跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/05 03:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥廷
研究生(外文):Yen-Ting Chen
論文名稱:高頻財務資料的網絡分析
論文名稱(外文):Network Analysis of High Frequency Financial Data
指導教授:郭美惠郭美惠引用關係
指導教授(外文):Mei-Hui Guo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:42
中文關鍵詞:動態光譜聚類重疊分群非負矩陣分解Mixed Graphical Model高頻財務
外文關鍵詞:Non-negative Matrix FactorizationHigh-frequency FinancialOverlap GroupingMixed Graphical ModelDynamic Spectral Clustering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了要了解金融市場的動態,尋找市場當中的潛在訊息是非常重要的,我們在這 從不同的面向切入來挖掘市場中的潛在資訊。本研究選取美國43 家公司的高頻財務資料,分別隸屬於 8 個不同的產業別。我們首先對每家公司的高頻財務資料生成變數,利用 Mixed Graphical Model 以及非負矩陣分解對變數進行重疊分群的探討。從中我們得到了數個影響力較大且可能帶有多種性質的變數。再者,我們討論公司之間的網絡關係,利用動態光譜聚類(dynamic covariate-assisted spectral clustering) 改善網絡原先的結構,並且尋找網絡中扮演重要角色的媒介,有趣的是,滿足這個條件的公司數量並不多。我們也使用兩種度量說明了在不同的交易日均有較優良的群體關係。此外,我們也觀察網絡結構變動的情形,並與真實事件做連結。
In order to understand the movement of the financial market, it is very important to look for the potential information in the market. Here, we explore the potential information in the market from different aspects. In this study, we select high-frequency financial data of 43 stock companies in the United States, which belong to 8 different industries. We first generate high frequency features for each stock company’s high frequency financial data, and use Mixed Graphical Model and non-negative matrix factorization to discuss overlap grouping for features. We have obtained several features that have great influence and may have various properties. Furthermore, we discuss the network relationship between stock companies, using dynamic covariate-assisted spectral clustering to improve the original structure of the network and find the medium that plays an important role in the network. Interestingly, there are not many stock companies that meet this condition. We also use
two metrics to show that there is a better group structure during the different trading days. In addition, we also observe the variant in the network structure and connect with real events.
論文審定書i
論文公開授權書ii
誌謝iii
摘要iv
Abstract v
1 Introduction 1
2 Methodology 2
2.1 High Frequency Feature Network Construction Method . . . . . . . . . . 2
2.1.1 Mixed Graphical Models . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Non-negative Matrix Factorization for Overlap Grouping . . . . . 4
2.2 Stock Company Network Construction Method . . . . . . . . . . . . . . 5
2.2.1 OGA+HDIC+Trim VAR estimation . . . . . . . . . . . . . . . . 5
2.2.2 Similarity Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Dynamic CASC . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Adapted DI-SIM. . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Measures of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Rand index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Data Description and Preprocessing 12
3.1 High Frequency Trading Data . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 High Frequency Features . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Empirical Studies 17
4.1 Network Analysis for High Frequency Features . . . . . . . . . . . . . . 17
4.2 Network Analysis for Stock Companies . . . . . . . . . . . . . . . . . . 21
4.2.1 Dynamic Network Construction . . . . . . . . . . . . . . . . . . 22
4.2.2 Clustering Analysis and Community Detection . . . . . . . . . . 24
4.2.3 The Interrelation of the Groups . . . . . . . . . . . . . . . . . . . 26
4.2.4 Bottleneck Communicator in the Director Network . . . . . . . . 28
5 Discussion and Conclusion 31
6 References 32
[1] Binkiewicz, N., Vogelstein, J. T. and K. Rohe (2017). Covariate-assisted Spectral Clustering. Biometrika, 104, 361377.
[2] Guo, L., Tao, Y. and Härdle, W.K. (2019). A Dynamic Network Perspective on Cryptocurrencies. arXiv preprint arXiv:1802.03708v4.
[3] Haslbeck, J. M. B. and Waldrop, L. J. (2019). mgm: Estimating Time-Varying Mixed Graphical Models in HighDimensional Data. arXiv:1510.06871v6.
[4] Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2:193–218.
[5] Ing, C. K. and Lai, T. L. (2011). A stepwise regression method and consistent model selection for high-dimensional sparse linear models. Statistica Sinica, 21, 14731513.
[6] Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 85778582.
[7] Rohe, K., Qin, T. and Yu, B. (2016). Coclustering directed graphs to discover asymmetries and directional communities. Proceedings of the National Academy of Sciences, 113(45), 1267912684.
[8] Wang, F., Li, T., Wang, X., Zhu, S. H. and Ding, C. (2011). Community discovery using nonnegative matrix factorization. Data Mining and Knowledge Discovery, pages 493–521.
[9] Wu, C. M. (2020). Dynamic Network and Clustering Analysis in Stock Market. Master thesis, National Sun Yat-Sen University.
[10] Yang, E., Baker, Y., Ravikumar, P., Allen, G. and Liu, Z. (2014). Mixed Graphical Models via Exponential Families. Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, PMLR, 33, 10421050.
電子全文 電子全文(網際網路公開日期:20260127)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top