跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱俊陽
研究生(外文):Chun-Yang Chiu
論文名稱:不同階段石化產業別生成揮發性有機物之特徵及其健康影響潛勢
論文名稱(外文):Characteristics and Health Impact Potentials of Volatile Organic Compounds Generated by Petrochemical Industry at Different Stages
指導教授:陳威翔陳威翔引用關係
指導教授(外文):CHEN, WEI-HSIANG
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:127
中文關鍵詞:石化工業揮發性有機物物種分析中游產業健康風險評估
外文關鍵詞:Petrochemical industryVolatile organic compoundsSpecies analysisMid-stream industrial stageHealth risk assessment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石化工業於臺灣經濟發展上扮演其重要之角色。國際研究發現,經常暴露於致癌性揮發性有機物的環境中,罹癌機率有較高的趨勢。然而,石化工業產生的有害空氣污染物(HAPs)普遍存在於環境大氣中,勢必會對鄰近地區的居民造成健康上的威脅,亦為環保單位稽查管制的重點。
本研究於2019年12月至2020年9月間,選擇兩代表性石化工業園區分別代表石化上中游與中下游產業鏈做為調查對象,各園區依東西南北方向選擇四個採樣點,每季以一次24小時監測之二重複方式採集樣品。樣品以氣相層析質譜儀(GC/MS)進行分析,藉以探討不同產業鏈石化工業區VOCs之排放特性及四季濃度的變化,最後根據致癌風險,探討關鍵石化產業別。
監測結果顯示,在上中游石化工業區東、南、西、北各方位95 %致癌風險上限值方面,冬季期間分別為2.41×10-4、7.39×10-4、7.48×10-4、和1.42×10-4,春季期間分別為1.86×10-4、2.29×10-4、5.65×10-4、和1.53×10-4,夏季期間分別為8.14×10-4、3.42×10-4、5.64×10-3和1.68×10-4,秋季期間分別為1.91×10-4、1.61×10-4、1.61×10-3、和1.38×10-4。就各物種之致癌風險而言,冬季監測期間以西邊採樣點為最高,其中以Acrylonitrile致癌風險為最高,其次為Chloroform和Vinyl chloride,其風險介於3.44×10-4~1.10×10-4;春季監測期間以西邊採樣點為最高,其中以1,2-Dichloroethane致癌風險為最高,其次為Chloroform和Acrylonitrile,其風險介於1.94×10-4~1.01×10-4;夏季監測期間以西邊採樣點為最高,其中以Vinyl chloride致癌風險為最高,其次Acrylonitrile和Chloroform,其風險介於4.71×10-3~2.72×10-4;秋季監測期間以西邊採樣點為最高,其中以Vinyl chloride致癌風險為最高,其次1,2-Dichloroethane和Chloroform,其風險介1.06×10-3~1.55×10-4。致癌風險以西方監測站為最高,且夏季和秋季高於冬季和春季。
在中下游石化工業區東、南、西、北各方位95%致癌風險上限值方面,冬季期間分別為6.50×10-4、5.25×10-4、1.39×10-4、和2.56×10-4,春季期間分別為4.33×10-4、2.98×10-4、1.43×10-4、和1.43×10-4,夏季期間分別為2.03×10-3、3.10×10-4、2.51×10-4、和3.30×10-4,秋季期間分別為4.76×10-4、1.40×10-4、1.70×10-4、和1.38×10-4。就各物種之致癌風險而言,冬季監測期間以東邊採樣點為最高,其中以Acrylonitrile致癌風險為最高,其次為Chloroform和Vinyl chloride,其風險介於3.59×10-4~2.85×10-5;春季監測期間以東邊採樣點為最高,其中以Acrylonitrile致癌風險為最高,其次為1,3-Butadiene和Vinyl chloride,其風險介於2.00×10-4~2.85×10-5;夏季監測期間以東邊採樣點為最高,其中以1,3-Butadiene致癌風險為最高,其次Acrylonitrile和Benzene,其風險介於1.57×10-3~1.32×10-4;秋季監測期間以東邊採樣點為最高,其中以1,3-Butadiene致癌風險為最高,其次Acrylonitrile和Vinyl chloride,其風險介3.34×10-4~2.85×10-5。致癌風險以東方監測站為最高,且夏季和冬季高於秋季和春季。
以致癌風險角度而言,不論是上中游石化工業區或中下游石化工業區,石化中游產業皆為致癌影響潛勢主要貢獻產業,若要加強管制,可優先控制上中游石化工業區內中游產業之產品(如本研究中之含鹵烴化合物Vinyl chloride)和中下游石化工業區內中游產業之原料(如本研究中之烯烴化合物1,3-Butadiene),以達到降低整體石化工業區對人體健康影響程度之目標。
The petrochemical industry plays an important role in Taiwan’s economic development. International studies have found that exposure to an environment with high concentrations of volatile organic compounds results in increased cancer risk due to the carcinogenicity of those compounds. The emission of hazardous air pollutants (HAPs) in the petrochemical industry is a widespread issue of concern, notably concerning the potential health threats to nearby residents and employees.
The objective of this study was to selected two representative petrochemical industries that contained up-/mid-stream and mid-down-stream petrochemical industrial processes, respectively, and studied the concentrations and possible health risks. The sampling was conducted from December 2019 to September 2020. In each season duplicate sampling at four locations (north, south, west, and east sides) was carried out for 24 hrs. The samples were analyzed by using gas chromatography coupled with mass spectrometry (GC/MS). The species and concentrations of VOCs in samples collected at different times, locations, and more importantly, petrochemical industrial stages were analyzed, followed by the analyses of possible cancer risks.
The results showed that, for the up-/mid-stream petrochemical industrial stage, the 95th-percentile risks of the east, south, west, and north side in winter were 2.41×10-4, 7.39×10-4, 7.48×10-4, and 1.42×10-4, respectively. In spring, is the risks were 1.86×10-4, 2.29×10-4, 5.65×10-4, and 1.53×10-4, respectively. In summer, the risks were 8.14×10-4, 3.42×10-4, 5.64×10-3, and 1.68×10-4, respectively. During the fall months is 1.91×10-4, 1.61×10-4, 1.61×10-3, and 1.38×10-4, respectively. In terms of the carcinogenic risk of different species, the highest risk occurred at the west side in winter, given that the highest risk was posed by acrylonitrile, followed by chloroform and vinyl chloride. The risk was between 3.44×10-4 and 1.10×10-4. The highest risk also occurred at the west site in spring. The species with the highest risk was 1,2-dichloroethane, followed by chloroform and acrylonitrile. The risk was between 1.94×10-4 and 1.01×10-4. In summer, the highest risk was present on the west side, as the species with the highest risk was vinyl chloride, followed by acrylonitrile and chloroform. The risk was from 4.71×10-3 and 2.72×10-4. In fall, the highest risk occurred on the west side. The species with the highest risk was vinyl chloride, followed by 1,2-dichloroethane and chloroform. The risk was between 1.06×10-3 and 1.55×10-4. The risk was always the highest on the west side, as the risks were relatively higher in summer and fall.
For the mid-/dowm-stream petrochemical industrial stage, the 95th-percentile risks of the east, south, west, and in winter were 6.50×10-4, 5.25×10-4, 1.39×10-4, and 2.56×10-4, respectively. In spring, the risks were 4.33×10-4, 2.98×10-4, 1.43×10-4, and 1.43×10-4, respectively. In summer, the risks were 2.03×10-3, 3.10×10-4, 2.51×10-4, and 3.30×10-4, respectively. In fall, the risks were 4.76×10-4, 1.40×10-4, 1.70×10-4, and 1.38×10-4, respectively. In terms of the carcinogenic risk of different species, the highest risk occurred at the east side in winter, as the species with the highest risk was acrylonitrile, followed by chloroform and vinyl chloride. The risk was between 3.59×10-4 and 2.85×10-5. The highest risk occurred at the east site in spring. The species with the highest risk was acrylonitrile, followed by 1,3-butadiene and vinyl chloride. The risk was between 2.00×10-4 and 2.85×10-5. The highest risks occurred at the east site in summer. The species with the highest risk was 1,3-butadiene, followed by acrylonitrile and benzene. The risk was between 1.57×10-3 and 1.32×10-4. The highest risk occurred on the east side in fall. The species with the highest risk was 1,3-Butadiene, followed by acrylonitrile and vinyl chloride. The risk was between 3.34×10-4 and 2.85×10-5. The highest risk always occurred on the east side, as the risks were relatively higher in summer and winter.
Overall, from the perspective of the cancer risk, no matter the up-/mid-stream or mid-/down-stream petrochemical industrial stages, the mid-stream stage was the major contributor of the risks posed by VOC emission in the petrochemical industry selected in this study. The result of this study suggested that the mid-stream stage could be the focus of effective management of the health risks posed by a petrochemical industry, as the emissions of product chemicals of the up-/mid-stream stages such as vinyl chloride and the material chemicals of the mid-/down-stream stages such as 1,3-butadiene could be of concern.
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract vi
目錄 ix
圖目錄 xii
表目錄 xiv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 石化產業鏈之概觀 3
2.1.1 石化產業定義 3
2.1.2 石化業之結構 3
2.1.3 石化業對環境之影響 4
2.2 石化業中VOCs對人體健康之影響 6
2.3 健康風險評估 8
第三章 研究方法 10
3.1 研究架構 10
3.2 研究對象 12
3.3 VOC監測 14
3.3.1 採樣設備簡介 14
3.3.2 監測位置與時間 15
3.3.3 採樣方法 18
3.4 VOC分析 18
3.4.1 分析設備簡介 18
3.4.2 QA/QC 22
3.5健康風險評估 24
第四章 結果與討論 26
4.1 不同石化工業區所產生VOCs之危害鑑定及劑量效應評估 26
4.1.1 石化業所產生VOCs之危害鑑定 27
4.1.2 石化業所產生VOCs之劑量效應評估 36
4.1.3 石化產業所產生VOCs之檢出特徵分析 40
4.1.4不同石化工業區所產生VOCs物種之差異 45
4.2 石化業上中游工業區之VOCs監測結果 47
4.2.1 石化業上中游工業區之大氣氣象觀測資料 47
4.2.2 石化業上中游工業區之各季致癌性VOCs監測結果 48
4.2.3 解析石化業上中游工業區對鄰近區域之影響 55
4.3 石化業中下游工業區之VOCs監測結果 58
4.3.1 石化業中下游工業區之大氣氣象觀測資料 58
4.3.2 石化業中下游工業區之各季致癌性VOCs監測結果 59
4.3.3 解析石化業中下游工業區對鄰近區域之影響 66
4.3.4討論石化業上中游與中下游VOCs監測結果之差異 68
4.4 不同石化工業區所產生VOCs之致癌風險評估 75
4.4.1 石化業上中游工業區所產生VOCs之致癌風險評估 75
4.4.2 石化業中下游工業區所產生VOCs之致癌風險評估 85
4.4.3 討論石化業上中游與中下游VOCs致癌風險評估結果之差異 95
第五章 結論與建議 97
5.1 結論 97
5.2 建議 100
參考文獻 102
附件一、空氣中揮發性有機化合物採樣記錄表-不銹鋼採樣筒 105
附件二、標準品檢核表 106
附件三、空氣中揮發性有機物樣品分析偵測極限 110
附件四、採樣點位示意圖 112
Atkinson, R., Gas-Phase tropospheric chemistry of organic compounds: a review, Atmos. Environ., 24A, 1-41, 1990.
Carter W. P. L. et al., 1994, “Development of Oxone Reactivity Scales for Volatile Organic Compounds”, Air and Waste Management Association, Vol.44, pp:881-899
Cheng, W. L., Kuo, Y. C., Lin, P. L., Chang, K. H., Chen, Y. S., Lin, T. M., Huang, R., 2004, Revised air quality index derived from an entropy function, Atmospheric Environment, Volume 38, Issue 3, Pages 383-391.
Cotrim, H. P., Andrade, Z. A., Parana, R., Portugal, M., Lyra, L. G., and Freitas, L.A. R., 2008, Nonalcoholic steatohepatitis: a toxic liver disease in industrial workers, Liver International, Volume 19, Issue 4, Pages 263-355.
Hsu, C. Y., Chiang, H. C., Shie, R. H., Ku, C. H., Lin, T. Y., Chen, M. J., . . . Chen, Y. C. (2018). Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk. Environ Pollut, 240, 95-104. doi:10.1016/j.envpol.2018.04.076
Lan, C. H., Huang, Y. L., Ho, S. H., & Peng, C. Y. (2014). Volatile organic compound identification and characterization by PCA and mapping at a high-technology science park. Environ Pollut, 193, 156-164. doi:10.1016/j.envpol.2014.06.014
Son B, Breysse P, Yang W. 2003. Volatile organic compounds concentration in residential indoor and outdoor and its personal exposure in Korea. Environ Int 29:79–85.
Thepanondh, S., Varoonphan, J., Sarutichart, P., & Makkasap, T. (2010). Airborne Volatile Organic Compounds and Their Potential Health Impact on the Vicinity of Petrochemical Industrial Complex. Water, Air, & Soil Pollution, 214(1-4), 83-92. doi:10.1007/s11270-010-0406-0
Wadden, R.A., Source discrimention of short-term hydrocarbon samples measured aloft, Environ. Sci. & Technol., 20(5), 206-208, 1986.
Wei, W., Cheng, S., Li, G., Wang, G., & Wang, H. (2014). Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmospheric Environment, 89, 358-366. doi:10.1016/j.atmosenv.2014.01.038
Wichmann, F. A., Müller, A., Busi, L. E., Cianni, N., Massolo, L., and Schlink, U., Porta, A., and Sly, P. D., 2009, Increased asthma and respiratory symptoms in children exposed to petrochemical pollution, Journal of Allergy and Clinical Immunology, Volume 123, Issue 3, Pages 632-638.
Widiana, D. R., Tsai, J.-H., Wang, Y.-F., You, S.-J., & Yang, H.-H. (2017). Source Apportionment of Air Pollution and Characteristics of Volatile Organic Compounds in a Municipal Wastewater Treatment Plant, North Taiwan. Aerosol and Air Quality Research, 17(11), 2878-2890. doi:10.4209/aaqr.2017.09.0317
許逸群,2000,臭氧高濃度區揮發性有機物特徵與排放源關聯性研究,國立成功大學,博士論文。
羅卓卿,2001,油品儲運站鄰近空氣中揮發性有機污染物之特性研究,國立中山大學,碩士論文。
吳立言,2002,高雄地區固定源揮發性有機物指紋及光化反應潛勢之探討,國立中山大學,碩士論文。
田浚致,2004,利用空氣擴散模式模擬石化工業區致癌性污染物之濃度及推估居民之致癌風隩,國立成功大學,碩士論文。
財團法人中技社,2004,行業別固定污染源揮發性有機空氣污染物管制作業推動計畫,期末報告。
陳清涼,2005,空氣中VOC分析及其在石化廠的應用,國立雲林科技大學,博士論文。
廖琦峰、張立鵬、蔡俊鴻、張艮輝,2005,工業區有害空氣污染物排放與影響評估之研究,中華民國環境工程學會第三屆環境資訊研討會, 桃園縣,11 月 18、19 日。
廖琦峰,2005,工業區有害空氣污染物排放與影響評估之研究,國立成功大學,碩士論文。
楊峰杰,2005,以因子分析法探討高雄市大氣中揮發性有機物之類別與來源,國立中山大學,碩士論文。
葉寶華,2005,利用CAN筒採樣GC/MS分析檢測VOC方法之建立及應用,國立高雄第一科技大學,碩士論文。
陳佳伶,2007,石化工業區VOCs物種及排放量推估,輔英科技大學,碩士論文。
環保署,2011,國科會空污防制科研合作計畫。
行政院環境保護署,2011,健康風險評估技術規範。
陳冠甫,2011,石化工業區鄰近區域環境中有害空氣污染物之調查,輔英科技大學,碩士論文。
劉至中,2012,石化工業區空氣中揮發性有機物與含硫異味物質季節變化趨勢及污染源排放特徵之相關性分析,國立中山大學,碩士論文。
行政院環境保護署環署,2013,揮發性有機物空氣污染管制及排放標準,環署空字第 1020000990 號令修正第四十四條。
陳正彬,2013,石化工業區空氣中揮發性有機物模式模擬比較及健康風險評估,國立中山大學,碩士論文。
行政院環保署環境檢驗所,2014,NIEA A715.15B『空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法』。
廖思婷,2014,大高雄都會區揮發性有機化合物(VOCs) 空氣品質之時間趨勢及空間變異分析,國立高雄海洋科技大學,碩士論文。
方嘉靖,2016,某工業區之空氣品質分析及大氣中揮發性有機物時空特徵調查,國立中山大學,碩士論文。
經濟部工業局,2018,系統整合推動計畫辦公室。
陳冠甫,2020,石化工業揮發性有機化合物排放減量評估:主成分分析、健康風險評估與類神經網路預測,國立中山大學,博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊