跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 17:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林守原
研究生(外文):Shou-Yuan Lin
論文名稱:探討不同酸度之深共熔溶劑搭配電化學回收廢鋰電池中鈷金屬之研究
論文名稱(外文):Electrochemical recovery of cobalt from waste lithium-ion battery using different acidic deep eutectic solvent
指導教授:林淵淙
指導教授(外文):Lin, Yuan-Chung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:147
中文關鍵詞:深共熔溶劑廢鋰電池微波乙二酸
外文關鍵詞:Deep eutectic solventWaste lithium batterycobaltmicrowaveoxalic acid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
廢鋰離子電池中含一定量的貴重金屬如鈷、鋰等。從廢鋰電池中提取高附加價值之金屬,並選擇對環境無害之萃取技術為備受關注議題之一。目前回收技術以濕式冶金法為主,其高回收率及產品的純度佔其優勢,但在其冶煉過程中會產生大量廢酸及製程過於複雜,因此國際趨勢上漸漸以綠色離子液體取代。深共熔溶劑(Deep Eutectic Solvents, DES) 物化性質與離子液體相似,主要是以氫鍵供體(HBD)與氫鍵受體(HBA)組合而成,根據前人研究顯示,不同酸度的HBD會影響HBA與HBD之間的氫鍵,酸度愈大,氫鍵接收能力愈大。另外藉由微波輔助進行金屬溶出效率,微波系統可透過傳遞輻射能量使其內部樣品迅速加熱,與油浴加熱攪拌相比,能量移轉的效率更高,相對減少加熱時間與增加金屬回收萃取效率。
本研究以實驗設計法(Design of experiment, DOE)的因次分析進行參數設計,以變異數分析(Analysis of Variance, ANOVA)及主因子效應初步判定影響鈷溶出率之重要因子,再以反應曲面法求得最適操作條件。實驗結果顯示不同酸濃度之乙二酸(pka=1.38)、丙二酸(pka=2.83)、丁二酸(pka=4.16)結合氯化膽鹼製備深共熔溶劑,在最佳操作條件下,鈷溶出率依序為95.1%、84.6%及72.8%,推測在相同的HBA下,酸度愈高之HBD對於鋰電池內鈷離子選擇鍵結螯合較佳;以電流密度15 mA/cm2下進行480分鐘的電解結果顯示,鈷最終還原率為83.8%,可得純度97.8%之鈷金屬。
A certain amount of precious metals such as cobalt and lithium are contained in waste lithium ion batteries. Extracting high value-added metals from waste lithium batteries and choosing environmentally friendly extraction is one of the issues that has attracted. At present, the main recycling technology is hydrometallurgy, and its high recovery rate and product purity dominate. However, a large amount of waste acid is generated during the smelting process. Therefore, the international trend is gradually replacing it with green ionic liquids. Deep Eutectic Solvents (DES) have similar physical and chemical properties to ionic liquids. They are mainly composed of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA). According to previous studies, HBD with different acidity It will affect the hydrogen bond between HBA and HBD. The greater the acidity, the greater the hydrogen bond acceptance. In addition, with the microwave-assisted metal dissolution efficiency, the microwave system can rapidly heat the internal sample by transferring radiant energy. Compared with traditional heating and stirring, the energy transfer efficiency is higher and the metal recovery and extraction efficiency is increased.
In this study, the parameter design was carried out by the dimensional analysis of the Design of Experiment (DOE), and the analysis of variance (ANOVA) and the main factor effect were used to preliminarily determine the important factors affecting the dissolution rate of cobalt, and then the reaction surface Method to obtain the most suitable operating conditions. Experimental results show that different acid concentrations of oxalic acid (pka=1.38), malonic acid (pka=2.83), succinic acid (pka=4.16) combined with choline chloride to prepare deep eutectic solvents, under the best operating conditions , The dissolution rate of cobalt is 95.1%, 84.6% and 72.8% in sequence. It is speculated that under the same HBA, the HBD with higher acidity is better for the selective bonding and chelation of cobalt ion in the lithium battery; at a current density of 15 mA/cm2 The result of electrolysis for 480 minutes shows that the final reduction rate of cobalt is 83.8%, and cobalt metal with a purity of 97.8% can be obtained.
目錄
論文審定書 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiii
第一章 前言 1
1-1 研究緣起 1
第二章 文獻回顧 4
2-1. 鋰離子電池介紹 4
2-1-1. 鋰電池種類&構造 4
2-1-2. 鋰電池反應原理 7
2-1-3. 鋰電池對環境及人體影響 9
2-1-4. 金屬鈷、鋰、錳等金屬特性及應用 10
2-2. 鋰電池產業近況 13
2-2-1 鋰電池使用趨勢 13
2-2-2 鋰電池回收狀況 15
2-3. 國內外鋰電池回收處理技術 17
2-3-1. 國外常見鋰電池處理技術 17
2-4. 深共熔溶劑(Deep eutectic solvents, DES) 22
2-4-1. 深共熔溶劑原理與種類 22
2-4-2. 深共榮溶劑的物理性質 25
2-4-3. 深共熔溶劑應用及反應方式 26
2-5. 深共熔溶劑電化學行為 29
2-5-1 電化學原理 29
第三章 研究方法 32
3-1. 研究方法 32
3-2. 實驗步驟概述 34
3-3. 實驗設計 38
3-4. 實驗使用之檢測方法及儀器 42
3-4-1 土壤中重金屬檢測方法-微波輔助王水消化法(NIEA S321.65B) 42
3-4-2 金屬全量分析 42
3-4-3 感應耦合電漿發射光譜法 43
3-4-4 微波消化系統 44
3-4-5 分光光度計 45
3-4-6 鍛燒爐 46
3-4-7 粉碎機 47
3-4-8 恆溫振盪水槽 48
3-4-9 電源供應器 49
第四章 品質保證與品質控制 50
4-1. 廢鋰電池金屬全量及DES金屬溶出率分析 50
第五章 結果與討論 56
5-1. 鋰電池前處理分析與正極材料金屬全量分析 56
5-1-1. 鋰電池前處理分析 56
5-1-2. 正極材料金屬全量分析 57
5-2. 不同DES之酸度測試 58
5-3. 油浴加熱攪拌進行氯化膽鹼與丁二酸合成之DES溶出鈷金屬試驗 59
5-3-1. 以氯化膽鹼與丁二酸合成DES溶解鈷之24因次分析試驗 59
5-3-2. 以反應曲面法探討油浴加熱攪拌ChCl/BA鈷溶出率之最佳條件 65
5-4. 油浴加熱攪拌進行氯化膽鹼與乙二酸合成之DES溶出鈷金屬試驗 72
5-4-1. 以氯化膽鹼與乙二酸合成DES溶解鈷之24因次分析試驗 72
5-4-2. 以反應曲面法探討加熱攪拌ChCl/OA鈷溶出率之最佳條件 78
5-5. 微波輔助進行氯化膽鹼與丁二酸合成之DES溶出鈷金屬試驗 85
5-5-1. 以氯化膽鹼與丁二酸合成DES溶解鈷之24因次分析試驗 85
5-5-2. 以反應曲面法探討微波輔助ChCl/BA鈷溶出率之最佳條件 91
5-6. 微波輔助進行氯化膽鹼與乙二酸合成之DES溶出鈷金屬試驗 98
5-6-1. 以氯化膽鹼與乙二酸合成DES溶解鈷之24因次分析試驗 98
5-6-2. 以反應曲面探討微波消化ChCl/OA鈷溶出率之最佳條件 104
5-8. 電解回收金屬鈷 114
5-8-1. 不同電流密度對於DES電解回收金屬之效率 115
5-8-2. 電鍍鈷之雜質與純度分析 117
5-9. 成本效益分析 119
第六章 結論與建議 121
6-1. 結論 121
6-2. 建議 122
參考文獻 123
參考文獻
Abbott A.P., Boothby D., Capper G., Davies D.L., Rasheed R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. Journal of the American Chemical Society 2004;126,9142-9147.
Abbott A.P., Capper G., Davies D.L., McKenzie K.J., Obi S.U. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. Journal of Chemical & Engineering Data 2006;51,1280-1282.
Albler F.J., Bica K., F.Mark R.StJ., Holgersson S., Tyumentsev M.S. A comparison of two methods of recovering cobalt from a deepeutectic solvent: Implications for battery recycling. Journal of Cleaner Production 2017;167, 806-814.
Alhadid A., Mokrushina L., Minceva M. Design of Deep Eutectic Systems: A Simple Approach for Preselecting Eutectic Mixture Constituents. Molecules 2020;25, 1077.
Anggara S., Bevan F., Harris R.C., Hartley J.M., Frisch G., Jenkin G.R.T., Abbott A.P. Direct extraction of copper from copper sulfide minerals using deep eutectic solvents. Chemical Society Reviews 2019;21,6502-6512.
Badawy S. M., Nayl A. A., El Khashab R. A., El-Khateeb M. A. Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin. J. Mater Cycles Waste Manage 2014; 16, 739–746.
Bahadori L., Hashim M.A., Manan N.S.A., Mjalli F.S., AlNashef I.M., Brandon N.P., Chakrabarti M.H. Investigation of Ammonium- and Phosphonium-Based Deep Eutectic Solvents as Electrolytes for a Non-Aqueous All-Vanadium Redox Cell. Journal of The Electrochemical Society 2016;163,632-638.
Castro M.L., González J.A., Montes de Oca-Yemha M.G., Romo M.R., Arce-Estrada E.M., Pardavé M.P. Ni–Co alloy electrodeposition from the cathode powder of Ni-MH spent batteries leached with a deep eutectic solvent (reline). Journal of Alloys and Compounds 2020;830, 154650.
Chagnes A., Pospiech B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol 2013; 88, 1191–1199.
Chen L., Tang X., Zhang Y., Li L., Zeng Z., Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 2011; 108, 80–86.
Chen W., Liang J., Yang Z., Li G. A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond. Energy Procedia 2019;158,4363-4368.
Chen X., Chen Y., Zhou T., Liu D., Hu H., Fan S. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Management 2015; 38, 349–356.
Chen X., Guo C., Ma H., Li J., Zhou T., Cao L., Kang D. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Waste Management 2018;75,459–468.
Chen X., Xu B., Zhou T., Liu D., Hu H., Fan S. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Separation and Purification Technology 2015; 114, 197–205.
Dhiman S and Gupta B. Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. Journal of Cleaner Production 2019;225, 820-832.
Emadaldin H., Kamal G., Mehdi F., Ali D., A novel digestion method based on a choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples, Analytica Chimica Acta 2013, 61-67.
Freitas M. B. J. G., Celante V. G., Pietre M. K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. Journal of Power Sources 2010; 195, 3309–3315.
Hu H.C., Liu Y.H., Li B.L., Cui Z.S. Zhang Z.H. Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles. Royal Society Of Chemistry 2015;5,7720-7728.
Hao Q., Xutao H., Jingwen W., Hongye C., Lifang C., Zhiwen Q., Overview of acidic deep eutectic solvents on synthesis, properties and applications, Green Energy & Environment 2020, 8-21.
Jha M. K., Kumari A., Jha A. K., Kumar V., Hait J., Pandey B. D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag 2013;33, 1890-1897.
Juang L.W., Kollmeyer P.J., Anders A.E, Jahns T.M., Lorenza R.D., Gao D. Investigation of the influence of superimposed AC current on lithium-ion battery aging using statistical design of experiments. Journal of Energy Storage 2017;11,93–103.
Kalhor P., Ghandi K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019;24, 4012.
Kang J., Senanayake G., Sohn J., Shin S. M. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 2010; 100, 168–171.
Kazi T.G., Afridi H.I., Bhatti M., Akhtar A. A rapid ultrasonic energy assisted preconcentration method for simultaneous extraction of lead and cadmium in various cosmetic brands using deep eutectic solvent: A multivariate study. Ultrasonics - Sonochemistry 2019;51,40–48.
Li L., Ge J., Chen R., Wu F., Chen S., Zhang X. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 2010; 30, 2615-2621.
Li L., Ge J., Wu F., Chen R. J., Chen S., Wu B. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials 2010; 176, 288–293.
Li L., Lu J., Ren Y., Zhang X. X., Chen R. J., Wu F., Amine K. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J. Power Sources 2012; 218, 21–27.
Li L., Qu W., Zhang X. X., Lu J., Chen R. J., Wu F., Amine K. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources 2015; 282, 544-551.
Li L., Zhai L., Zhang X. X., Lu J., Chen R. J., Wu F., Amine K. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources 2014; 262, 380–385.
Li Y., Guoxi X., Xi Y. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials. Ceramics International 2015; 41, 11498–11503.
Lisbona D., Snee T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf. Environ 2011; 89, 434–442.
Li Li, Ersha Fan, Yibiao Guan, Xiaoxiao Zhang, Qing Xue, Lei Wei, Feng Wu, Renjie Chen, Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System, Acs Sustainable Chem 2017, 5224-5233.
Mahmoudi S., Eshraghi M.J., Yarmand B., Naderi N., Askary-Paykani M. Design of experiment approach to the optimization of diffusion process on nanoscopic silicon solar cell. Journal of Alloys and Compounds 2019;803, 231-239.
Manis K. J., Kumari A., Jha A. K., Kumari V., Hait J., Pandey B. D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Management 2013; 33, 1890-1897.
Mai K., Marco Tulio F., Keiko Kato, Ganguli Babu, Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries. Nature Energy, 4, 339–345, 2019.
Mbous Y.P., Hayyan M., Hayyan A., Wong W.F., Hashim M.A., Looi C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnology Advances 2017;35,105–134.
Meng Q., Zhang Y., Dong P. Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries. Journal of Cleaner Production 2018;180, 64-70.
Meshram P., Mishra A., Abhilash, Sahu R. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids e A review. Chemosphere 2020;242,125291.
Mengmeng Wang, Quanyin Tan, Lili Liu, Jinhui Li, A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries, Journal of Hazardous Materials 2019, 120846.
Mossali E., Picone N., Gentilini L., Rodrìguez O., P’erez J.M., Colledani M. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Journal of Environmental Management 2020;264, 110500.
Mustafa Soylak, Meltem Koksal, Deep eutectic solvent microextraction of lead(II), cobalt(II), nickel(II) and manganese(II) ions for the separation and preconcentration in some oil samples from Turkey prior to their microsampling flame atomic absorption spectrometric determination, Microchemical Journal 2019, 832-837.
Nayaka G. P., Manjanna J., Pai K. V., Vadavi R., Keny S. J., Tripathi V. S. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 2015; 151, 73–77.
Nayaka G.P., Manjanna J., Pai K.V., Vadavi R., Keny S.J., Tripathi V.S. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 2015;151, 73–77.
Nayl A.A. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336. Journal of Hazardous Materials 2010;173, 223–230.
Nayl A.A., Hamed M.M., Rizk S.E. Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries. Journal of the Taiwan Institute of Chemical Engineers 2015;55, 119-125.
Nerea Rodriguez Rodriguez, Lieven Machiels, Koen Binnemans, p Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Solubilizing Metal Oxides, Acs Sustainable 2019, 3940-3948.
Pranolo Y., Zhang W., Cheng C. Y. Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system. Hydrometallurgy 2010; 102, 37–42.
Provazi K., Campos B. A., Espinosa D. C. R., Tenorio J. A. S. Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques. Waste Manage 2011; 31, 59–64.
Pier Giorgio Schiavi, Pietro Altimari, Mario Branchi, Robertino Zanoni, Giulia Simonetti, Maria Assunta Navarra, Francesca Pagnanelli, Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent, Chemical Engineering Journal 2021, 129249.
Qin H., Hu X., Wang J., Cheng H., Chen L., Qi Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy & Environment 2020;5,8-21.
Rezvan T., Mehdi A., Meisam T. M. Mohammad G. M. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Separation and Purification Technology 2017;186, 318–325.
Richter J., Ruck M. Synthesis and Dissolution of Metal Oxides in Ionic Liquids and Deep Eutectic Solvents. Molecules 2020;25, 78.
Roda A., Matias A.A., Paiva A., Duarte A.R.C. Polymer Science and Engineering Using Deep Eutectic Solvents. Polymers 2019;11, 912.
Rabeeh Golmohammadzadeh, Fariborz Faraji , Fereshteh Rashchi, Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resources, Conservation & Recycling 2018, 418-435.
Shih Y.J., Chien S.K., Jhang S.R., Lin Y.C. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries. Journal of the Taiwan Institute of Chemical Engineers 2019;100,151–159.
Sun X., Hao H., Hartmann P., Liu Z., Zhao F. Supply risks of lithium-ion battery materials: An entire supply chain estimation. Materials Today Energy 2019;14,100347.
Swain B. Recovery and recycling of lithium: A review. Separation and Purification Technology 2017;172,388–403.
Swain B., Cho S.S., Lee G.H., Lee C.G., Uhm S. Extraction/Separation of Cobalt by Solvent Extraction: A Review. Appl. Chem. Eng 2015;26,631-639.
Swain S.S., Nayak B., Devi N., Das S., Swain N. Liquid–liquid extraction of cadmium(II) from sulfate medium using phosphonium and ammonium based ionic liquids diluted in kerosene. Hydrometallurgy 2016;162,63–70.
Tang W. J., Chen X. P., Zhou T., Duan H., Chen Y. B., Wang J. Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process. Hydrometallurgy 2014; 147, 210–216.
Tanong K., Coudert L., Mercier G., Blais J.F., Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process, Journal of Environmental Management 2016;181, 95-107.
Tomé L.I.N., Baião V., Silva W.D., Brett C.M.A. Deep eutectic solvents for the production and application of new materials. Applied Materials Today 2018;10,30–50.
Tran M.K., Rodrigues M.T.F., Kato K., Babu G., Ajayan P.M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nature Energy 2019;4,339-345.
Wang M., Tan Q., Liu L., Li J. A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries. Journal of Hazardous Materials 2019;380,120846.
Wilson A.M., Bailey P.J., Tasker P.A., Turkington J.R., Grant R.A., Love J.B. Solvent extraction: the coordination chemistry behind extractive metallurgy. Chemical Society Reviews 2014;43,123-134.
Wenjun Chen, Jingyun Jiang, Xue Lan, Xinhui Zhao, Hongyu Mou and Tiancheng Mu, A strategy for the dissolution and separation of rare earth oxides by novel Brønsted acidic deep eutectic solvents, The Royal Society of Chemistry 2019, 4748-4756.
Xu J. T., Dou S. X., Liu H. K., Dai L. M. Cathode materials for next generation lithium ion batteries. Nano Energy 2013; 2, 439–442.
Xiangping Chen, Chunxiu Guo, Hongrui Ma, Jiazhu Li, Tao Zhou, Ling Cao, Duozhi Kang, Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries, Waste Management 2018, 459-468.
Xiaozhou Cao, Lulu Xu, Yuanyuan Shi, Yaowu Wang, Xiangxin Xue, Electrochemical behavior and electrodeposition of cobalt from choline chloride-urea deep eutectic solvent, Electrochimica Acta 2019, 550-557.
Yingna Cui, Changping Li, Jingmei Yin, Shenmin Li, Yingping Jia, Ming Bao, Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride, Journal of Molecular Liquids 2017, 338-343.
Dharman Govindaraj, Periyakaruppan Pradeepkumar, Mariappan Rajan, Synthesis of morphology tuning multi mineral substituted apatite nanocrystals by novel natural deep eutectic solvents, Materials Discovery 2017, 11-15.
Zhe Jiang, Jiugang Yuan, Ping Wang, Xuerong Fan, Jin Xu, Qiang Wang, Lianbing Zhang, Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea, International Journal of Biological Macromolecules 2018, 423-430.
Lanfang Hu, Juan Luo, Dan Lu, Qiang Tang, Urea decomposition: Efficient synthesis of pyrroles using the deep eutectic solvent choline chloride/urea, Tetrahedron Letters 2018, 1698-1701.
SitiMachmudah, Sarah Duta Lestari, Widiyastuti, Wahyudiono, Hideki Kanda, Sugeng Winardi, Motonobu Goto, Subcritical water extraction enhancement by adding deep eutectic solvent for extracting xanthone from mangosteen pericarps, The Journal of Supercritical Fluids 2018, 615-624.
Luca Millia, Valentina Dall''Asta, Chiara Ferrara, Vittorio Berbenni, Eliana Quartarone, Filippo Maria Perna, Vito Capriati, Piercarlo Mustarelli, Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries, Solid State Ionics 2018, 44-48.
Fareeda Chemat, Hirra Anjum, Azmi Md Shariff, Murugesan Thanabalan, Thermal and physical properties of (Choline chloride+urea+l-arginine) deep eutectic solvents, Journal of Molecular Liquids 2016, 301-308.
Qinghua Zhang, Karine Vigier, Sebastien Royer, Francois Jérôme jérôme, Deep eutectic solvents: Syntheses, properties and applications, Chemical Society Reviews 2012, 7108-7146.
Yang Chen, Bin Jiang, Haozhen Dou, Haiming Zhang, Highly Efficient and Reversible Capture of Low Partial Pressure SO2 by Functional Deep Eutectic Solvents, Energy & Fuels 2018.
Muhammad Hakimin Shafie, Rizana Yusof, Chee-Yuen Gan, Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties, Journal of Molecular Liquids 2019, 288.
Kislik, Examples of application of solvent extraction techniques in chemical, radiochemical, biochemical, pharmaceutical, analytical separations, and wastewater treatment., classical and novel approaches 2012. 185–314.
Li Y, Li Q, Zhi L, Zhang M, Catalytic amination of octanol for synthesis of trioctylamine and catalyst characterization. Catal Lett 141, 2011, 1635–1642.
Tasker PA, Plieger PG, West LC, Metal complexes for hydrometallurgy and extraction. , Comprehensive coordination chemistry II,2003, 759–808.
Sayar NA, Filiz M, Sayar AA, Extraction of Zn(II) from aqueous hydrochloric acid solutions into Alamine 336–m-xylene systems. Modeling considerations to predict optimum operational conditions. Hydrometallurgy 2007, 86, 27–36.
行政院環境保護署環境檢驗所,「土壤中重金屬檢測方法-王水消化法」,NIEA S321.65B。
行政院環境保護署環境檢驗所,「感應耦合電漿質譜儀法」,NIEA M105.01B。
李清華、胡竣瑋、李連耀、鍾鈺堂、張郁奇,廢車用鋰電池之回收處理,中華民國環境工程學會,2018。
李季霖、楊明青,台灣鋰離子電池產業發展現況研究,國立暨南國際大學兩岸高階主管經營管理境外碩士在職學位學程碩士論文,2018。
彭振育、蔡德華,以鹼性萃取劑及支撐式液膜萃取分離鈀(Ⅱ)與鉑(Ⅱ)並以生命週期評估法探討環境影響係數之研究,國立臺北科技大學工程科技研究所博士論文,2014。
劉成成、卜路霞、趙爽、馬占林,氯化膽鹼-丙二酸離子液體的製備及性能研究,天津農學院學報,2016。
郭迺鋒、楊浩彥、林政勳、方文秀,鋰電池產業對台灣經濟發展影響的研究-投入產出方法的分析,2011。
曹君,鲁超,孫明,蘇二正,深共熔溶劑在分離提取中的應用,2016。
陳嘉隆,王佳琪,台灣鋰電池產業經營績效分析研究以資料包絡分析應用,2015。
蔡明瞭、林民禾、杜景順、劉文龍,以電沉積法由廢鋰離子電池中回收有價金屬,綠色科技工程與應用研討會(GTEA),2013。
張添晉,鋰離子電池高值化循環利用技術,中華民國環境工程學會,2018。
郭育菁,車用鉛蓄電池之回收與再利用研究,2017。
林偉凱,認識新一代電池材料:鋰金屬,金屬中心 MII產業分析師,2012。
周品均,以乙二醇為基底之深共熔溶劑應用於鈉離子電池電解液之研究,2015。
林偉凱、蔡潔娃,「金屬資源再生產業技術發展概況分析」,經濟部技術處產業技術知識服務(ITIS)計畫,2009。
李鵬,丁大連,曾祥麗,鈷的神經毒性及耳毒性,2015。
羅方辰,廢電動車電池及馬達稀有資源回收再利用之研究,2015。
胡竣瑋,廢鋰鐵電池中含鋰物質回收之研究,2019。
吳玉祥,吳俊霖,張晏銘,鋰離子二次電池負極材料表面改質之發展與改良,2004。
臣旦,鋰電池正極材料之研究,2018
電子全文 電子全文(網際網路公開日期:20260906)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top