|
[1] Binkiewicz, N., Vogelstein, J. T. and K. Rohe (2017). Covariate-assisted Spectral Clustering. Biometrika, 104, 361377. [2] Guo, L., Tao, Y. and Härdle, W.K. (2019). A Dynamic Network Perspective on Cryptocurrencies. arXiv preprint arXiv:1802.03708v4. [3] Haslbeck, J. M. B. and Waldrop, L. J. (2019). mgm: Estimating Time-Varying Mixed Graphical Models in HighDimensional Data. arXiv:1510.06871v6. [4] Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2:193–218. [5] Ing, C. K. and Lai, T. L. (2011). A stepwise regression method and consistent model selection for high-dimensional sparse linear models. Statistica Sinica, 21, 14731513. [6] Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 85778582. [7] Rohe, K., Qin, T. and Yu, B. (2016). Coclustering directed graphs to discover asymmetries and directional communities. Proceedings of the National Academy of Sciences, 113(45), 1267912684. [8] Wang, F., Li, T., Wang, X., Zhu, S. H. and Ding, C. (2011). Community discovery using nonnegative matrix factorization. Data Mining and Knowledge Discovery, pages 493–521. [9] Wu, C. M. (2020). Dynamic Network and Clustering Analysis in Stock Market. Master thesis, National Sun Yat-Sen University. [10] Yang, E., Baker, Y., Ravikumar, P., Allen, G. and Liu, Z. (2014). Mixed Graphical Models via Exponential Families. Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, PMLR, 33, 10421050.
|