|
[1]World Health Organization. (2020). The top 10 causes of death. Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death [2]Institute for Health Metrics and Evaluation (IHME). (2020). GBD Compare Data Visualization. Retrieved from http://vizhub.healthdata.org/gbd-compare [3]Levey, A. S., & Coresh, J. . (2012). Chronic kidney disease. The lancet, 379, 165-180. doi:10.1016/S0140-6736(11)60178-5 [4]台灣腎病年報. (2014). 衛生福利部: 國家衛生研究院、台灣腎臟醫學會. [5]Hwang, S. J., Tsai, J. C., & Chen, H. C. (2010). Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. Nephrology (Carlton, Vic.), 15, 3-9. doi:10.1111/j.1440-1797.2010.01304.x [6]Lin, K. D., Hsu, C. C., Ou, H. Y., Wang, C. Y., Chin, M. C., & Shin, S. J. (2019). Diabetes-related kidney, eye, and foot disease in Taiwan: An analysis of nationwide data from 2005 to 2014. Journal of the Formosan Medical Association, 118, S103-S110. doi:10.1016/j.jfma.2019.07.027 [7]Kidney Disease: Improving Global Outcomes Diabetes Work, G. (2020). KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int, 98, S1-S115. doi:10.1016/j.kint.2020.06.019 [8]108年死因統計結果分析. (2019). 衛生福利部統計處. [9]International Comparisons. (2020). In 2020 Annual Report: End Stage Renal Disease. US Renal Data System. [10]2019年國人全民健康保險就醫疾病資訊. (2019). 台灣衛生署. [11]Berglund, F., Killander, J., & Pompeius, R. (1975). Effect of trimethoprim-sulfamethoxazole on the renal excretion of creatinine in man. J Urol, 114, 802-808. doi:10.1016/s0022-5347(17)67149-0 [12]COHEN, J. J., HARRINGTON, J. T., KASSIRER, J. P., & MADIAS, N. E. (1990). Measurement of renal function in chronic renal disease. Kidney international, 38, 167-184. doi:10.1038/ki.1990.182 [13]Shemesh, O., Golbetz, H., Kriss, J. P., & Myers, B. D. . (1985). Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney international, 28, 830-838. doi:10.1038/ki.1985.205 [14]Hosten, A. O. (1990). BUN and creatinine: Clinical Methods: The History, Physical, Laboratory Examinations. 3rd edition. [15]Delanaye, P., Cavalier, E., & Pottel, H. . (2017). Serum creatinine: not so simple! Nephron, 136, 302-308. doi:10.1159/000469669 [16]Cockcroft, D. W., & Gault, M. H. (1976). Prediction of creatinine clearance from serum creatinine. Nephron, 16, 31-41. doi:10.1159/000180580 [17]Glassock, R. J., & Winearls, C. (2008). An epidemic of chronic kidney disease: fact or fiction? Nephrology, dialysis, transplantation, 23, 1117-1121. doi:10.1093/ndt/gfn086 [18]Tonelli, M., Muntner, P., Lloyd, A., Manns, B. J., James, M. T., Klarenbach, S., Quinn, R. R., Wiebe, N., Hemmelgarn, B. R., & Alberta Kidney Disease Network (2011). Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Annals of internal medicine, 154, 12-21. doi:10.7326/0003-4819-154-1-201101040-00003 [19]Chuang, C. H., & Shaikh, M. . (2017). Label-free impedance biosensors for Point-of-Care diagnostics. [20]張景裕, 張憲彰. (2006). 微奈米生物感測系統在生物醫學的應用. 科儀新知, 17-26. doi:10.29662/IT.200608.0002 [21]高士軒, 翁文慧. (2014). 臨床醫療生物感測發展及技術應用. 化工, 61, 70-78. doi:10.29803/ce.201410_61(5).0008 [22]Li, P., Wang, Y., Zhang, S., Xu, L., Wang, G., & Cui, J. (2018). An ultrasensitive rapid-response fluorescent probe for highly selective detection of HSA. Tetrahedron Letters, 59, 1390-1393. doi:10.1016/j.tetlet.2018.02.065 [23]Xu, J. F., Yang, Y. S., Jiang, A. Q., & Zhu, H. L. (2020). Detection Methods and Research Progress of Human Serum Albumin. Critical reviews in analytical chemistry, 1-21. doi:10.1080/10408347.2020.1789835 [24]Saber, R., Mutlu, S., & Pişkin, E. (2002). Glow-discharge treated piezoelectric quartz crystals as immunosensors for HSA detection. Biosensors & bioelectronics, 17, 727-734. doi:10.1016/s0956-5663(02)00058-1 [25]Mohamad, A., Rizwan, M., Keasberry, N. A., Nguyen, A. S., Lam, T. D., & Ahmed, M. U. (2020). Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosens Bioelectron, 155, 112108. doi:10.1016/j.bios.2020.112108 [26]Hu, Q., Bao, Y., Gan, S., Zhang, Y., Han, D., & Niu, L. (2020). Electrochemically controlled grafting of polymers for ultrasensitive electrochemical assay of trypsin activity. Biosens Bioelectron, 165, 112358. doi:10.1016/j.bios.2020.112358 [27]Tsai, J. Z., Chen, C. J., Settu, K., Lin, Y. F., Chen, C. L., & Liu, J. T. . (2016). Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosensors & bioelectronics, 77, 1175-1182. doi:10.1016/j.bios.2015.11.002 [28]Choosang, J., Thavarungkul, P., Kanatharana, P., & Numnuam, A. . (2020). AuNPs/PpPD/PEDOT: PSS-Fc modified screen-printed carbon electrode label-free immunosensor for sensitive and selective determination of human serum albumin. Microchemical Journal, 155, 104709. doi:10.1016/j.microc.2020.104709 [29]Haddouche, I., Cherbi, L., & Biswas, A. . (2017). Highly sensitive optical immunosensor for bacteria detection in water. Optoelectronics and Advanced Materials-Rapid Communications, 11, 46-50. doi:10.3917/dbu.cherb.2017.01 [30]Tang, M., Wu, Y., Deng, D., Wei, J., Zhang, J., Yang, D., & Li, G. (2018). Development of an optical fiber immunosensor for the rapid and sensitive detection of phthalate esters. Sensors and Actuators B: Chemical, 258, 304-312. doi:10.1016/j.snb.2017.11.120 [31]Yetisen, A. K., Moreddu, R., Seifi, S., Jiang, N., Vega, K., Dong, X., Dong, J., Butt, H., Jakobi, M., Elsner, M., & Koch, A. W. (2019). Dermal tattoo biosensors for colorimetric metabolite detection. Angewandte Chemie (International ed. in English), 131, 10616-10623. doi:10.1002/anie.201904416 [32]Hiraoka, R., Kuwahara, K., Wen, Y. C., Yen, T. H., Hiruta, Y., Cheng, C. M., & Citterio, D. . (2020). Based Device for Naked Eye Urinary Albumin/Creatinine Ratio Evaluation. ACS sensors, 5, 1110-1118. doi:10.1021/acssensors.0c00050 [33]Kondzior, M., & Grabowska, I. (2020). Antibody-Electroactive Probe Conjugates Based Electrochemical Immunosensors. Sensors, 20, 2014. doi:10.3390/s20072014 [34]Mahato, K., Kumar, S., Srivastava, A., Maurya, P. K., Singh, R., & Chandra, P. (2018). Electrochemical immunosensors: fundamentals and applications in clinical diagnostics. In Handbook of immunoassay technologies (pp. 359-414): Elsevier. [35]Padeste, C., Grubelnik, A., & Tiefenauer, L. (2000). Ferrocene–avidin conjugates for bioelectrochemical applications. Biosensors & bioelectronics, 15, 431-438. doi:10.1016/s0956-5663(00)00106-8 [36]Padeste, C., Steiger, B., Grubelnik, A., & Tiefenauer, L. . (2004). Molecular assembly of redox-conductive ferrocene–streptavidin conjugates—towards bio-electrochemical devices. Biosensors & bioelectronics, 20, 545-552. doi:10.1016/j.bios.2004.03.004 [37]Xu, Q., Liu, Z., Fu, J., Zhao, W., Guo, Y., Sun, X., & Zhang, H. (2017). Ratiometric electrochemical aptasensor based on ferrocene and carbon nanofibers for highly specific detection of tetracycline residues. Scientific reports, 7, 1-10. doi:10.1038/s41598-017-15333-5 [38]Seiwert, B., & Karst, U. (2008). Ferrocene-based derivatization in analytical chemistry. Analytical and bioanalytical chemistry, 390, 181-200. doi:10.1007/s00216-007-1639-7 [39]Okochi, M., Ohta, H., Tanaka, T., & Matsunaga, T. . (2005). Electrochemical probe for on‐chip type flow immunoassay: Immunoglobulin G labeled with ferrocenecarboaldehyde. Biotechnology and bioengineering, 90, 14-19. doi:10.1002/bit.20313 [40]Nath, N., Godat, B., Zimprich, C., Dwight, S. J., Corona, C., McDougall, M., & Urh, M. . (2016). Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye. Journal of immunological methods, 431, 11-21. doi:10.1016/j.jim.2016.02.001 [41]Sharma, A., Rao, V. K., Kamboj, D. V., Gaur, R., Shaik, M., & Shrivastava, A. R. (2016). Enzyme free detection of staphylococcal enterotoxin B (SEB) using ferrocene carboxylic acid labeled monoclonal antibodies: An electrochemical approach. New Journal of Chemistry, 40, 8334-8341. doi:10.1039/C5NJ03460D [42]Prabhulkar, S., Alwarappan, S., Liu, G., & Li, C. Z. (2009). Amperometric micro-immunosensor for the detection of tumor biomarker. Biosensors & bioelectronics, 24, 3524-3530. doi:10.1016/j.bios.2009.05.002 [43]Dou, Y. H., Haswell, S. J., Greenman, J., & Wadhawan, J. (2012). Voltammetric immunoassay for the detection of protein biomarkers. Electroanalysis, 24, 264-272. doi:10.1002/elan.201100676 [44]Pakchin, P. S., Nakhjavani, S. A., Saber, R., Ghanbari, H., & Omidi, Y. (2017). Recent advances in simultaneous electrochemical multi-analyte sensing platforms. TrAC Trends in Analytical Chemistry, 92, 32-41. doi:10.1016/j.trac.2017.04.010 [45]Wu, D., Guo, A., Guo, Z., Xie, L., Wei, Q., & Du, B. . (2014). Simultaneous electrochemical detection of cervical cancer markers using reduced graphene oxide-tetraethylene pentamine as electrode materials and distinguishable redox probes as labels. Biosensors & bioelectronics, 54, 634-639. doi:10.1016/j.bios.2013.11.042 [46]Watanabe, N. (2021). Basics for who are starting electrochemistry. Retrieved from https://www.als-japan.com/1968.html [47]Kelly, R. G. (2003). Electrochemical thermodynamics and kinetics of relevance to corrosion. CORROSION TECHNOLOGY-NEW YORK AND BASEL-, 18, 9-54. [48]Hernández, H. H., Reynoso, A. M. R., González, J. C. T., Morán, C. O. G., Hernández, J. G. M., Ruiz, A. M., ... & Cruz, R. O. (2020). Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. Electrochemical Impedance Spectroscopy. doi:10.5772/intechopen.94470 [49]Faria, R., Heneine, L. D., Matencio, T., & Messaddeq, Y. (2019). Faradaic and non-faradaic electrochemical impedance spectroscopy as transduction techniques for sensing applications. International Journal of Biosensors & Bioelectronics, 5, 29-31. doi:10.15406/ijbsbe.2019.05.00148 [50]Chang, B. Y., & Park, S. M. . (2010). Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry, 3, 207-229. doi:10.1146/annurev.anchem.012809.102211 [51]Drake, K. F., Van Duyne, R. P., & Bond, A. M. . (1978). Cyclic differential pulse voltammetry: A versatile instrumental approach using a computerized system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 89, 231-246. doi:10.1016/S0022-0728(78)80187-9 [52]Paschkewitz, T. (2020, 2020/4/24). Differential Pulse Voltammetry (DPV). Retrieved from https://pineresearch.com/shop/kb/software/methods-and-techniques/voltammetric-methods/differential-pulse-voltammetry-dpv/ [53]Thiyagarajan, N., Chang, J. L., Senthilkumar, K., & Zen, J. M. (2014). Disposable electrochemical sensors: A mini review. Electrochemistry communications, 38, 86-90. doi:10.1016/j.elecom.2013.11.016 [54]Thermofisher. Instructions EDC. Retrieved 20210114, from Thermofisher https://www.thermofisher.com/order/catalog/product/22980#/22980 [55]Dixit, C. K., Vashist, S. K., MacCraith, B. D., & O''Kennedy, R. (2011). Multisubstrate-compatible ELISA procedures for rapid and high-sensitivity immunoassays. Nat Protoc, 6, 439-445. doi:10.1038/nprot.2011.304
|