[1]Steiger, A., & Kimura, M. (2010). Wake and sleep EEG provide biomarkers in depression. Journal of Psychiatric Research, 44(4), 242-252.
[2]Kluge, M., Schüssler, P., Dresler, M., Yassouridis, A., & Steiger, A. (2007). Sleep onset REM periods in obsessive compulsive disorder. Psychiatry research, 152(1), 29–35.
[3]Tandon, R., Lewis, C., Taylor, S. F., Shipley, J. E., DeQuardo, J. R., Jibson, M., & Goldman, M. (1996). Relationship between DST nonsuppression and shortened REM latency in schizophrenia. Biological psychiatry, 40(7), 660–663.
[4]Mellman, T. A., Pigeon, W. R., Nowell, P. D., & Nolan, B. (2007). Relationships between REM sleep findings and PTSD symptoms during the early aftermath of trauma. Journal of traumatic stress, 20(5), 893–901.
[5]Dykierek, P., Stadtmüller, G., Schramm, P., Bahro, M., van Calker, D., Braus, D. F., Steigleider, P., Löw, H., Hohagen, F., Gattaz, W. F., Berger, M., & Riemann, D. (1998). The value of REM sleep parameters in differentiating Alzheimer''s disease from old-age depression and normal aging. Journal of psychiatric research, 32(1), 1–9.
[6]Schaltenbrand, N., Lengelle, R., & Macher, J. P. (1993). Neural network model: application to automatic analysis of human sleep. Computers and biomedical research, an international journal, 26(2), 157–171.
[7]Schaltenbrand, N., Lengelle, R., Toussaint, M., Luthringer, R., Carelli, G., Jacqmin, A., Lainey, E., Muzet, A., & Macher, J. P. (1996). Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep, 19(1), 26–35.
[8]Kubat, M., Pfurtscheller, G., & Flotzinger, D. (1994). AI-based approach to automatic sleep classification. Biological cybernetics, 70(5), 443–448.
[9]Robert, C., Guilpin, C., & Limoge, A. (1998). Review of neural network applications in sleep research. Journal of neuroscience methods, 79(2), 187–193.
[10]Park, H. J., Oh, J. S., Jeong, D. U., & Park, K. S. (2000). Automated sleep stage scoring using hybrid rule- and case-based reasoning. Computers and biomedical research, an international journal, 33(5), 330–349.
[11]Agarwal, R., & Gotman, J. (2001). Computer-assisted sleep staging. IEEE transactions on bio-medical engineering, 48(12), 1412–1423.
[12]Louis, R. P., Lee, J., & Stephenson, R. (2004). Design and validation of a computer-based sleep-scoring algorithm. Journal of neuroscience methods, 133(1-2), 71–80.
[13]Hanaoka, M., Kobayashi, M. and Yamazaki, H. (2002), Automatic sleep stage scoring based on waveform recognition method and decision-tree learning. Syst. Comp. Jpn., 33: 1-13.
[14]Caffarel, J., Gibson, G. J., Harrison, J. P., Griffiths, C. J., & Drinnan, M. J. (2006). Comparison of manual sleep staging with automated neural network-based analysis in clinical practice. Medical & biological engineering & computing, 44(1-2), 105–110.
[15]Porée, F., Kachenoura, A., Gauvrit, H., Morvan, C., Carrault, G., & Senhadji, L. (2006). Blind source separation for ambulatory sleep recording. IEEE transactions on information technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society, 10(2), 293–301.
[16]Baumgart-Schmitt, R., Herrmann, W. M., & Eilers, R. (1998). On the use of neural network techniques to analyze sleep EEG data. Third communication: robustification of the classificator by applying an algorithm obtained from 9 different networks. Neuropsychobiology, 37(1), 49–58.
[17]Flexer, A., Gruber, G., & Dorffner, G. (2005). A reliable probabilistic sleep stager based on a single EEG signal. Artificial intelligence in medicine, 33(3), 199–207.
[18]Malafeev, A., Omlin, X., Wierzbicka, A., Wichniak, A., Jernajczyk, W., Riener, R., & Achermann, P. (2019). Automatic artefact detection in single-channel sleep EEG recordings. Journal of sleep research, 28(2), e12679.
[19]Sinha R. K. (2008). Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states. Journal of medical systems, 32(4), 291–299.
[20]Magosso, E., Ursino, M., Zaniboni, A., Provini, F., & Montagna, P. (2007). Visual and computer-based detection of slow eye movements in overnight and 24-h EOG recordings. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 118(5), 1122–1133.
[21]Riazy, S., Wendler, T., & Pilz, J. (2018). Automatic two-channel sleep staging using a predictor-corrector method. Physiological measurement, 39(1), 014006.
[22]Li, Q., Li, Q., Liu, C., Shashikumar, S. P., Nemati, S., & Clifford, G. D. (2018). Deep learning in the cross-time frequency domain for sleep staging from a single-lead electrocardiogram. Physiological measurement, 39(12), 124005.
[23]陳世昌(2010)。使用不同組合的腦電圖、眼動圖及肌電圖訊號自動偵測慢波睡眠。國立中山大學機械與機電工程學系研究所碩士論文,高雄市。[24]劉勝義 (2004)。 臨床睡眠檢查學。 臺北市:合記圖書。
[25]劉昌賢(2002)。以數位訊號處理器為基礎的即時心率分析器設計。長庚大學電機工程研究所碩士論文,桃園縣。[26]黃明智(2006)。以數位訊號處理方式建立心率變異度與呼吸障礙指數的相關性。國立中山大學機械與機電工程學系研究所碩士論文,高雄市。[27]Urtnasan, E., Park, J. U., Joo, E. Y., & Lee, K. J. (2018). Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network. Journal of medical systems, 42(6), 104.
[28]楊正榮(2004)。以小波轉換為基礎的QRS波偵測。國立中山大學機械與機電工程學系研究所碩士論文,高雄市。[29]Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.
[30]Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012, December). Imagenet classification with deep convolutional neural networks. In Proceedings of NIPS, pages 1106–1114, 2012.
[31]Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958
[32]陳政緯(2019)。使用深度學習開發基於腦電訊號之老鼠睡眠階段自動判讀方法。國立中山大學機械與機電工程學系研究所碩士論文,高雄市。[33]Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., & Rabinovich, A. (2014). Going deeper with convolutions. In Proceedings of CVPR, 1–9.
[34]McHugh M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276–282.
[35]Malinowska, U., Klekowicz, H., Wakarow, A., Niemcewicz, S., & Durka, P. J. (2009). Fully parametric sleep staging compatible with the classical criteria. Neuroinformatics, 7(4), 245–253.
[36]洪志遠(2018)。使用機器學習的技術進行腦電圖訊號之自動偵測快速動眼睡眠期。國立中山大學機械與機電工程學系研究所博士論文,高雄市。