跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃宗賢
研究生(外文):Tsung-Hsien Huang
論文名稱:以厭氧異營污泥啟動厭氧氨氧化程序以及整合單一槽體之部分氨氧化結合厭氧氨氧化程序:無機氮去除效能評估、生長形式影響、與微生物組成變遷
論文名稱(外文):Start-up of anaerobic ammonium oxidation (anammox) and hybrid single-stage partial nitritation coupled with anammox by using anaerobic heterotrophic seed sludge: Analyses of inorganic nitrogen removals, effects of the growth forms, and shifts of microbial community structures
指導教授:陳威翔陳威翔引用關係
指導教授(外文):CHEN, WEI-HSIANG
學位類別:博士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:168
中文關鍵詞:厭氧氨氧化部分氨氧化-厭氧氨氧化次世代生物定序間歇曝氣微量曝氣
外文關鍵詞:AnammoxPN-AnammoxNext-generation sequencingIntermittent aerationMicro-aeration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
廢污水處理程序中,氮污染物的移除至關重要,迄今為止,結合典型好氧硝化與無氧脫硝反應程序,仍是應用最為廣泛之生物脫氮技術(BNR),然而其處理過程中,除了消耗大量能源以及廢棄污泥產生以外,還貢獻相當程度之溫室氣體至大氣中,因此近年來污水處理技術之發展,多朝向以更節能之方式達到污水脫氮之目的。厭氧氨氧化(Anammox)反應被視為是一種具有發展潛力之生物脫氮技術,透過部分氨氧化反應(PN)之輔助,提供所需之電子接受者-亞硝酸鹽氮,在厭氧條件下將氨氮與亞硝酸鹽氮氧化成無害之氮氣與少量硝酸鹽氮,過程中除了部分氨氧化反應需要提供少量能源以外,幾乎不需要消耗能源,是一種低耗能之脫氮程序,若搭配典型厭氧處理程序,被認為是污水處理之能源利用最佳化程序。然而因成熟Anammox污泥取得不易,加上生長緩慢特性,使Anammox系統啟動期需耗費大量時間。本研究考量成熟之厭氧氨氧化污泥取得困難,加上欲結合典型厭氧程序與厭氧氨氧化程序之可行性,因此以生活污水處理廠之厭異營性污泥,作為本研究啟動厭氧氨氧化反應器之種子污泥,過程中再結合部分氨氧化反應,以間歇曝氣方式最終實現單一槽體之部分氨氧化-厭氧氨氧化反應(PN-Anammox)。此外本研究還利用次世代生物技術輔助,針對不同時期之污泥樣品進行微生物定序,以了解其微生物組成對污泥功能性之影響,與優勢族群變遷之過程。
本研究以厭氧異營污泥啟動Anammox之過程中發現,啟動初期,缺乏有機碳之合成污水,使污泥中部分異營細菌快速死亡,並釋出有機碳供脫硝菌進行短程脫硝,導致亞硝酸鹽氮在啟動初期快速降解,而氨氮在缺乏亞硝酸鹽氮時,緩慢降解是歸因於AOB 或S-Anammox所貢獻,此外亦發現,相較於頻繁批次進水,延長反應期接觸時間可能是本研究成功啟動厭氧氨氧化反應之關鍵,並有效使厭氧氨氧化反應發生時間提早約63天。厭氧氨氧化反應器經長時間操作下,觀察到兩種污泥型態生成,分別是附著與懸浮污泥,將其分離測試後發現,兩者僅氨氮去除效果存在顯著性差異(p<0.05),附著態污泥氨氮去除效率較佳,同時其污泥外觀也較為鮮紅,最佳NRR與NRE分別為0.07 kg/m3-d與92.8%,並依照無機氮濃度變化與氮氣產量分析,推估出本研究降解每mole之氨氮,需要消耗1.29 mole亞硝酸鹽氮,並產生之0.15 mole硝酸鹽氮與1.45 mole氮氣。將典型厭氧反應與Anammox反應串接後發現,經厭氧甲烷化反應之出流水,其ORP或是代謝產物可能對厭氧氨氧化反應造成抑制,導致脫氮效率不佳(< 20%),該抑制現象在實驗終止後,歷經9天後恢復至串聯之前之脫氮水準。
在部分氨氧化-厭氧氨氧化反應(PN-Anammox)啟動過程中,本研究透過提升初始溶氧、連續曝氣、以及間歇曝氣三種方式,將反應器之完全厭氧氨氧化反應,轉換為部分氨氧化-厭氧氨氧化反應,結果發現,除了間歇微量曝氣以外,提高初始溶氧與連續曝氣,在運行一段時間後,會發生硝酸鹽氮累積之現象,且當硝酸鹽氮累積發生後,需要更嚴格控制溶氧才可有效控制硝酸鹽產生。透過間歇曝氣之方式,可將反應器分為微氧與缺氧狀態,結果有效改善硝酸鹽氮累積,同時產量於理想範圍之間,最佳之NRR為87.2 mg/L-d,NRE為84.8%。
在污泥次世代定序結果(NGS)中,本研究在厭氧種子污泥中定序出Candidatus_Anammoximicrobium與Candidatus¬_Jettenia兩種Anammox細菌,但豐度不高,當厭氧氨氧化反應啟動完成,後以Candidatus¬_Brocadia(10.8%)與Denitratisoma(8.4%)為優勢菌屬,Denitratisoma的相對豐度增加,說明啟動過程中的脫硝反應存在,同時Candidatus¬_Brocadia的增長,也說明Anammox反應啟動成功。在不同污泥型態中,附著與懸浮污泥之優勢菌屬為Candidatus¬_Jettenia,分別為26%與14.5%,而Candidatus¬_Brocadia(1.08%)於懸浮污泥中豐度相對較高,在PN-Anammox系統中, Candidatus¬_Jettenia(11.3%)與Candidatus-_Brocadia(8.8%)為兩個主要Anammox菌屬,且間歇曝氣之豐度高於連續曝氣,此現象與AOB與NOB之狀況相反,AOB(2.5%)與NOB(0.48%)在連續曝氣之豐度大於間歇曝氣。
整體而言,本研究之結果提供了一種策略,有效縮短厭氧異營污泥發生厭氧氨氧化反應所需之時間,同時透過間歇曝氣之方式,有效改善PN-Anammox程序硝酸鹽氮累積之現象,並利用次世代生物定序技術,剖析不同階段污泥之優勢菌與微生物族群之組成,還嘗試結合厭氧甲烷化與Anammox進行有機物降解與脫氮,該結果提供了實際應用可能遭遇之困難與可能之瓶頸。

關鍵字:厭氧氨氧化、部分氨氧化、次世代生物定序、間歇曝氣、連續曝氣
Nitrogen pollution removal is important to the wastewater treatment process. So far, the traditional aerobic nitrification and anoxic denitrification processes are typical approaches for biological nitrogen removal and are widely used for wastewater treatment. However, high energy consumption, excess waste sludge production, and emission of greenhouse gas during the processes become the concerns during the process. Therefore, more novel process have been investigated and developed to achieve energy-saving nitrogenous wastewater treatment. The anaerobic ammonia oxidation (anammox) is one of the processes which is considered to have great potential for development combining with partial nitrification (PN). The PN process converts ammonium nitrogen to nitrite nitrogen under limited dissolved oxygen (DO) concentration and afterward the anammox used nitrite nitrogen as an electron-accepter to convert ammonia to nitrogen gas and little nitrate-nitrogen under anaerobic conditions. It is a low energy consumption BNR which almost requires no energy consumption except the PN process. If Anammox process combined with typical anaerobic treatment, it could be considered a fine energy management solution for sewage treatment. However, it is difficult to obtain mature anammox sludge and its slow growth makes the system start-up period lengthy. This study considers the difficulty of obtaining mature anammox sludge and the feasibility of combining the typical anaerobic process with anammox. Therefore, the anaerobic sludge from a domestic sewage treatment plant was used as the seed sludge for the start-up of anammox in this study, then the PN was combined in the process to achieve partial nitrification-anammox in a single tank through intermittent aeration. In addition, next-generation sequencing (NGS) was applied to assist in microbiological sequencing of sludge samples in different periods to understand the impact of their microbial composition on sludge functionality and the process of change.
In this study, an anammox start-up process was conducted by using heterotrophic sludge. During the initial stage, lacking organic carbon in synthetic wastewater caused heterotrophic bacteria to partially deceased, releasing organic carbon for denitrification. The following was that nitrite-nitrogen was rapidly degraded in the initial stage of the startup, while the slow degradation of ammonia nitrogen in the absence of nitrite nitrogen was attributed to the contribution of AOB or S-Anammox pathway. In addition, compared with frequent batch operations, prolonging the reaction time was found to be the key to the successful startup of the anammox reaction in this study, effectively making the anammox reaction occur about 63 days earlier. After the long-term operation of the anammox reactor, two types of sludge were observed, namely attached and suspended sludge. After separation and testing, it was found that only the ammonia-nitrogen removal effect was significantly different between the two (p< 0.05), the removal efficiency of attached sludge ammonia-nitrogen was better, and its sludge appearance was also brighter. The best nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) was 0.07 kg/m3-d and 92.8%, respectively, and the anaerobic ammonia oxidation in this study was estimated. According to the estimation of nitrogen compound reduction and production during operation, per mole NH¬¬4+ and 1.29 mole NO2= were covert to 1.45 mole nitrogen gas and 0.15 mole NO3- in this study. After connecting a typical anaerobic process and anammox process in series, it was found that the effluent from the anaerobic methane reaction may inhibit the anammox reaction due to ORP or metabolic product, resulting in poor nitrogen removal efficiency (<20%). However, the inhibition phenomenon recovered after 9 days after the termination of the experiment.
In the start-up of the PN-Anammox reactor, there were three strategies used for converting the anammox process to PN-Anammox, including the increase of the initial dissolved oxygen concentration, continuous aeration, and intermittent aeration. The results showed that besides the experiment using intermittent micro-aeration, rapid nitrate accumulation was observed in the experiments that increased the initial DO concentration and used continuous aeration. Once nitrate accumulation occurred in the reactor, more strict control of DO and nitrite concentration were required. The intermittent micro-aeration has contributed to the separation of the micro-oxygenated and anoxic areas, effectively reducing the nitrate-nitrogen accumulation. The best NRR and NRE of the PN-Anammox reactor by using intermittent micro-aeration was 87.2 mg/L-d and 84.8%, respectively,
In the results of the next-generation sequencing (NGS), two genera of anammox bacteria, Candidatus_Anammoximicrobium and Candidatus_Jettenia, were detected in anaerobic seed sludge, but with low relative abundance. After the startup of anammox, Candidatus_Brocadia (10.8%) and Denitratisoma (8.4%) were became the dominant genera in the SBR. The high relative abundance of Denitratisoma revealed the existence of denitrification in the start-up process. The increasing relative abundance of Candidatus_Brocadia demonstrated anammox process start-up successful. In different sludge clusters, the dominant genus of attached- (26.0%) and suspended-growth form (14.5%) was Candidatus_Jettenia. Candidatus_Brocadia (1.08%) had a relatively high abundance in suspended-growth form. In the PN-Anammox reactor, Candidatus_Jettenia (11.3%) and Candidatus_Brocadia (8.8%) were two dominant Anammox bacteria genus. Note that their relative abundance under intermittent aeration was higher than those under continuous aeration. On the contrary, the abundance of AOB (2.5%) and NOB (0.48%) under continuous aeration were higher than the cases under intermittent aeration.
Overall, the results of this study provide a strategy to shorten the time of the anammox reaction occurring from anaerobic sludge. In addition, the intermittent aeration was used to improve the accumulation of nitrate nitrogen in the PN-Anammox process. In other hand, this study also uses the next-generation sequencing technology to analyze the composition of the dominant bacteria and microbial populations in different stages of sludge. A combined anaerobic and anammox process were used to degrade the organic compounds and nitrogen pollutant. The result provides practical application possibilities and possible bottlenecks during system combination.
目錄
論文審定書 i
致謝 ii
中文摘要 iii
Abstract vi
目錄 x
圖目錄 xv
表目錄 xviii
第1章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
第2章 文獻回顧 7
2.1 典型厭氧生物處理 7
2.2 氮循環(Nitrogen cycle) 10
2.3 厭氧氨氧化(Anammox) 11
2.3.1 Anammox反應之發現 11
2.3.2 進行Anammox反應之微生物 12
2.3.3 Anammox之相關研究與概況 14
2.4 部分氨氧化反應 15
第3章 研究方法 17
3.1 研究架構 18
3.2 水質分析與方法 21
3.2.1 pH、溶氧、導電度、氧化還原電位 21
3.2.2 混合液懸浮固體物與混合液揮發性懸浮固體物之分析 21
3.2.3 無機氮分析與相關計算 22
3.2.4 溶解性有機碳 24
3.2.5 化學需氧量 25
3.3 厭氧氨氧化反應器之系統設置與啟動 25
3.3.1 污泥來源與前處理 25
3.3.2 厭氧氨氧化反應器之合成污水組成 26
3.3.3 厭氧氨氧化生物反應器形式與操作條件 27
3.3.4 氮氣產量計算 30
3.4 典型厭氧生物反應器之系設置與啟動 30
3.4.1 污泥來源與前處理 30
3.4.2 典型厭氧生物系統之合成污水組成 31
3.4.3 典型厭氧生物反應器形式與操作條件 31
3.4.4 串聯典型厭氧生物反應器與完全Anammox反應器 32
3.5 單一槽體部分氨氧化-厭氧氨氧化反應器之設置與啟動 33
3.5.1 污泥來源與前處理 33
3.5.2 單一槽體部分氨氧化-厭氧氨氧化系統之合成污水組成 33
3.5.3 反應器形式與曝氣條件 34
3.6 16s rRNA高通量定序技術 35
3.6.1 污泥中微生物之DNA萃取 36
3.6.2 聚合酶連鎖反應與基因定序 36
3.6.3 生物多樣性評估 38
3.7 主成分分析 38
第4章 以厭氧異營性污泥啟動厭氧氨氧化與微生物族群動態變遷:反應階段時間與污泥型態之影響 40
4.1 由厭氧異營性污泥啟動厭氧氨氧化程序 41
4.2 延長批次反應時間之影響 52
4.3 不同型態之污泥生長 57
4.4 微生物多樣性分析 62
4.4.1 Alpha生物多樣性指標 62
4.4.2 污泥中微生物之相對豐度變化 64
4.4.3 污泥中微生物組成之聚熱類分析 67
4.4.4 啟動程序與污泥型態之菌屬變遷 69
4.4.5 主成分分析 70
4.5 與其他Anammox反應啟動之比較 74
4.6 小結 77
第5章 典型厭氧系統出流水對Anammox程序之影響 78
5.1 典型厭氧系統之啟動與Anammox系統之脫氮效率 79
5.2 串聯典型厭氧系統與厭氧氨氧化系統之測試 81
5.2.1 連結厭氧反應器與Anammox反應器 81
5.2.2 Anammox系統之脫氮效能恢復 85
5.3 小結 86
第6章 以間歇曝氣啟動部分氨氧化-厭氧氨氧化反應:無機氮之影響與微生物族群之變遷 87
6.1 以微量曝氣由完全Anammox啟動PN-Anammox 87
6.2 間歇微量曝氣PN-Anammox之效能 96
6.3 曝氣方式對PN-Anammox之影響 103
6.4 微生物多樣性分析 105
6.4.1 Alpha生物多樣性指標 105
6.4.2 污泥中微生物之相對豐度變化 108
6.4.3 不同污泥中微生物組成之聚熱類圖 112
6.4.4 不同Anammox污泥之菌屬組成差異 114
6.4.5 主成分分析 115
6.5 小結 119
第7章 結論與建議 120
7.1 結論 120
7.2 建議 123
參考文獻 125
附錄(一)污泥樣品菌屬注釋結果 139
附錄(二)學位考試委員意見 145
Ali, M., Shaw, D.R., Saikaly, P.E., 2020. Application of an enrichment culture of the marine anammox bacterium “Ca. Scalindua sp. AMX11” for nitrogen removal under moderate salinity and in the presence of organic carbon. Water Research 170, 115345.
Anthonisen, A.C., Loehr, R.C., Prakasam, T.B., Srinath, E.G., 1976. Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48, 835-852.
Asteriadis, I., Azis, K., Ntougias, S., Melidis, P., 2021. A control strategy for an intermittently aerated and fed bioreactor to reduce aeration costs: A simulation study. Biochemical Engineering Journal 173, 10.
Bae, H., Choi, M., Lee, C., Chung, Y.C., Yoo, Y.J., Lee, S., 2015. Enrichment of ANAMMOX bacteria from conventional activated sludge entrapped in poly(vinyl alcohol)/sodium alginate gel. Chemical Engineering Journal 281, 531-540.
Bae, H., Chung, Y.C., Jung, J.Y., 2010a. Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process. Water Science and Technology 61, 2723-2732.
Bae, H., Park, K.S., Chung, Y.C., Jung, J.Y., 2010b. Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR. Process Biochemistry 45, 323-334.
Bagchi, S., Biswas, R., Nandy, T., 2010. Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR. Journal of Industrial Microbiology & Biotechnology 37, 943-952.
Bellenger, J., Darnajoux, R., Zhang, X., Kraepiel, A., 2020. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry 149, 53-73.
Benz, G.T., 2011. Bioreactor design for chemical engineers. Chem. Eng. Prog 107, 13.
Botchkova, E., Litti, Y.V., Novikov, A., Grouzdev, D., Bochkareva, E., Beskorovayny, A., Kuznetsov, B., Nozhevnikova, A., 2018. Description of “candidatus jettenia ecosi” sp. nov., a new species of anammox bacteria. Microbiology 87, 766-776.
Broda, E., 1977. Two kinds of lithotrophs missing in nature. Zeitschrift für allgemeine Mikrobiologie 17, 491-493.
Bryant, D.A., 2019. Phototrophy and Phototrophs. in: Schmidt, T.M. (Ed.). Encyclopedia of Microbiology (Fourth Edition). Academic Press, Oxford, pp. 527-537.
Camargo, J.A., Alonso, A., 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International 32, 831-849.
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108, 4516-4522.
Carvajal-Arroyo, J.M., Sun, W., Sierra-Alvarez, R., Field, J.A., 2013. Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere 91, 22-27.
Chamchoi, N., Nitisoravut, S., 2007. Anammox enrichment from different conventional sludges. Chemosphere 66, 2225-2232.
Chen, C., Song, Y.H., Yuan, Y.C., 2021a. The Operating Characteristics of Partial Nitrification by Controlling pH and Alkalinity. Water 13.
Chen, G., Li, J., Tabassum, S., Zhang, Z., 2015. Anaerobic ammonium oxidation (ANAMMOX) sludge immobilized by waterborne polyurethane and its nitrogen removal performance-a lab scale study. Rsc Advances 5, 25372-25381.
Chen, G.F., Lai, C.H., Chen, W.H., 2020. Principal Component Analysis and Mapping to Characterize the Emission of Volatile Organic Compounds in a Typical Petrochemical Industrial Park. Aerosol and Air Quality Research 20, 465-476.
Chen, H., Hu, H.Y., Chen, Q.Q., Shi, M.L., Jin, R.C., 2016. Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties. Bioresource Technology 211, 594-602.
Chen, H., Wang, H., Yu, G.L., Xiong, Y., Wu, H.P., Yang, M., Chen, R., Yang, E.Z., Jiang, C.B., Li, Y.Y., 2021b. Key factors governing the performance and microbial community of one-stage partial nitritation and anammox system with bio-carriers and airlift circulation. Bioresource Technology 324, 11.
Chen, H.H., Liu, S.T., Yang, F.L., Xue, Y., Wang, T., 2009. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology 100, 1548-1554.
Chen, R., Ji, J.Y., Chen, Y.J., Takemura, Y., Liu, Y., Kubota, K., Ma, H.Y., Li, Y.Y., 2019. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater. Water Research 155, 288-299.
Chen, W.H., Wang, Y.H., Hsu, T.H., 2021c. The competitive effect of different chlorination disinfection methods and additional inorganic nitrogen on nitrosamine formation from aromatic and heterocyclic amine-containing pharmaceuticals. Chemosphere 267.
Cheng, H.Y., Yan, Y.N., Yi, X., Wang, J., Xu, W.L., Nie, H.S., 2020. Initial Start-up Characteristics of Anaerobic Ammonium Oxidation in a UASB Reactor. Polish Journal of Environmental Studies 29, 2081-2089.
Cirne, D.G., Paloumet, X., Björnsson, L., Alves, M.M., Mattiasson, B., 2007. Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renewable Energy 32, 965-975.
Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Complete nitrification by Nitrospira bacteria. Nature 528, 504-509.
Dapena-Mora, A., Fernandez, I., Campos, J.L., Mosquera-Corral, A., Mendez, R., Jetten, M.S.M., 2007. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology 40, 859-865.
Dapena-Mora, A., Van Hulle, S.W.H., Campos, J.L., Mendez, R., Vanrolleghem, P.A., Jetten, M., 2004. Enrichment of Anammox biomass from municipal activated sludge: experimental and modelling results. Journal of Chemical Technology and Biotechnology 79, 1421-1428.
Daverey, A., Chei, P.C., Dutta, K., Lin, J.G., 2015. Statistical analysis to evaluate the effects of temperature and pH on anammox activity. International Biodeterioration & Biodegradation 102, 89-93.
deGraaf, A.A.V., deBruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G., 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-Uk 142, 2187-2196.
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L., 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology 72, 5069-5072.
Devol, A.H., 2003. Nitrogen cycle - Solution to a marine mystery. Nature 422, 575-576.
Ding, Z.J., Ventorino, V., Panico, A., Pepe, O., van Hullebusch, E.D., Pirozzi, F., Bourven, I., Guibaud, G., Esposito, G., 2017. Enrichment of Anammox Biomass from Different Seeding Sludge: Process Strategy and Microbial Diversity. Water Air and Soil Pollution 228, 13.
Dinopoulou, G., Rudd, T., Lester, J.N., 1988. Anaerobic acidogenesis of a complex wastewater: I. The influence of operational parameters on reactor performance. Biotechnology and Bioengineering 31, 958-968.
Duan, X., Zhou, J., Qiao, S., Yin, X., Tian, T., Xu, F., 2012. Start-up of the anammox process from the conventional activated sludge in a hybrid bioreactor. J. Environ. Sci. 24, 1083-1090.
Duan, Y., Liu, Y.S., Zhang, M.M., Li, Y.Y., Zhu, W., Hao, M.Y., Ma, S.Y., 2020. Start-up and operational performance of the partial nitrification process in a sequencing batch reactor (SBR) coupled with a micro-aeration system. Bioresource Technology 296.
Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996-998.
Fu, L.L., Chen, Y.Y., Li, S.Q., He, H., Mi, T.Z., Zhen, Y., Yu, Z.G., 2019. Shifts in the anammox bacterial community structure and abundance in sediments from the Changjiang Estuary and its adjacent area. Systematic and Applied Microbiology 42, 383-396.
Fuerst, J.A., 2005. Intracellular compartmentation in planctomycetes. Annual Review of Microbiology 59, 299-328.
Ganesh, R., Sousbie, P., Torrijos, M., Bernet, N., Ramanujam, R.A., 2015. Nitrification and denitrification characteristics in a sequencing batch reactor treating tannery wastewater. Clean Technologies and Environmental Policy 17, 735-745.
Gani, K.M., Awolusi, O.O., Khan, A.A., Kumari, S., Bux, F., 2020. Potential strategies for the mainstream application of anammox in treatment of anaerobic effluents-A review. Crit. Rev. Environ. Sci. Technol.
Gharoon, N., Pagilla, K.R., 2021. Critical review of effluent dissolved organic nitrogen removal by soil/aquifer-based treatment systems. Chemosphere 269.
Han, P., Huang, Y.T., Lin, J.G., Gu, J.D., 2013. A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Applied Microbiology and Biotechnology 97, 10521-10529.
Han, X., Peng, S., Zhang, L., Lu, P., Zhang, D., 2020. The Co-occurrence of DNRA and Anammox during the anaerobic degradation of benzene under denitrification. Chemosphere 247, 125968.
Huang, X.L., Gao, D.W., Peng, S., Tao, Y., 2014. Effects of ferrous and manganese ions on anammox process in sequencing batch biofilm reactors. J. Environ. Sci. 26, 1034-1039.
Hung, C.-M., Huang, C.-P., Chen, C.-W., Hsieh, S.-L., Dong, C.-D., 2021. Effects of biochar on catalysis treatment of 4-nonylphenol in estuarine sediment and associated microbial community structure. Environmental Pollution 268, 115673.
Ibrahim, M., Yusof, N., Yusoff, M.Z.M., Hassan, M.A., 2016. Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: a review. Desalination and Water Treatment 57, 13958-13978.
Illumina, 2013. 16S Metagenomic Sequencing Library Preparation.
Isaka, K., Date, Y., Sumino, T., Yoshie, S., Tsuneda, S., 2006. Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Applied Microbiology and Biotechnology 70, 47-52.
Jensen, M.M., Lam, P., Revsbech, N.P., Nagel, B., Gaye, B., Jetten, M.S.M., Kuypers, M.M.M., 2011. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. The ISME Journal 5, 1660-1670.
Jetten, M.S., Strous, M., Van de Pas-Schoonen, K.T., Schalk, J., van Dongen, U.G., van de Graaf, A.A., Logemann, S., Muyzer, G., van Loosdrecht, M.C., Kuenen, J.G., 1998. The anaerobic oxidation of ammonium. FEMS microbiology reviews 22, 421-437.
Jewell, W.J., 1987. Anaerobic sewage treatment. Part 6. Environmental science & technology 21, 14-21.
Jin, R.-C., Yang, G.-F., Yu, J.-J., Zheng, P., 2012. The inhibition of the Anammox process: A review. Chemical Engineering Journal 197, 67-79.
Jin, R.-C., Yang, G.-F., Zhang, Q.-Q., Ma, C., Yu, J.-J., Xing, B.-S., 2013. The effect of sulfide inhibition on the ANAMMOX process. Water Research 47, 1459-1469.
Jin, R.C., Zheng, P., Hu, A.H., Mahmood, Q., Hu, B.L., Jilani, G., 2008. Performance comparison of two anammox reactors: SBR and UBF. Chemical Engineering Journal 138, 224-230.
Joss, A., Salzgeber, D., Eugster, J., König, R., Rottermann, K., Burger, S., Fabijan, P., Leumann, S., Mohn, J., Siegrist, H., 2009. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environmental Science & Technology 43, 5301-5306.
Kang, D., Lin, Q.J., Xu, D.D., Hu, Q.Y., Li, Y.Y., Ding, A.Q., Zhang, M., Zheng, P., 2018. Color characterization of anammox granular sludge: Chromogenic substance, microbial succession and state indication. Science of the Total Environment 642, 1320-1327.
Kangwannarakul, N., Wantawin, C., Noophan, P., 2018. Anammox bacteria with attached-growth media for nitrogen removal in wastewater. Clean Technologies and Environmental Policy 20, 219-226.
Kartal, B., Kuenen, J.G., van Loosdrecht, M.C.M., 2010. Sewage Treatment with Anammox. Science 328, 702-703.
Kocamemi, B.A., Dityapak, D., Semerci, N., Keklik, E., Akarsubasi, A., Kumru, M., Kurt, H., 2018. Anammox start-up strategies: the use of local mixed activated sludge seed versus Anammox seed. Water Science and Technology 78, 1901-1915.
Konstantinidis, K.T., Rosselló-Móra, R., Amann, R., 2017. Uncultivated microbes in need of their own taxonomy. The ISME Journal 11, 2399-2406.
Kuever, J., Rainey, F.A., Widdel, F., Desulfococcus. Bergey''s Manual of Systematics of Archaea and Bacteria, pp. 1-5.
Kumar, A., Thanki, A., Padhiyar, H., Singh, N.K., Pandey, S., Yadav, M., Yu, Z.-G., 2021. Greenhouse gases emission control in WWTS via potential operational strategies: A critical review. Chemosphere 273, 129694.
Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16, 263-276.
Lackner, S., Gilbert, E.M., Vlaeminck, S.E., Joss, A., Horn, H., van Loosdrecht, M.C., 2014. Full-scale partial nitritation/anammox experiences–an application survey. Water research 55, 292-303.
Lackner, S., Horn, H., 2012. Evaluating operation strategies and process stability of a single stage nitritation-anammox SBR by use of the oxidation-reduction potential (ORP). Bioresource Technology 107, 70-77.
Lawson, C.E., Wu, S., Bhattacharjee, A.S., Hamilton, J.J., McMahon, K.D., Goel, R., Noguera, D.R., 2017. Metabolic network analysis reveals microbial community interactions in anammox granules. Nature Communications 8.
Li, H.S., Zhou, S.Q., Ma, W.H., Huang, G.T., Xu, B., 2012. Fast start-up of ANAMMOX reactor: Operational strategy and some characteristics as indicators of reactor performance. Desalination 286, 436-441.
Li, X.-R., Du, B., Fu, H.-X., Wang, R.-F., Shi, J.-H., Wang, Y., Jetten, M.S.M., Quan, Z.-X., 2009. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community. Systematic and Applied Microbiology 32, 278-289.
Liao, D.X., Li, X.M., Yang, Q., Zhao, Z.H., Zeng, G.M., 2007. Enrichment and granulation of Anammox biomass started up with methanogenic granular sludge. World Journal of Microbiology & Biotechnology 23, 1015-1020.
Liu, C.C., Chen, W.H., Yuan, C.S., Lin, C.S., 2014. Multivariate analysis of effects of diurnal temperature and seasonal humidity variations by tropical savanna climate on the emissions of anthropogenic volatile organic compounds. Science of the Total Environment 470, 311-323.
Liu, X., Wang, D., Zhang, W., 2020. Rapid start-up of anammox reactor using granular sludge supported on activated carbon. Global Nest Journal 22, 289-296.
Lopez, H., Puig, S., Ganigue, R., Ruscalleda, M., Balaguer, M.D., Colprim, J., 2008. Start-up and enrichment of a granular anammox SBR to treat high nitrogen load wastewaters. Journal of Chemical Technology and Biotechnology 83, 233-241.
Lotti, T., Kleerebezem, R., Lubello, C., van Loosdrecht, M.C.M., 2014. Physiological and kinetic characterization of a suspended cell anammox culture. Water Research 60, 1-14.
Lotti, T., van der Star, W.R.L., Kleerebezem, R., Lubello, C., van Loosdrecht, M.C.M., 2012. The effect of nitrite inhibition on the anammox process. Water Research 46, 2559-2569.
Lu, H.F., Zheng, P., Ji, Q.X., Zhang, H.T., Ji, J.Y., Wang, L., Ding, S., Chen, T.T., Zhang, J.Q., Tang, C.J., Chen, J.W., 2012. The structure, density and settlability of anammox granular sludge in high-rate reactors. Bioresource Technology 123, 312-317.
Ma, X., Jin, Y., Zhang, W., 2019. Effects of Ca2+ Concentration on Anaerobic Ammonium Oxidation Reactor Microbial Community Structure. Water 11, 1341.
Ma, Y., Peng, Y., Wang, S., Yuan, Z., Wang, X., 2009. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. Water Research 43, 563-572.
Martienssen, M., Schöps, R., 1999. Population dynamics of denitrifying bacteria in a model biocommunity. Water Research 33, 639-646.
Martin-Pozas, T., Sanchez-Moral, S., Cuezva, S., Jurado, V., Saiz-Jimenez, C., Perez-Lopez, R., Carrey, R., Otero, N., Giesemann, A., Well, R., Calaforra, J.M., Fernandez-Cortes, A., 2020. Biologically mediated release of endogenous N2O and NO2 gases in a hydrothermal, hypoxic subterranean environment. Science of the Total Environment 747.
Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., Suzuki, A., 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany 105, 1141-1157.
McCarty, P.L., 2018. What is the Best Biological Process for Nitrogen Removal: When and Why? Environmental Science & Technology 52, 3835-3841.
McCarty, P.L., Smith, D.P., 1986. Anaerobic wastewater treatment. Environmental Science & Technology 20, 1200-1206.
Meegoda, J.N., Li, B., Patel, K., Wang, L.B., 2018. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 15, 2224.
Meng, H., Yang, Y.C., Lin, J.G., Denecke, M., Gu, J.D., 2017. Occurrence of anammox bacteria in a traditional full-scale wastewater treatment plant and successful inoculation for new establishment. International Biodeterioration & Biodegradation 120, 224-231.
Miao, Y.Y., Zhang, L., Yang, Y.D., Peng, Y.Z., Li, B.K., Wang, S.Y., Zhang, Q., 2016. Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation. Bioresource Technology 218, 771-779.
Mulder, A., Vandegraaf, A.A., Robertson, L.A., Kuenen, J.G., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. Fems Microbiology Ecology 16, 177-183.
Nathia-Neves, G., Berni, M., Dragone, G., Mussatto, S.I., Forster-Carneiro, T., 2018. Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology 15, 2033-2046.
Nikolaev, Y.A., Kozlov, M.N., Kevbrina, M.V., Dorofeev, A.G., Pimenov, N.V., Kallistova, A.Y., Grachev, V.A., Kazakova, E.A., Zharkov, A.V., Kuznetsov, B.B., Patutina, E.O., Bumazhkin, B.K., 2015. Candidatus “Jettenia moscovienalis” sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation. Microbiology 84, 256-262.
Pan, X., Lin, L., Huang, H.W., Chen, J., 2020. Differentiation of Nitrogen and Microbial Community in the Sediments from Lake Erhai, Yunnan-Kweichow Plateau, China. Geomicrobiology Journal 37, 818-825.
Paredes, D., Kuschk, P., Mbwette, T.S.A., Stange, F., Müller, R.A., Köser, H., 2007. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment – A Review. Engineering in Life Sciences 7, 13-25.
Park, M., Kim, J.M., Lee, T., Oh, Y.K., Nguyen, V., Cho, S., 2021. Correlation of microbial community with salinity and nitrogen removal in an anammox-based denitrification system. Chemosphere 263.
Pavlostathis, S.G., Giraldo-Gomez, E., 1991. Kinetics of Anaerobic Treatment. Water Science and Technology 24, 35-59.
Plotnikov, A.O., Balkin, A.S., Gogoleva, N.E., Lanzoni, O., Khlopko, Y.A., Cherkasov, S.V., Potekhin, A.A., 2019. High-Throughput Sequencing of the 16S rRNA Gene as a Survey to Analyze the Microbiomes of Free-Living Ciliates Paramecium. Microbial Ecology 78, 286-298.
Puyol, D., Carvajal-Arroyo, J.M., Garcia, B., Sierra-Alvarez, R., Field, J.A., 2013. Kinetic characterization of Brocadia spp.-dominated anammox cultures. Bioresource Technology 139, 94-100.
QIAGEN, 2017. QIAamp PowerFecal DNA Kit Handbook.
Qin, Y., Wei, Q., Zhang, Y., Li, H., Jiang, Y., Zheng, J., 2021. Nitrogen removal from ammonium- and sulfate-rich wastewater in an upflow anaerobic sludge bed reactor: performance and microbial community structure. Ecotoxicology 30, 1719-1730.
Qiu, S.K., Hu, Y.S., Liu, R., Sheng, X.L., Chen, L.J., Wu, G.X., Hu, H.Y., Zhan, X.M., 2019. Start up of partial nitritation-anammox process using intermittently aerated sequencing batch reactor: Performance and microbial community dynamics. Science of the Total Environment 647, 1188-1198.
Qiu, Y.-L., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y., Sekiguchi, Y., 2008. Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the First Cultured Anaerobe Capable of Degrading Phenol to Acetate in Obligate Syntrophic Associations with a Hydrogenotrophic Methanogen. Applied and Environmental Microbiology 74, 2051-2058.
Rajta, A., Bhatia, R., Setia, H., Pathania, P., 2020. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. Journal of Applied Microbiology 128, 1261-1278.
Rasool, K., Ahn, D.H., Lee, D.S., 2014. Simultaneous organic carbon and nitrogen removal in an anoxic-oxic activated sludge system under various operating conditions. Bioresource Technology 162, 373-378.
Rittmann, B.E., McCarty, P.L., 2001. Environmental biotechnology: principles and applications. McGraw-Hill International Enterprises, LLC. , Taiwan.
Rubio-Rincon, F.J., Lopez-Vazquez, C.M., Welles, L., van Loosdrecht, M.C.M., Brdjanovic, D., 2017. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. Water Research 120, 156-164.
Scholz, M., 2016. Wetlands for Water Pollution Control (Second Edition). Elsevier.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12, R60.
Shanyun Wang, Chunlei Liu, Xiaoxia Wang, Dongdan Yuan, Zhu, G., 2020. Dissimilatory nitrate reduction to ammonium (DNRA) in traditional municipal wastewater treatment plants in China: Widespread but low contribution. Water Research 179.
Sinha, B., Annachhatre, A.P., 2007. Partial nitrification—operational parameters and microorganisms involved. Reviews in Environmental Science and Bio/Technology 6, 285-313.
Smith, K.S., Ingram-Smith, C., 2007. Methanosaeta, the forgotten methanogen? Trends in Microbiology 15, 150-155.
Smith, R., 1978. Total energy consumption for municipal wastewater treatment. U.S. Environmental Protection Agency, United State.
Stronach, S.M., Rudd, T., Lester, J.N., 2012. Anaerobic digestion processes in industrial wastewater treatment. Springer Science & Business Media.
Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., Jetten, M.S.M., 1999. Missing lithotroph identified as new planctomycete. Nature 400, 446-449.
Strous, M., Heijnen, J.J., Kuenen, J.G., Jetten, M.S.M., 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology 50, 589-596.
Strous, M., VanGerven, E., Zheng, P., Kuenen, J.G., Jetten, M.S.M., 1997. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Research 31, 1955-1962.
Suneethi, S., Joseph, K., 2011. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR). Bioresource Technology 102, 8860-8867.
Tang, C.J., Zheng, P., Chai, L.Y., Min, X.B., 2013. Characterization and quantification of anammox start-up in UASB reactors seeded with conventional activated sludge. International Biodeterioration & Biodegradation 82, 141-148.
Tang, C.J., Zheng, P., Mahmood, Q., Chen, J.W., 2009. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. Journal of Industrial Microbiology & Biotechnology 36, 1093-1100.
Tang, C.J., Zheng, P., Wang, C.H., Mahmood, Q., Zhang, J.Q., Chen, X.G., Zhang, L., Chen, J.W., 2011. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Research 45, 135-144.
Third, K.A., Paxman, J., Schmid, M., Strous, M., Jetten, M.S.M., Cord-Ruwisch, R., 2005. Treatment of nitrogen-rich wastewater using partial nitrification and Anammox in the CANON process. Water Science and Technology 52, 47-54.
Tian, G., Xi, J., Yeung, M., Ren, G., 2020a. Characteristics and mechanisms of H2S production in anaerobic digestion of food waste. Science of The Total Environment 724, 137977.
Tian, X., Schopf, A., Amaral-Stewart, B., Christensson, M., Morgan-Sagastume, F., Vincent, S., Delatolla, R., 2020b. Anammox attachment and biofilm development on surface-modified carriers with planktonic- and biofilm-based inoculation. Bioresource Technology 317.
Tomar, S., Gupta, S.K., Mishra, B.K., 2016. Performance evaluation of the anammox hybrid reactor seeded with mixed inoculum sludge. Environmental Technology 37, 1065-1076.
Tomaszewski, M., Cema, G., Ziembinska-Buczynska, A., 2019. Short-term effects of reduced graphene oxide on the anammox biomass activity at low temperatures. Science of the Total Environment 646, 206-211.
Tomaszewski, M., Cema, G., Ziembińska-Buczyńska, A., 2017. Influence of temperature and pH on the anammox process: a review and meta-analysis. Chemosphere 182, 203-214.
Tsushima, I., Ogasawara, Y., Kindaichi, T., Satoh, H., Okabe, S., 2007. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Research 41, 1623-1634.
Urban, I., Weichgrebe, D., Rosenwinkel, K.H., 2007. Anaerobic treatment of municipal wastewater using the UASB-technology. Water Science and Technology 56, 37-44.
Van der Star, W.R., Abma, W.R., Blommers, D., Mulder, J.-W., Tokutomi, T., Strous, M., Picioreanu, C., van Loosdrecht, M.C., 2007. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water research 41, 4149-4163.
van Dongen, U., Jetten, M.S.M., van Loosdrecht, M.C.M., 2001. The SHARON((R))-Anammox((R)) process for treatment of ammonium rich wastewater. Water Science and Technology 44, 153-160.
Van Hulle, S.W.H., Vandeweyer, H.J.P., Meesschaert, B.D., Vanrolleghem, P.A., Dejans, P., Dumoulin, A., 2010. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chemical Engineering Journal 162, 1-20.
Van Lier, J.B., Mahmoud, N., Zeeman, G., 2008. Anaerobic wastewater treatment. IWA Publishing, London, UK, pp. 415-456.
van Niftrik, L., Jetten, M.S.M., 2012. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties. Microbiology and Molecular Biology Reviews 76, 585-596.
van Niftrik, L.A., Fuerst, J.A., Damste, J.S.S., Kuenen, J.G., Jetten, M.S.M., Strous, M., 2004. The anammoxosome: an intracytoplasmic compartment in anammox bacteria. Fems Microbiology Letters 233, 7-13.
Vandegraaf, A.A., Mulder, A., Debruijn, P., Jetten, M.S.M., Robertson, L.A., Kuenen, J.G., 1995. Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology 61, 1246-1251.
Vavilin, V.A., Rytov, S.V., Lokshina, L.Y., 1996. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology 56, 229-237.
Verma, S., Daverey, A., Lin, J.G., 2021. Successful start-up of anammox process from activated sludge and anaerobic sludge in a sequencing batch reactor using an unconventional strategy. International Biodeterioration & Biodegradation 156, 11.
Viet, T.N., Behera, S.K., Kim, J.W., Park, H.-S., 2008. Effects of oxidation eeduction potential and organic compounds on anammox reaction in batch cultures. Environmental Engineering Research 13, 210-215.
Vineyard, D., Hicks, A., Karthikeyan, K.G., Barak, P., 2020. Economic analysis of electrodialysis, denitrification, and anammox for nitrogen removal in municipal wastewater treatment. Journal of Cleaner Production 262.
Vo, H.X., Durlofsky, L.J., 2014. A New Differentiable Parameterization Based on Principal Component Analysis for the Low-Dimensional Representation of Complex Geological Models. Mathematical Geosciences 46, 775-813.
Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S., Lin, J.G., 2010. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. J Hazard Mater 175, 622-628.
Wang, F., Xu, S.H., Liu, L.J., Wang, S.Y., Ji, M., 2021. One-stage partial nitrification and anammox process in a sequencing batch biofilm reactor: Start-up, nitrogen removal performance and bacterial community dynamics in response to temperature. Science of the Total Environment 772.
Wang, G., Xu, X., Gong, Z., Gao, F., Yang, F., Zhang, H., 2016. Study of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in an intermittent aeration membrane bioreactor. Process Biochemistry 51, 632-641.
Wang, G., Xu, X., Zhou, L., Wang, C., Yang, F., 2017. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment. Bioresource Technology 241, 181-189.
Wang, Q.T., Wang, Y.L., Lin, J.B., Tang, R., Wang, W., Zhan, X.M., Hu, Z.H., 2018. Selection of seeding strategy for fast start-up of Anammox process with low concentration of Anammox sludge inoculum. Bioresource Technology 268, 638-647.
Wang, S.Y., Peng, Y.Z., Ma, B., Zhu, G.B., 2015. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked. Water Research 84, 66-75.
Wang, T., Zhang, H.M., Yang, F.L., Liu, S.T., Fu, Z.M., Chen, H.H., 2009a. Start-up of the Anammox process from the conventional activated sludge in a membrane bioreactor. Bioresource Technology 100, 2501-2506.
Wang, W.G., Yan, Y., Zhao, Y.H., Shi, Q., Wang, Y.Y., 2020. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia. Water Research 169.
Wang, Z., Wang, W., Zhang, X., Zhang, G., 2009b. Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor. Journal of Hazardous Materials 162, 799-803.
Wei, Y., Jin, Y., Zhang, W.J., 2020. Domestic Sewage Treatment Using a One-Stage ANAMMOX Process. Int. J. Environ. Res. Public Health 17, 14.
Wiesmann, U., 1994. Biological nitrogen removal from wastewater. Biotechnics/wastewater. Springer, pp. 113-154.
Wolfe, R.S., 2011. Chapter one - Techniques for Cultivating Methanogens. in: Rosenzweig, A.C., Ragsdale, S.W. (Eds.). Methods in Enzymology. Academic Press, pp. 1-22.
Wu, P., Zhang, X.X., Wang, X.Z., Wang, C.C., Faustin, F., Liu, W.R., 2020. Characterization of the start-up of single and two-stage Anammox processes with real low-strength wastewater treatment. Chemosphere 245, 7.
Xiong, L., Wang, Y.-Y., Tang, C.-J., Chai, L.-Y., Xu, K.-Q., Song, Y.-X., Ali, M., Zheng, P., 2013. Start-up characteristics of a granule-based Anammox UASB reactor seeded with anaerobic granular sludge. BioMed research international 2013.
Yang, J.J., Liu, C.C., Chen, W.H., Yuan, C.S., Lin, C., 2013. Assessing the altitude effect on distributions of volatile organic compounds from different sources by principal component analysis. Environmental Science-Processes & Impacts 15, 972-985.
Yang, J.J., Trela, J., Plaza, E., Wahlberg, O., Levlin, E., 2016. Oxidation-reduction potential (ORP) as a control parameter in a single-stage partial nitritation/anammox process treating reject water. Journal of Chemical Technology and Biotechnology 91, 2582-2589.
Yang, R., Mao, W., Wang, X., Zhang, Z., Wu, J., Chen, S., 2020. Response and Adaptation of Microbial Community in a CANON Reactor Exposed to an Extreme Alkaline Shock. Archaea 2020, 8888615.
Yang, S.F., Huang, H.D., Fan, W.L., Jong, Y.J., Chen, M.K., Huang, C.N., Chuang, C.Y., Kuo, Y.L., Chung, W.H., Su, S.C., 2018. Compositional and functional variations of oral microbiota associated with the mutational changes in oral cancer. Oral Oncology 77, 1-8.
Yang, Y., Zuo, J., Quan, Z., Lee, S., Shen, P., Gu, X., 2006. Study on performance of granular ANAMMOX process and characterization of the microbial community in sludge. Water Science and Technology 54, 197-207.
Yang, Y.F., Li, Y., Gu, Z.L., Lu, F., Xia, S.Q., Hermanowicz, S., 2019. Quick start-up and stable operation of a one-stage deammonification reactor with a low quantity of AOB and ANAMMOX biomass. Science of the Total Environment 654, 933-941.
Yin, X., Rahaman, M.H., Liu, W., Mąkinia, J., Zhai, J., 2021. Comparison of nitrogen and VFA removal pathways in autotrophic and organotrophic anammox reactors. Environmental Research 197, 111065.
Youssef, N., Sheik, C.S., Krumholz, L.R., Najar, F.Z., Roe, B.A., Elshahed, M.S., 2009. Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys. Applied and Environmental Microbiology 75, 5227-5236.
Zhang, K., Lyu, L.T., Kang, T.L., Yao, S., Ma, Y.G., Pan, Y., Wang, Y.Z., Furukawa, K., Hao, L.Y., Zhu, T., 2019. A rapid and effective way to cultivate anammox granular sludge through vibration. International Biodeterioration & Biodegradation 143.
Zhang, L., Okabe, S., 2020. Ecological niche differentiation among anammox bacteria. Water Research 171.
Zhang, N., Liu, C., Qi, F., Xu, B.B., 2017. The formation of haloacetamides, as an emerging class of N-DBPs, from chlor(am)ination of algal organic matter extracted from Microcystis aeruginosa, Scenedesmus quadricauda and Nitzschia palea. Rsc Advances 7, 7679-7687.
Zhang, Y., Ma, H., Chen, R., Niu, Q., Li, Y.-Y., 2018a. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor. Bioresource Technology 253, 130-140.
Zhang, Y., Ma, H., Lin, L., Cao, W., Ouyang, T., Li, Y.-Y., 2018b. Enhanced Simultaneous Nitrogen and Phosphorus Removal Performance by Anammox–HAP Symbiotic Granules in the Attached Film Expanded Bed Reactor. ACS Sustainable Chemistry & Engineering 6, 10989-10998.
Zheng, F., Wang, J., Xiao, R., Chai, W.B., Xing, D.F., Lu, H.J., 2021. Dissolved organic nitrogen in wastewater treatment processes: Transformation, biosynthesis and ecological impacts. Environmental Pollution 273.
Ziembinska-Buczynska, A., Banach-Wisniewska, A., Tomaszewski, M., Poprawa, I., Student, S., Cema, G., 2019. Ecophysiology and dynamics of nitrogen removal bacteria in a sequencing batch reactor during wastewater treatment start-up. International Journal of Environmental Science and Technology 16, 4215-4222.
行政院環保署, 2020. 國內水質改善計畫. 環保政策月刊 23, 8.
林志高, 黃靖修, 劉穎川, 胡振中, 陳文興, 黃良銘, 黎德明, 茜茹, 2021. 廢 ( 污 ) 水生物處理氮轉化過程. 工業污染防治 152, 18.
許淑娟, 2014. 厭氧氨氧化系統微生物組成及除氮效能之探討. 環境工程研究所. 國立中興大學, 台中.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top