, G. Lorenzini, and M. R. Randi, ' Experimental Study of Water Droplet Boiling on Hot, Non-Porous Surfaces ', Heat and Mass Transfer, Vol. 34, 1999, pp. 437-447. [44] J. Y. Murthy, C. H. Amon, K. Gabriel, P. Kumta, S. C. Yao, D. Boyalakuntla, C. C. Hsieh, A. Jain, S. V. J. Narumanchi, and K. Rebello, "MEMS-Based Thermal Management of Electronics Using Spray Impingement." Proc. Pacific Rim/International, Intersociety Electronic Packaging Technical/Business Conference and Exhibition, Vol. 2001, pp. 1-12. [45] B. M. Pikkula, J. H. Torres, J. W. Tunnell, and B. Anvari, "Cryogen Spray 135 ` Cooling: Effects of Droplet Size and Spray Density on Heat Removal," Lasers in Surgery and Medicine, Vol. 28, 2001, pp. 103-112. [46] S.-S. Hsieh, T.-C. Fan, and H.-H. Tsai, "Spray cooling characteristics of water and R-134a. Part I: nucleate boiling," International Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 5703-5712. [47] S.-S. Hsieh, T.-C. Fan, and H.-H. Tsai, "Spray cooling characteristics of water and R-134a. Part I: nucleate boiling," International Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 5713-5724. [48] J. H. Kim, S. M. You, and S. U. S. Choi, "Evaporative spray cooling of plain and microporous coated surfaces," International Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 3307-3315. [49] S. S. Hsieh and C. H. Tien, "R-134a spray dynamics and impingement cooling in the non-boiling regime," International Journal of Heat and Mass Transfer, vol. 50, 2007, pp. 502-512. [50] M. Visaria and I. Mudawar, "Effects of high subcooling on two-phase spray cooling and critical heat flux," International Journal of Heat and Mass Transfer, vol. 51, 2008, pp. 5269-5278. [51] R. Srikar, et al, ' Nanofiber Coating of Surfaces for Intensification of Drop or Spray Impact Cooling ', International Journal of Heat and Mass Transfer, Vol. 52, 2009pp. 5814-5826. [52] D. S. Zhu, J. Y. Sun, S. D. Tu, Z. D. Wang, L. Guo, D. D. Joseph, Y. Matsumoto, Y. Sommerfeld, and Y. Wang, "Experimental Study of Non-boiling Heat Transfer by High Flow Rate Nanofluids Spray," vol. 2010, pp. 476-482. [53] S. Wiesche, U. Bardas, and S. Uhkötter, ' Boiling Heat Transfer on Large Diamond and Sic Heaters: The Influence of Thermal Wall Properties ', International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 1886-1895. [54] H. Bellerová, A. A. Tseng, M. Pohanka, and M. Raudensky, "Spray cooling by solid jet nozzles using alumina/water nanofluids," International Journal of Thermal Sciences, vol. 62, 2012, pp. 127-137. [55] H. Bostanci, et al, ' High Heat Flux Spray Cooling with Ammonia: Investigation of Enhanced Surfaces for Chf ', International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp. 3849-3856. [56] Z. Zhang, J. Li, and P.-X. Jiang, "Experimental Investigation of Spray Cooling 136 ` on Flat and Enhanced Surfaces," Applied Thermal Engineering, vol. 51, 2013, pp. 102-111. [57] Ahn, H. S. et al. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling. Sci. Rep. 4, 2014, 6276. [58] S. S. Hsieh, S. Y. Luo, and R. Y. Lee, ' Spray Cooling Heat Transfer on Microstructured Thin Film Enhanced Surfaces ', Experimental Thermal and Fluid Science, Vol. 68, 2015, pp. 123-134. [59] R. Guo, J. Wu, H. Fan, and X. Zhan, "The effects of spray characteristic on heat transfer during spray quenching of aluminum alloy 2024," Experimental Thermal and Fluid Science, vol. 76, 2016, pp. 211-220. [60] K.K. Lay,B.M.Y. Cheong,W.L. Tong, M.K. Tan, Y.M.Hung, "Effective Micro-Spray Cooling for Light-Emitting Diode with Graphene Nanoporous Layers". 2017, 28:164003, doi: 10.1088/1361-6528/aa6385 [61] H. S. Jo, T. G. Kim, J.-G. Lee, M.-W. Kim, H. G. Park, S. C. James, S. S. Yoon, "Supersonically Sprayed Nanotextured Surfaces With Silver Nanowires for Enhanced Pool Boiling," International Journal of Heat and Mass Transfer, Vol .123, 2018, pp. 397-406. [62] S.-S. Hsieh, W.-C, Chang, "Microspray Quenching on Nanotextured Surfaces Via a Piezoelectric Atomizer with Multiple Arrays of Micronozzles," International Journal of Heat and Mass Transfer, Vol .121, 2018, pp. 832-844. [63] G. E. Lorenzetto and A. H. Lefebvre, "Measurements of Drop Size on a Plain-Jet Airblast Atomizer," AIAA Journal, vol. 15, 1977, pp. 1006-1010. [64] A. H. Lefebvre, X. F. Wang, and C. A. Martin, "Spray characteristics of aerated-liquid pressure atomizers," Journal of Propulsion and Power, vol. 4, 1988, pp. 293-298. [65] Byung-Joon Rho, S.-J. Kang, J.-H. Oh, and S.-G. Lee, "Swirl effect on the spray characteristics of a twin-fluid jet," KSME International Journal, vol. 12, 1998, pp. 899-906. [66] A. Kuerath, B. Wende, and W. Leuckel, "Influence of Liquid Flow Conditions on Spray Characteristics of Internal-Mixing Twin-Fluid Atomizers," International Journal of Heat and Fluid Flow, vol. 20, 1999, pp. 513-519. [67] Babinsky, E., & Sojka, P. E. "Modeling Drop Size Distributions". Progess in Energy and Combustuin Science,vol. 28(4), 2002, pp 303-329. 137 ` [68] Hede, P. D., Bach, P., & Jensen, A. D. "Two-Fluid Spray Atomisation and Pneumatic Nozzles for Fluid bed Coating/agglomeration Purposes: A review".Chemical Engineering Science,vol 63, 2008, pp 3821-3842. [69] N.P.Yadav and A. Kushari, "Behavior of Spray in a Twin- Fluid Atomizer," vol. 2011, [70] P. Watanawanyoo, H. Hirahara, H. Mochida, T. Furukawa, M. Nakamura, and S. Chaitep, "Experimental Investigations on Spray Characteristics in Twin-Fluid Atomizer," Procedia Engineering, vol. 24, 2011, pp. 816-822. [71] Z. Li, Y. Wu, C. Cai, H. Zhang, Y. Gong, K. Takeno, K. Hashiguchi, and J. Lu, "Mixing and Atomization Characteristics in an Internal-Mixing Twin-Fluid Atomizer," Fuel, vol. 97, 2012, pp. 306-314. [72] P. Krawczyk, K. Badyda, and S. Młynarz, "Effect of The Air to Water Ratio on The Performance of Internal Mixing Two-Fluid Atomizer," Chemical and Process Engineering, vol. 37, 2016, [73] Y. Xia, L. Khezzar, M. Alshehhi, and Y. Hardalupas, "Droplet Size and Velocity Characteristics of Water-Air Impinging Jet Atomizer," International Journal of Multiphase Flow, vol. 94, 2017, pp. 31-43. [74] M. Zaremba, L. Weiß, M. Malý, M. Wensing, J. Jedelský, and M. Jícha, "Low-Pressure Twin-Fluid Atomization: Effect of Mixing Process on Spray Formation," International Journal of Multiphase Flow, vol. 89, 2017, pp. 277-289. [75] Poozesh, S., Setiawan, N., Akafuah, N. K., Saito, K., & Marsac, P. J. " Assessment of Predictive Models for Characterizing the Atomization Process in a Spray Dryer’s bi-Fluid Nozzle". Chemical Engineering Science, vol. 180, 2018, pp 42–51. [76] Xia, Y., Alshehhi, M., Hardalupas, Y., & Khezzar, L. "Spray Characteristics of Free air-on-water Impinging Jests". International Journal of Multiphase Flow,vol 100, 2018, pp 86-103. [77] Xia, Y., Khezzar, L., Alshehhi, M., & Hardalupas, Y. "Atomization of Impinging Opposed Water Jets Interacting with an air Jet". Experimental Thermal and Fluid Science,vol 93, 2018, pp11–22. [78] Xia, Yakang, et al. "Breakup of the Water Sheet Formed by Two Liquid Impinging Jets." International Journal of Chemical Engineering 2019. 138 ` [79] R. J. Moffat, "Describing the uncertainties in experimental results," Experimental Thermal and Fluid Science, vol. 1, 1988, pp. 3-17. [80] J. R. Taylor, "An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements" University Science Books, 1997.
|