跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊峻銘
研究生(外文):Jun-Ming Yang
論文名稱:鈦/碳纖維/聚醚醚酮含奈米粉複材積層板具傾斜突出尖角之單邊裂縫其機械行為及疲勞響應
論文名稱(外文):Mechanical Behavior and Fatigue Response of Single-Edge-Cracked with Inclined Infinitesmal Kink at the Tips in Ti/APC-2 Hybrid Nano-Composite Laminates
指導教授:任明華任明華引用關係
指導教授(外文):Ming-Hwa R. Jen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:125
中文關鍵詞:碳纖維/聚醚醚酮奈米粉粒突出尖角裂縫疲勞破壞
外文關鍵詞:TitaniumAPC-2Nano-compositeKinksCrackFatigueFracture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對單邊裂縫之鈦/碳纖維/聚醚醚酮/二氧化矽奈米複材積層板進行靜態拉伸及疲勞兩項測試,探討在不同裂縫長度a=2.0 mm、3.0 mm,裂縫尖端突出尖角α=30°、45°、60°以及是否添加奈米粉的條件下對複材積層板的各項機械性能與試片斷面的影響。
  複材積層板的製備是利用鉻酸陽極處理後的鈦板將十字堆疊[0°/90°]s的碳纖維/聚醚醚酮預浸布(APC-2)夾於中間形成三明治結構,再放入熱壓成型機進行高溫熱壓。
藉由MTS-810萬能材料試驗機與FT40控制器及控制電腦對不同變因的試片進行拉伸實驗獲得不同條件下試片的機械性能,如極限負載、伸長量與柔度變化。再利用相同設備依抗拉強度比0.9至0.5進行疲勞測試,並採用拉伸-拉伸(Tension-Tension)負載及應力比0.1、頻率5 Hz做控制。最後將兩種實驗結果進行整理繪製出比較圖表,藉此探討各項變因對極限負載與抗疲勞性的影響。
  由靜態拉伸結果比較得知,拉伸斷面大多呈現45度的鋸齒狀。極限負載會隨裂縫長度與裂縫突出尖角角度增加而變小,隨著添加奈米粉而變大。但奈米粉對極限負載的增加幅度並不穩定。
由疲勞實驗結果比較得知,鋸齒狀斷面會隨抗拉強度比降低逐漸減少,形成相對平整的疲勞斷面。而疲勞壽命會隨裂縫長度增加有下降的趨勢,突出尖角則因裂縫效應的影響過大導致對疲勞壽命的影響並不明顯,僅在裂縫長度較短的條件下,疲勞壽命會隨尖角角度變大而有下降的趨勢。添加奈米粉則對試片疲勞壽命影響甚小。
The aim of the thesis is to investigate thoroughly the mechanical behavior and fatigue fracture of single-edge-cracked Ti/APC-2 hybrid nano-composite laminates by tensile and fatigue tests. The conditions are that crack length a=2.0 mm, 3.0 mm, kink angles of 30°, 45°, 60°, and with and without adding SiO2 nanoparticles. The parametric influence on the various mechanical properties of the composite laminates was discussed.
The used composite laminates were a sandwich structure. AS-4/PEEK prepregs (APC-2) of cross-ply [0°/90°]s was sandwiched between the titanium plates after chromic acid anodization. Then put it into a hot press machine to cure a laminate.
With the MTS-810 Material Testing System, FT40 controller and the computer, the tensile tests were carried out to obtain the mechanical properties of samples under different conditions, such as ultimate load, and elongation. Then we used the same equipment to carry out fatigue test with the strength ratio of 0.9 to 0.5, in tension-tension sinusoidal wave with stress ratio R=0.1, frequency of 5 Hz in load control. We explored the effect of parameters on the ultimate load and fatigue resistance.
According to the results of tensile tests, most of failed cross-sections presented a 45-degree jagged shape. The ultimate load decreased with the increase of the crack length and the kink angles, and increased with the addition of SiO2 nanoparticles. However, the increase in the ultimate load by adding SiO2 nanoparticles is not obvious.
  Furthermore, from the results of fatigue tests, the serrated sections gradually decreased as the stress ratio decreasing, forming a relatively flat sections. The fatigue life reduced with the crack length increasing. Kink angles do not have a significant impact on fatigue life due to the excessive influence of the cracking length. Only under the condition of short crack lengths, the fatigue life decreased as the kink angles becoming larger. The addition of SiO2 nanoparticles has little effect on the fatigue life.
目錄
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 xiv
第一章 緒論 1
1.1. 前言 1
1.2. 複合材料概述 2
1.3. 二氧化矽(SiO2)奈米粉粒概述 3
1.4. 研究方向 3
1.5. 文獻回顧 4
1.6. 組織及章節概要 6
第二章 實驗與設備 7
2.1 實驗材料 7
2.1.1 鈦金屬 (Titanium) 7
2.1.2 碳纖維/聚醚醚酮預浸布 (APC-2)(AS-4/PEEK) 8
2.1.3 二氧化矽奈米粉粒(SiO2) 9
2.2 儀器設備介紹 9
2.3 複材積層板之製備過程 10
2.3.1 鈦板前處理 10
2.3.2 碳纖維/聚醚醚酮(APC-2)前處理 12
2.3.3 複材積層板之熱壓製成 13
2.3.4 試片裁切與裂縫加工 14
2.4 靜態拉伸及疲勞試驗 15
2.4.1 靜態拉伸試驗 15
2.4.2 疲勞試驗 16
第三章 靜態拉伸試驗及其結果 22
1.1 靜態拉伸試驗方法 22
1.2 靜態拉伸試片之編號與命名 23
1.3 靜態拉伸試驗結果 24
第四章 疲勞試驗及其結果 38
4.1 疲勞試驗方法 38
4.2 疲勞實驗試片之編號與命名 38
4.3 疲勞試驗結果 39
第五章 分析與討論 53
5.1 複材積層板之機械性質探討 53
5.1.1 混合物理論( Rule of Mixtures ) 53
5.1.2 實驗值與混合物理論之比較 55
5.2 應力強度因子K及k值探討 56
5.2.1 應力強度因子K值 56
5.2.2 應力強度因子k值 59
5.3 複材積層板之破壞斷面探討 61
5.3.1 拉伸破壞斷面 62
5.3.2 疲勞破壞斷面 63
5.4 複材積層板之極限負載探討 78
5.4.1 裂縫長度對極限負載之影響 78
5.4.2 突出尖角對極限負載之影響 79
5.4.3 奈米粉粒對極限負載之影響 79
5.4.4 裂縫傾角與突出尖角對極限負載之比較 80
5.5 複材積層板之抗疲勞性探討 82
5.5.1 裂縫長度對抗疲勞性之影響 82
5.5.2 突出尖角對抗疲勞性之影響 83
5.5.3 奈米粉粒對抗疲勞性之影響 83
第六章 結論 93
第七章 參考文獻 95
附錄一 材料性質 99
附錄二 實驗與儀器設備 103
[1] Bucci, R., Mueller, L., Vogelesang, L., Gunnink, J.J.A.a.c.r., science, a.T.o.m., and technology, 1990, "ARALL laminates," 31, pp. 295-322.
[2] Asundi, A., and Choi, A. Y., 1997, "Fiber metal laminates: an advanced material for future aircraft," Journal of Materials processing technology, 63(1-3), pp. 384-394.
[3] Lin, C., and Kao, P., 1996, "Fatigue delamination growth in carbon fibre-reinforced aluminium laminates," Composites Part A: Applied Science and Manufacturing, 27(1), pp. 9-15.
[4] Marissen, R., 1987, "Fatigue mechanisms in ARALL, a fatigue resistant hybrid aluminum aramid composite material," Virginia Univ, Fatigue 87, 3.
[5] Ota, H., Jespersen, K. M., Saito, K., Wada, K., Okamoto, K., Hosoi, A., and Kawada, H., 2020, "Effect of the interfacial nanostructure on the interlaminar fracture toughness and damage mechanisms of directly bonded carbon fiber reinforced thermoplastics and aluminum," Composites Part A: Applied Science and Manufacturing, 139, p. 106101.
[6] Ritchie, R., Yu, W., and Bucci, R., 1989, "Fatigue crack propagation in ARALL® LAMINATES: Measurement of the effect of crack-tip shielding from crack bridging," Engineering Fracture Mechanics, 32(3), pp. 361-377.
[7] Khan, S., Alderliesten, R., and Benedictus, R., 2009, "Post-stretching induced stress redistribution in fibre metal laminates for increased fatigue crack growth resistance," Composites Science and Technology, 69(3-4), pp. 396-405.
[8] Cortes, P., and Cantwell, W., 2004, "Fracture properties of a fiber-metal laminates based on magnesium alloy," Journal of materials science, 39(3), pp. 1081-1083.
[9] Villanueva, G. R., 2002, "Processing and characterisation of the mechanical properties of novel fibre-metal laminates," University of Liverpool.
[10] Boonyapookana, A., Nagata, K., and Mutoh, Y., 2011, "Fatigue crack growth behavior of silica particulate reinforced epoxy resin composite," Composites science and technology, 71(8), pp. 1124-1131.
[11] Zhou, Q., Zhang, Q., Zhang, J., Zhang, L., and Yao, X., 1997, "Preparation and optical properties of TiO2 nanocrystalline particles dispersed in SiO2 nano-composites," Materials Letters, 31(1-2), pp. 39-42.
[12] Irwin, G. R., 1997, "Analysis of stresses and strains near the end of a crack traversing a plate."
[13] Gross, D., and Seelig, T., 2017, Fracture mechanics: with an introduction to micromechanics, Springer.
[14] Bilby, B., Cardew, G., and Howard, I., 1978, "Stress intensity factors at the tips of kinked and forked cracks," Analysis and Mechanics, Elsevier, pp. 197-200.
[15] Wang, D.-A., Lin, S.-H., and Pan, J., 2005, "Stress intensity factors for spot welds and associated kinked cracks in cup specimens," International Journal of Fatigue, 27(5), pp. 581-598.
[16] Wang, D.-A., and Pan, J., 2005, "A computational study of local stress intensity factor solutions for kinked cracks near spot welds in lap-shear specimens," International Journal of Solids and Structures, 42(24-25), pp. 6277-6298.
[17] Erdogan, F., and Sih, G., 1963, "On the crack extension in plates under plane loading and transverse shear."
[18] Maiti, S., 1980, "Prediction of the path of unstable extension of internal and edge cracks," The Journal of Strain Analysis for Engineering Design, 15(4), pp. 183-194.
[19] Wu, H.-C., 1974, "Dual failure criterion for plain concrete," Journal of Engineering Mechanics, 100(ASCE 10996).
[20] Hussain, M., Pu, S., and Underwood, J., "Strain energy release rate for a crack under combined mode I and mode II," Proc. Fracture analysis: Proceedings of the 1973 national symposium on fracture mechanics, part II, ASTM International.
[21] Nuismer, R., 1975, "An energy release rate criterion for mixed mode fracture,"International journal of fracture, 11(2), pp. 245-250.
[22] Li, H., Luo, X., Zhang, Y., and Xu, R., 2021, "Stochastic fatigue damage in viscoelastic materials using probabilistic pseudo J-integral Paris'' law,"Engineering Fracture Mechanics, 245, p. 107566.
[23] Pugno, N., Ciavarella, M., Cornetti, P., and Carpinteri, A., 2006, "A generalized Paris’ law for fatigue crack growth," Journal of the Mechanics and Physics of Solids, 54(7), pp. 1333-1349.
[24] Bhat, S., and Narayanan, S., 2014, "Quantification of fibre bridging in mode I cracked Glare without delaminations," European Journal of Mechanics-A/Solids, 43, pp. 152-170.
[25] Weertman, J., 1966, "Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane," International Journal of Fracture Mechanics, 2(2), pp. 460-467.
[26] Hwang, W., and Han, K. S., 1986, "Fatigue of composites—fatigue modulus concept and life prediction," Journal of Composite Materials, 20(2), pp. 154-165.
[27] 李秉原, 2006, "鎂合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討," 撰者.
[28] 周惠琪, 2015, "鈦合金/碳纖維/聚醚醚酮複材積層板含單邊傾斜裂縫之疲勞破壞與殘留壽命之探討," 中山大學機械與機電工程學系研究所學位論文, pp. 1-103.
[29] 黃韋翔, 2014, "鈦合金/碳纖維/聚醚醚酮複材積層板含單邊裂縫之疲勞破壞與殘留壽命之探討," 中山大學機械與機電工程學系研究所學位論文, pp. 1-77.
[30] 梁育誠, 2019, "雙邊對稱傾斜裂縫鈦合金/碳纖維/聚醚醚酮奈米複材積層板之疲勞破壞與殘留壽命探討," 碩士, 國立中山大學, 高雄市.
[31] 許力仁, 2019, "反對稱雙邊裂縫之鈦/碳纖維/聚醚醚酮奈米複材積層板之機械性能與疲勞破壞," 碩士, 國立中山大學, 高雄市.
[32] 郭冠霆, 2018, "鈦/碳纖維/聚醚醚酮/二氧化矽奈米複材積層板含單邊裂縫之高溫機械與疲勞性質探討," 碩士, 國立中山大學, 高雄市.
[33] 陳怡菁, 2018, "含單邊裂縫之鈦/碳纖維/聚醚醚酮複材積層板於高溫下之機械性質與疲勞破壞," 碩士, 國立中山大學, 高雄市.
[34] Tada, H., Paris, P. C., and Irwin, G. R., 1973, "The stress analysis of cracks," Handbook, Del Research Corporation, 34.
[35] Gibson, R. F., 2016, Principles of composite material mechanics, CRC press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 鈦/碳纖維/聚醚醚酮含奈米粉複材積層板具傾斜尖角之雙邊裂縫其機械行為及疲勞響應
2. 含單邊裂縫之矩形薄膜承受拉伸作用之皺褶變化及機械性能探討
3. 鈦合金/碳纖維/聚醚醚酮混和型複合材料受低速衝擊後之殘留性質討論
4. 反對稱雙邊裂縫之鈦/碳纖維/聚醚醚酮奈米複材積層板之機械性能與疲勞破壞
5. 雙邊對稱傾斜裂縫鈦合金/碳纖維/聚醚醚酮奈米複材積層板之疲勞破壞與殘留壽命探討
6. 鈦/碳纖維/聚醚醚酮/二氧化矽奈米複材積層板含單邊裂縫之高溫機械與疲勞性質探討
7. 含單邊裂縫之鈦/碳纖維/聚醚醚酮複材積層板於高溫下之機械性質與疲勞破壞
8. 含裂縫之鈦/碳纖維/聚醚醚酮混合複材積層板之機械行為與疲勞性能
9. 鈦合金/碳纖維/聚醚醚銅/克維拉纖維複合材料積層板承受低速衝擊後之機械性質探討
10. 雙邊傾斜裂縫鈦合金/碳纖維/聚醚醚酮複材積層板之疲勞破壞與殘留壽命探討
11. 鈦合金/碳纖維/聚醚醚酮複材積層板含單邊傾斜裂縫之疲勞破壞與殘留壽命之探討
12. 鈦合金/碳纖維/聚醚醚酮複材積層板含單邊裂縫之疲勞破壞與殘留壽命之探討
13. 鈦合金/聚碳酸酯/碳纖維/聚醚醚酮/克維拉混合型複合材料積層板承受高速衝擊後之數值分析
14. 積層陶瓷電容器高溫高壓之變形與薄膜受拉力皺摺現象分析與探討
15. 鈦合金/碳纖維/聚醚醚酮混合型複合材料積層板承受高速衝擊後之數值分析