|
References [1] Charles J. Alpert, Andrew B. Kahng, and So-Zen Yao. “Spectral partitioning with multiple eigenvectors”. In: Discrete Applied Mathematics 90.1-3 (1999), pp. 3–26. [2] Turker Biyikoglu, Josef Leydold, and Peter F. Stadler. Laplacian Eigenvectors of Graphs: Perron–Frobenius and Faber–Krahn Type Theorems. Springer Berlin Heidelberg, 2007. [3] Andries E. Brouwer and Willem H. Haemers. Spectra of graphs. Springer Science & Business Media, 2011. [4] Bobbi J. Broxson. The Kronecker product. 2006. [5] Meifeng Dai et al. “Generalized adjacency and Laplacian spectra of the weighted corona graphs”. In: Physica A: Statistical Mechanics and its Applications 528 (2019), p. 121285. [6] Robert Grone, Russell Merris, and Vaikalathur S. Sunder. “The Laplacian spectrum of a graph”. In: SIAM Journal on matrix analysis and applications 11.2 (1990), pp. 218–238. [7] Peter L. Hammer and Alexander K. Kelmans. “Laplacian spectra and spanning trees of threshold graphs”. In: Discrete Applied Mathematics 65.1-3 (1996), pp. 255– 273. [8] Steve Kirkland, Michael Neumann, and Bryan L. Shader. “Characteristic vertices of weighted trees via Perron values”. In: Linear and Multilinear Algebra 40.4 (1996), pp. 311–325. [9] Bojan Mohar. “Some applications of Laplace eigenvalues of graphs”. In: Graph symmetry. Springer, 1997, pp. 225–275. [10] Ulrike V. Luxburg. “A tutorial on spectral clustering”. In: Statistics and computing 17.4 (2007), pp. 395–416.
|