跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范家豪
研究生(外文):Jia-Hao Fan
論文名稱:利用液態聚矽氮烷高分子鍍膜複合矽基陶瓷薄膜之機械及電化學性質研究
論文名稱(外文):The research on mechanical and electrochemical properties of Silicon-based composite ceramic film by preceramic polysilazane precurser coating
指導教授:胡龍豪胡龍豪引用關係
指導教授(外文):Lung-Hao Hu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:134
中文關鍵詞:SiCNO矽基陶瓷薄膜複合矽基陶瓷薄膜奈米壓痕抗腐蝕性能聚合物衍生性陶瓷
外文關鍵詞:SiCNO Silicon-based ceramic filmSilicon-based composite ceramic filmNanoindentationCorrosion resistancePolymer Derived Ceramics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨為研究「聚矽氮烷液態高分子前驅物」作為保護性鍍層之性能提升開發。「聚矽氮烷液態高分子前驅物 (Polysilazane preceramic precursor, PSZP)」為聚合物衍生陶瓷(Polymer Derived Ceramics, PDC)眾多種類之一,可藉由在惰性氣氛下不同的熱解溫度,使液態高分子前驅物轉化為具不同特性之結晶或非晶矽基陶瓷,且由於其前驅物為液相聚合物,可透過聚合物成型方法作為陶瓷薄膜成型方式,故製程難度低且成本低,熱解後之SiCNO矽基陶瓷具有高硬度、高溫穩定性、高化學穩定性、耐磨耗性、高抗腐蝕性及生物惰性,而本研究透過量測不同熱解溫度下,SiCNO矽基陶瓷薄膜之機械性質及化學性質,並且藉由摻雜不同粉末填料及合成陶瓷材料於聚矽氮烷中以提升SiCNO矽基陶瓷薄膜機械性質。首先透過旋轉塗佈方式將聚矽氮烷液態高分子前驅物塗佈於矽晶圓表面,並分別進行700℃、800℃、900℃、1000℃、1100℃及1200℃溫度之熱解,使聚矽氮烷轉化為結晶或非晶之SiCNO矽基陶瓷,再藉由奈米壓痕量測系統比較出最優異之機械性質為1100℃的熱解溫度,硬度可以達到9.22 GPa,彈性模數則為77.7 GPa,以H/E代表破壞彈性應變(Elastic strain to failure),其值可達到0.118,而H3/E2代表斷裂韌性(Fracture thoughness),其值則可達0.129 GPa。接著透過摻雜氮化鋁及二氧化鈦陶瓷粉末於聚矽氮烷中,進行1100℃的熱解程序,並透過奈米壓痕量測系統測得當氮化鋁及二氧化鈦粉末摻雜比例為3wt %時,平均硬度表現分別可達到9.39 GPa及10.88 GPa,彈性模數分別為76.7 GPa及79.6 GPa,而破壞彈性應變H/E值分別為0.122及0.137,斷裂韌性H3/E2值則分別為0.141 GPa及0.203 GPa,說明摻雜氮化鋁及二氧化鈦粉末作為填料可以有效地提升複合矽基陶瓷薄膜硬度及耐磨耗性。而為了更進一步提升複合矽基陶瓷薄膜機械性質,選擇透過硼氫化鈉以溶膠-凝膠法還原正丙醇鋯及異丙醇鈦於聚矽氮烷液態高分子前驅物中,通過1100℃的熱解程序使聚矽氮烷得以完全相變化形成氧化鋯及氧化鈦複合矽基陶瓷薄膜,最後由奈米壓痕量測系統測得當5wt %的異丙醇鈦還原液混和於聚矽氮烷液態高分子前驅物中,經由1100℃之熱處理後,形成的氧化鈦複合矽基陶瓷薄膜平均硬度為10.67 GPa,彈性模數為84.5 GPa,破壞彈性應變H/E值達到0.126,斷裂韌性H3/E2值為0.170 GPa,而摻雜比例10wt %之氧化鋯複合矽基陶瓷薄膜平均硬度大幅提升至11.54 GPa,彈性模數達到101.2 GPa,破壞彈性應變H/E值為0.114,斷裂韌性H3/E2值為0.150 GPa,此研究結果說明透過還原填料於聚矽氮烷液態高分子前驅物所形成之複合矽基陶瓷薄膜可以有效提升機械性質。本研究亦透過電化學分析儀量測SiCNO矽基陶瓷薄膜於銅泡棉之抗腐蝕性能,研究結果顯示未具有SiCNO矽基陶瓷薄膜之銅泡棉腐蝕電位為0.022V,腐蝕速率為1510.2μm/year,而具有SiCNO矽基陶瓷薄膜之銅泡棉腐蝕電位提升至0.52V,提升了23倍,而最佳腐蝕速率則降低至7.56μm/year,腐蝕速率降低近200倍,證明SiCNO矽基陶瓷薄膜作為保護性鍍層,可以大幅提升抗腐蝕性能。
The purpose of this research is to study the mechanical and electrochemical properties of liquidic polysilazane preceramic precursor as a protective surface coating. Polysilazane is one of Polymer Derived Ceramics (PDC) systems, that can be transformed from liquid polymer precursors into crystalline or amorphous silicon-based ceramics with different properties by heat treating at pyrolytic temperatures. Due to the preceramic precursors are liquid-phase polymers, ceramic films can be molded by polymer molding methods, making the process simpler and cheaper. The pyrolyzed SiCNO silicon-based ceramics have high hardness, high temperature stability, high chemical stability, wear resistance, high corrosion resistance and biological inertness. In this study, the mechanical and chemical properties of SiCNO silicon-based ceramic films are measured at different pyrolytic temperatures, and the mechanical properties of SiCNO silicon-based ceramic films are enhanced by doping different nano ceramic powders and synthetic ceramic materials as fillers in liquidic polysilazane preceramic precursor. Firstly, we coat the liquidic polysilazane preceramic precursor on the surface of silicon wafers by spin-coating, and then pyrolyze it at 700°C-1200°C in inert atmosphere to trigger the transformation of polymer-to-ceramic (SiCNO). The nanoindentation measurement system has shown when pyrolytic temperature reaches 1100℃, the maximum hardness and reduced modulus achieves 9.22 GPa, and 77.7GPa, respectively. The value of H/E for elastic strain to failure and H3/E2 for fracture toughness achieves 0.118 and 0.129 GPa. To enhance the mechanical properties of SiCNO silicon-based ceramic films, we use aluminium nitride and titanium dioxide ceramic powders as fillers. The average hardness of aluminium nitride and titanium dioxide powders as the fillers of polysilazane at a doping ratio of 3wt% achieve 9.39 GPa and 10.88 GPa, the reduced modulus achieve 76.7 GPa and 79.6 GPa, the H/E values of elastic strain to failure achieve 0.122 and 0.137, and the H3/E2 for fracture toughness achieve 0.118 and 0.129 GPa, respectively. Addition of aluminum nitride and titanium dioxide powders as fillers can effectively improve the hardness and wear resistance of the composite silicon-based ceramic films. In order to further improve the mechanical properties of the composite silicon-based ceramic film, sodium borohydride is used to reduce n-propanol zirconium and isopropanol titanium as fillers in liquidic polysilazane preceramic precursor by sol-gel method. As measured by a nanoindentation measurement system, the average hardness and reduced modulus of the titanium dioxide composite silicon-based ceramic film with 5wt% isopropanol titanium reduction solution pyrolyzed at 1100°C can achieve 10.67 GPa and 84.5 GPa, respectively. Those H/E values for elastic strain to failure and H3/E2 values for fracture toughness achieves 0.126 and 0.170 GPa, respectively. The average hardness and reduced modulus of the 10wt% zirconium oxide composite silicon-based ceramic films are increased significantly to 11.54 GPa and 101.2 GPa, respectively. Those H/E values for elastic strain to failure and H3/E2 values for fracture toughness achieve 0.114 and 0.150 GPa. The results show that the mechanical properties of composite silicon-based ceramic films can be effectively enhanced by reducing titanium and zirconium as silicon-based ceramic fillers.
Anti-corrosion test is to impregnate the copper foam in different concentrations of liquidic polysilazane preceramic precursor in acetone, and then it is pyrolyzed at 700 °C. The experimental results show that the corrosion potential of copper foam without SiCNO silicon-based ceramic film is 0.022V and the corrosion rate is 1510.2μm/year, while the corrosion potential of copper foam with SiCNO silicon-based ceramic film is increased to 0.52V, which is 23 times higher, and the best corrosion rate is reduced to 7.56μm/year, which is nearly 200 times lower. This demonstrates that SiCNO silicon-based ceramic films can significantly improve corrosion resistance as a protective surface coating.
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 viii
圖目錄 xi
表目錄 xvi
第一章 緒論 1
1.1前言 1
1.2研究動機 3
第二章 文獻回顧 4
2.1聚合物衍生性陶瓷介紹 4
2.1.1聚合物衍生性陶瓷熱解 5
2.1.2 聚合物衍生性陶瓷填料摻雜 9
2.1.3 聚合物衍生性陶瓷應用 10
2.1.4 聚矽氮烷介紹 12
2.2金屬與陶瓷填料介紹 15
2.2.1氮化鋁 15
2.2.2二氧化鈦 17
2.2.3氧化鋯 20
第三章 實驗方法與設備分析 23
3.1實驗材料 23
3.2實驗設備 24
3.3實驗流程 25
3.3.1矽晶圓塗佈聚矽氮烷液態高分子前驅物 26
3.3.2矽晶圓塗佈含陶瓷填料之聚矽氮烷液態高分子前驅物 27
3.3.3摻雜氮化鋁及二氧化鈦陶瓷粉末作為聚矽氮烷液態高分子前驅物填料 28
3.3.4利用硼氫化鈉還原氧化鋯及氧化鈦作為聚矽氮烷液態高分子前驅物填料 29
3.3.5聚矽氮烷液態高分子前驅物塗層熱處理 31
3.3.6 抗腐蝕性能量測 32
3.4分析設備 33
3.4.1陶瓷薄膜表面分析 33
3.4.2陶瓷薄膜結晶成分及結構分析 37
3.4.3奈米壓痕量測系統 (Nano-indenter System) 41
3.4.4電化學分析儀 (Electrochemical analyzer) 48
第四章 結果與討論 52
4.1陶瓷薄膜表面型態分析 52
4.1.1聚矽氮烷液態高分子前驅物轉化矽基陶瓷薄膜表面型態分析 52
4.1.2摻雜氮化鋁粉末作為填料之複合矽基陶瓷薄膜表面型態 55
4.1.3摻雜二氧化鈦粉末作為填料之複合矽基陶瓷薄膜表面型態 57
4.1.4還原鋯複合矽基陶瓷薄膜表面型態 59
4.1.5還原鈦複合矽基陶瓷薄膜表面型態 62
4.1.6摻雜不同填料之複合矽基陶瓷薄膜與SiCNO矽基陶瓷薄膜表面粗糙度量測 64
4.2陶瓷薄膜奈米壓痕量測及機械性質分析 67
4.2.1聚矽氮烷液態高分子前驅物轉化矽基陶瓷薄膜奈米壓痕量測 67
4.2.2摻雜氮化鋁及二氧化鈦粉末填料之複合矽基陶瓷薄膜奈米壓痕量測 72
4.2.3以溶膠凝膠法還原氧化鋯及氧化鈦填料之複合矽基陶瓷薄膜奈米壓痕量測 81
4.2.4複合矽基陶瓷及SiCNO矽基陶瓷薄膜機械性質比較 84
4.3陶瓷薄膜結晶結構及成分分析 86
4.3.1聚矽氮烷液態高分子前驅物轉化矽基陶瓷薄膜能量色散X射線元素分析 86
4.3.2聚矽氮烷液態高分子前驅物轉化矽基陶瓷薄膜X光繞射分析 89
4.3.3摻雜氮化鋁粉末作為填料之複合矽基陶瓷薄膜X光繞射分析 91
4.3.4摻雜二氧化鈦粉末作為填料之複合矽基陶瓷粉末X光繞射分析 94
4.3.5還原鋯及還原鈦複合矽基陶瓷薄膜X光繞射分析 95
4.3.6摻雜二氧化鈦、氧化鋯及氮化鋁之聚矽氮烷液態高分子前驅物轉化陶瓷薄膜拉曼光譜儀量測 98
4.4陶瓷薄膜電化學腐蝕性能量測及分析 100
4.4.1聚矽氮烷液態高分子前驅物轉化矽基陶瓷薄膜電化學腐蝕性能量測 100
第五章 結論與未來展望 104
5.1結論 104
5.2未來展望 107
參考文獻 108
[1]P. Colombo, G. Mera, R. Riedel, and G. D. Sorarù, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," Journal of the American Ceramic Society, pp. no-no, 2010.
[2]A. Francis, R. Detsch, and A. R. Boccaccini, "Fabrication and cytotoxicity assessment of novel polysiloxane/bioactive glass films for biomedical applications," Ceramics International, vol. 42, no. 14, pp. 15442-15448, 2016.
[3]P. A. Atanasov et al., "Fs-laser processing of medical grade polydimethylsiloxane (PDMS)," Applied Surface Science, vol. 374, pp. 229-234, 2016.
[4]X. Li, Y. Ding, and K. Zhu, "Insights into charge transition within band structure of amorphous SiCNO ceramic," Ceramics International, vol. 45, no. 6, pp. 6853-6857, 2019.
[5]X. Li, Y. Cao, B. Ma, and Y. Wang, "Interface characteristics of polymer-derived amorphous SiCN ceramics investigated by impedance spectroscopy under direct current bias," Ceramics International, vol. 44, no. 2, pp. 2074-2076, 2018.
[6]M. T. Sebastian, J. Krupka, S. Arun, C. H. Kim, and H. T. Kim, "Polypropylene-high resistivity silicon composite for high frequency applications," Materials Letters, vol. 232, pp. 92-94, 2018.
[7]J. D. Torrey, R. K. Bordia, C. H. Henager, Y. Blum, Y. Shin, and W. D. Samuels, "Composite polymer derived ceramic system for oxidizing environments," Journal of Materials Science, vol. 41, no. 14, pp. 4617-4622, 2006.
[8]Z. Yu, H. Min, J. Zhan, and L. Yang, "Preparation and dielectric properties of polymer-derived SiCTi ceramics," Ceramics International, vol. 39, no. 4, pp. 3999-4007, 2013.
[9]X. Guo, Y. Feng, X. Lin, Y. Liu, H. Gong, and Y. Zhang, "The dielectric and microwave absorption properties of polymer-derived SiCN ceramics," Journal of the European Ceramic Society, vol. 38, no. 4, pp. 1327-1333, 2018.
[10]P. V. W. Sasikumar et al., "Polymer derived silicon oxycarbide ceramic monoliths: Microstructure development and associated materials properties," Ceramics International, vol. 44, no. 17, pp. 20961-20967, 2018.
[11]S. Abdollahi, A. Paryab, S. Rahmani, M. Akbari, and H. Sarpoolaky, "Synthesis of SiOC/Al2O3 nano/macro composites through PDC method; investigation of potentials as layers of a packed bed reactor membrane," Ceramics International, vol. 46, no. 11, pp. 19000-19007, 2020.
[12]M. Laskoski et al., "Synthesis and material properties of polymer-derived niobium carbide and niobium nitride nanocrystalline ceramics," Ceramics International, vol. 47, no. 1, pp. 1163-1168, 2021.
[13]Y. F. Lavanya Bharadwaj, Ligong Zhang, Dapeng Jiang, and Linan An, "," The American Ceramic Society, 2008.
[14]Y. Xue et al., "Alumina hollow sphere-based ceramics bonded with preceramic polymer-filler derived ceramics," Ceramics International, vol. 45, no. 2, pp. 2612-2620, 2019.
[15]K. Zhuang et al., "Realizing high ceramic yield and low shrinkage of in-situ formed lightweight 3D-SiC(rGO)px polymer-derived ceramics with excellent fracture toughness," Ceramics International, vol. 46, no. 17, pp. 27426-27436, 2020.
[16]S. Zhou, H. Mei, P. Chang, M. Lu, and L. Cheng, "Molecule editable 3D printed polymer-derived ceramics," Coordination Chemistry Reviews, vol. 422, 2020.
[17]Y. Fu, G. Xu, Z. Chen, C. liu, D. Wang, and C. Lao, "Multiple metals doped polymer-derived SiOC ceramics for 3D printing," Ceramics International, vol. 44, no. 10, pp. 11030-11038, 2018.
[18]Q. Ma and T. Xu, "High-temperature evolution behavior of polymer-derived SiAlOC ceramics under inert atmosphere," Journal of Alloys and Compounds, vol. 723, pp. 17-20, 2017.
[19]B. J. Basu, V. Dinesh Kumar, and C. Anandan, "Surface studies on superhydrophobic and oleophobic polydimethylsiloxane–silica nanocomposite coating system," Applied Surface Science, vol. 261, pp. 807-814, 2012/11/15/ 2012.
[20]M. T. S. Tavares et al., "TiO2/PDMS nanocomposites for use on self-cleaning surfaces," Surface and Coatings Technology, vol. 239, pp. 16-19, 2014/01/25/ 2014.
[21]W. Verbeek, "Production of shaped articles of homogeneous mixtures of silicon carbide and nitride," ed: Google Patents, 1974.
[22]S. Yajima, J. Hayashi, M. Omori, and K. J. N. Okamura, "Development of a silicon carbide fibre with high tensile strength," vol. 261, no. 5562, pp. 683-685, 1976.
[23]R. Zhao, G. Shao, Y. Cao, L. An, and C. Xu, "Temperature sensor made of polymer-derived ceramics for high-temperature applications," Sensors and Actuators A: Physical, vol. 219, pp. 58-64, 2014/11/01/ 2014.
[24]C. Vakifahmetoglu, T. Semerci, A. Gurlo, and G. D. Soraru, "Polymer derived ceramic aerogels," Current Opinion in Solid State and Materials Science, vol. 25, no. 4, p. 100936, 2021/08/01/ 2021.
[25]A. Zambotti et al., "Synthesis and thermal evolution of polysilazane-derived SiCN(O) aerogels with variable C content stable at 1600 °C," Ceramics International, vol. 47, no. 6, pp. 8035-8043, 2021/03/15/ 2021.
[26]G. Shao et al., "Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode," ACS Applied Materials & Interfaces, vol. 12, no. 41, pp. 46045-46056, 2020/10/14 2020.
[27]P. K. Chauhan, R. Parameshwaran, P. Kannan, R. Madhavaram, and R. Sujith, "Hydrogen storage in porous polymer derived SiliconOxycarbide ceramics: Outcomes and perspectives," Ceramics International, vol. 47, no. 2, pp. 2591-2599, 2021/01/15/ 2021.
[28]C.-H. Lin, Y.-H. Yeh, W.-C. Lin, and M.-C. Yang, "Novel silicone hydrogel based on PDMS and PEGMA for contact lens application," Colloids and Surfaces B: Biointerfaces, vol. 123, pp. 986-994, 2014/11/01/ 2014.
[29]D. Sola, C. Lavieja, A. Orera, and M. J. Clemente, "Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers," Optics and Lasers in Engineering, vol. 106, pp. 139-146, 2018/07/01/ 2018.
[30]M. Morales-Hurtado, X. Zeng, P. Gonzalez-Rodriguez, J. E. Ten Elshof, and E. van der Heide, "A new water absorbable mechanical Epidermal skin equivalent: The combination of hydrophobic PDMS and hydrophilic PVA hydrogel," Journal of the Mechanical Behavior of Biomedical Materials, vol. 46, pp. 305-317, 2015/06/01/ 2015.
[31]E. Kroke, Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel, "Silazane derived ceramics and related materials," Materials Science and Engineering: R: Reports, vol. 26, no. 4, pp. 97-199, 2000/04/03/ 2000.
[32]Y.-L. Li, E. Kroke, R. Riedel, C. Fasel, C. Gervais, and F. Babonneau, "Thermal cross-linking and pyrolytic conversion of poly(ureamethylvinyl)silazanes to silicon-based ceramics," Applied Organometallic Chemistry, vol. 15, no. 10, pp. 820-832, 2001.
[33]A. Lavedrine et al., "Pyrolysis of polyvinylsilazane precursors to silicon carbonitride," Journal of the European Ceramic Society, vol. 8, no. 4, pp. 221-227, 1991/01/01/ 1991.
[34]R. Chavez, E. Ionescu, C. Balan, C. Fasel, and R. Riedel, "Effect of ambient atmosphere on crosslinking of polysilazanes," Journal of Applied Polymer Science, vol. 119, no. 2, pp. 794-802, 2011.
[35]吳信哲, "聚矽氮烷與其聚合物轉變-矽基陶瓷對氮化鋁表面處理於矽橡膠複合材料之應用," 2014.
[36]楊詠鈞, "奈米氮化鋁粉體之合成製程開發," 2008.
[37]F. J.-M. Haussonne, "Review of the Synthesis Methods for AIN," Materials and Manufacturing Processes, vol. 10, no. 4, pp. 717-755, 1995/07/01 1995.
[38]L. M. Sheppard, "Aluminum nitride : a versatile but challenging material," Am. Ceram. Soc. Bull., vol. 69, pp. 1801-1803, 1990 1990.
[39]G. Selvaduray and L. Sheet, "Aluminium nitride: review of synthesis methods," Materials Science and Technology, vol. 9, no. 6, pp. 463-473, 2013.
[40]B. K. Mutuma, G. N. Shao, W. D. Kim, and H. T. Kim, "Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties," Journal of Colloid and Interface Science, vol. 442, pp. 1-7, 2015/03/15/ 2015.
[41]X. Chen and A. Selloni, "Introduction: Titanium Dioxide (TiO2) Nanomaterials," Chemical Reviews, vol. 114, no. 19, pp. 9281-9282, 2014/10/08 2014.
[42]C.-Y. Wu, Y.-L. Lee, Y.-S. Lo, C.-J. Lin, and C.-H. Wu, "Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol–gel spin coating," Applied Surface Science, vol. 280, pp. 737-744, 2013/09/01/ 2013.
[43]A. Ibhadon and P. Fitzpatrick, "Heterogeneous Photocatalysis: Recent Advances and Applications," Catalysts, vol. 3, no. 1, pp. 189-218, 2013.
[44]G. Sivalingam, K. Nagaveni, M. S. Hegde, and G. Madras, "Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2," Applied Catalysis B: Environmental, vol. 45, no. 1, pp. 23-38, 2003/09/25/ 2003.
[45]M. Landmann, E. Rauls, and W. G. Schmidt, "The electronic structure and optical response of rutile, anatase and brookite TiO2," Journal of Physics: Condensed Matter, vol. 24, no. 19, p. 195503, 2012/04/19 2012.
[46]J. Szczyrbowski, G. Bräuer, M. Ruske, J. Bartella, J. Schroeder, and A. Zmelty, "Some properties of TiO2 layers prepared by medium frequency reactive sputtering," Surface and Coatings Technology, vol. 112, no. 1, pp. 261-266, 1999/02/01/ 1999.
[47]S. Shukla, S. Seal, and R. Vanfleet, "Sol-Gel Synthesis and Phase Evolution Behavior of Sterically Stabilized Nanocrystalline Zirconia," Journal of Sol-Gel Science and Technology, vol. 27, no. 2, pp. 119-136, 2003/06/01 2003.
[48]E. H. Kisi and C. J. Howard, "Crystal Structures of Zirconia Phases and their Inter-Relation," Key Engineering Materials, vol. 153-154, pp. 1-36, 1998.
[49]A. Kaiser, M. Lobert, and R. Telle, "Thermal Stability of Zircon (ZrSiO4)," Journal of the European Ceramic Society, vol. 28, pp. 2199-2211, 12/31 2008.
[50]K. E. Wilkes, R. B. Dinwiddie, and R. S. Graves, Thermal Conductivity 23. Taylor & Francis, 1996.
[51]Y. Torisawa, T. Nishi, and J.-i. Minamikawa, "NaBH4 in N-methylpyrrolidone: a safe alternative for hydride displacement reaction," Bioorganic & Medicinal Chemistry Letters, vol. 11, no. 20, pp. 2787-2789, 2001/10/22/ 2001.
[52]汪建民, 材料分析. 中國材料科學學會發行, 2005.
[53]C. Whiston, X-RAY METHODS (SET PRICE OF 34 BOOKS). Wiley India Pvt. Limited, 2008.
[54]B. E. Warren, X-Ray Diffraction. Dover Publications, 2012.
[55]G. E. Bacon and D. T. Haar, X-Ray and Neutron Diffraction: The Commonwealth and International Library: Selected Readings in Physics. Elsevier Science, 2013.
[56]B. D. Cullity, Elements of X Ray Diffraction. Creative Media Partners, LLC, 2017.
[57]P. William F. Smith and J. Hashemi, Foundations of Materials Science and Engineering. McGraw-Hill Education, 2010.
[58]R. L. McCreery, Raman spectroscopy for chemical analysis. John Wiley & Sons, 2005.
[59]G. S. Bumbrah and R. M. Sharma, "Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse," Egyptian Journal of Forensic Sciences, vol. 6, no. 3, pp. 209-215, 2016/09/01/ 2016.
[60]M. B. Fenn, P. Xanthopoulos, G. Pyrgiotakis, S. R. Grobmyer, P. M. Pardalos, and L. L. J. A. i. O. T. Hench, "Raman spectroscopy for clinical oncology," vol. 2011, 2011.
[61]H. Hertz, "On the contact of elastic solids," Z. Reine Angew. Mathematik, vol. 92, pp. 156-171, 1881 1881.
[62]D. J. P. o. t. R. S. o. L. S. A. M. Tabor and P. Sciences, "A simple theory of static and dynamic hardness," vol. 192, pp. 247 - 274, 1948.
[63]I. N. J. I. j. o. e. s. Sneddon, "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile," vol. 3, no. 1, pp. 47-57, 1965.
[64]楊少卿, "矽奈米草陣列的表觀楊式係數量測及量測誤差分析," 2009.
[65]G. M. Pharr, W. C. Oliver, and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," Journal of Materials Research, vol. 7, no. 3, p. 61, 2011/01/31 2011.
[66]W. C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," Journal of Materials Research, vol. 19, no. 1, p. 3, 2004/01/01 2004.
[67]M. F. Doerner and W. D. J. J. o. M. r. Nix, "A method for interpreting the data from depth-sensing indentation instruments," vol. 1, no. 4, pp. 601-609, 1986.
[68]B. Bushan, Handbook of Micro/Nano Tribology. CRC Press, 2020.
[69]S. P. Baker, "Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime," Thin Solid Films, vol. 308-309, pp. 289-296, 1997/10/31/ 1997.
[70]柯賢文, 腐蝕及其防制. 全華科技圖書, 2012.
[71]D. J. Mills, "An introduction to electrochemical corrosion testing for practicing engineers and scientists: By W. Stephen Tait, published by PairODocs Publications, Racine, WI, USA," Progress in Organic Coatings, vol. 26, no. 1, pp. 73-74, 1995/08/01/ 1995.
[72]D. A. Jones, Principles and Prevention of Corrosion. Prentice Hall, 1996.
[73]M. Szala, M. Walczak, K. Pasierbiewicz, and M. J. P. Kamiński, "Cavitation erosion and wear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate," 2019.
[74]M. Bartosik, C. Rumeau, R. Hahn, Z. L. Zhang, and P. H. Mayrhofer, "Fracture toughness and structural evolution in the TiAlN system upon annealing," (in eng), Scientific reports, vol. 7, no. 1, pp. 16476-16476, 2017.
[75]Z. Wang, X. Li, X. Wang, S. Cai, P. Ke, and A. Wang, "Hard yet tough V-Al-C-N nanocomposite coatings: Microstructure, mechanical and tribological properties," Surface and Coatings Technology, vol. 304, pp. 553-559, 2016/10/25/ 2016.
[76]G. C. A. M. Janssen, R. Hoy, and J. D. Kamminga, "Hardness and modulus of CrNx coatings," MRS Online Proceedings Library, vol. 750, no. 1, p. 12, 2003/06/01 2003.
[77]A. Matthews and A. J. S. B. Leyland, Spring, "Materials related aspects of nanostructured tribological coatings," vol. 40, 2009.
[78]A. Leyland and A. Matthews, "On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour," Wear, vol. 246, no. 1, pp. 1-11, 2000/11/01/ 2000.
[79]J. Musil, F. Kunc, H. Zeman, and H. Poláková, "Relationships between hardness, Young''s modulus and elastic recovery in hard nanocomposite coatings," Surface and Coatings Technology, vol. 154, no. 2, pp. 304-313, 2002/05/15/ 2002.
[80]P. H. Mayrhofer, C. Mitterer, and J. Musil, "Structure–property relationships in single- and dual-phase nanocrystalline hard coatings," Surface and Coatings Technology, vol. 174-175, pp. 725-731, 2003/09/01/ 2003.
[81]X. Chen, Y. Du, and Y.-W. Chung, "Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings," Thin Solid Films, vol. 688, p. 137265, 2019/10/31/ 2019.
[82]S. M. Deambrosis, V. Zin, F. Montagner, C. Mortalò, M. Fabrizio, and E. Miorin, "Effect of temperature and deposition technology on the microstructure, chemistry and tribo-mechanical characteristics of Ti-B based thin films by magnetron sputtering," Surface and Coatings Technology, vol. 405, p. 126556, 2021/01/15/ 2021.
[83]G. Bolelli, D. Steduto, J. Kiilakoski, T. Varis, L. Lusvarghi, and P. Vuoristo, "Tribological properties of plasma sprayed Cr2O3, Cr2O3–TiO2, Cr2O3–Al2O3 and Cr2O3–ZrO2 coatings," Wear, vol. 480-481, p. 203931, 2021/09/15/ 2021.
[84]Y. Tang, H. Pan, and D. Y. Li, "Contribution of cold-work to the wear resistance of materials and its limitation – A study combining molecular dynamics modeling and experimental investigation," Wear, p. 203642, 2021/02/04/ 2021.
[85]Z. R. Liu, L. Chen, Y. Du, and S. Zhang, "Influence of Ru-addition on thermal decomposition and oxidation resistance of TiAlN coatings," Surface and Coatings Technology, vol. 401, p. 126234, 2020/11/15/ 2020.
[86]J. Blažek, J. Musil, P. Stupka, R. Čerstvý, and J. Houška, "Properties of nanocrystalline Al–Cu–O films reactively sputtered by DC pulse dual magnetron," Applied Surface Science, vol. 258, no. 5, pp. 1762-1767, 2011/12/15/ 2011.
[87]H. Li et al., "Effects of Hf addition on the structure, mechanical and tribological properties of CrN film," Surface and Coatings Technology, vol. 397, p. 126067, 2020/09/15/ 2020.
[88]L. Patnaik, S. Ranjan Maity, and S. Kumar, "DLC/CrN or AlCrN/CrN composite films: The better candidate in terms of anti-Wear performance and lesser ion release in hip implant," Materials Today: Proceedings, vol. 44, pp. 1214-1220, 2021/01/01/ 2021.
[89]A. Kumar, M. Khan, L. Fang, and I. M. C. Lo, "Visible-light-driven N-TiO2@SiO2@Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs," Journal of Hazardous Materials, vol. 370, pp. 108-116, 2019/05/15/ 2019.
[90]S. A. Yazid, Z. M. Rosli, and J. M. Juoi, "Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol–gel route," Journal of Materials Research and Technology, vol. 8, no. 1, pp. 1434-1439, 2019/01/01/ 2019.
[91]N. Yang and K. Lu, "Thermophysical property and electrical conductivity of titanium isopropoxide – polysiloxane derived ceramics," Journal of the European Ceramic Society, vol. 39, no. 14, pp. 4029-4037, 2019/11/01/ 2019.
[92]M. Daniyal and S. Akhtar, "Corrosion assessment and control techniques for reinforced concrete structures: a review," Journal of Building Pathology and Rehabilitation, vol. 5, no. 1, p. 1, 2019/11/18 2019.
[93]L. Zendejas Medina et al., "Enhancing corrosion resistance, hardness, and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon," Materials & Design, vol. 205, p. 109711, 2021/07/01/ 2021.
[94]C. Suryanarayana and A. Inoue, "Iron-based bulk metallic glasses," International Materials Reviews, vol. 58, no. 3, pp. 131-166, 2013/04/01 2013.
電子全文 電子全文(網際網路公開日期:20240811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊