跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡雯茜
研究生(外文):Wen-Chian Hu
論文名稱:開發具抗體電活性探針之免媒介電化學免疫晶片用於檢測微量白蛋白尿
論文名稱(外文):Electrochemical Immunosensor Utilizing Antibody-ferrocence Electroactivate Probes for Mediator-free Detection of Microalbuminuria
指導教授:莊承鑫莊承鑫引用關係
指導教授(外文):Chuang, Cheng-Hsin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:醫學科技研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:61
中文關鍵詞:電化學免疫晶片微量白蛋白尿微分脈衝伏安法二茂鐵慢性腎臟病
外文關鍵詞:immunosensormicroalbuminuriadifferential pulse voltammetry(DPV)ferroceneChronic kidney disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣乃慢性腎臟病盛行率與發病率居最高的國家,在早期很難被發覺,導致病情惡化到末期,患者需要終身血液透析或腎移植來維持生命。目前臨床上常被使用尿液試紙易造成偽陰性問題。此外,較精確尿液檢測需到健檢中心及實驗室,不利於居家檢測。因此提供操作簡單方便、非侵入式及高靈敏性的檢測機制,便於患者家中即時檢測,以達到早期發現早期治療的目標。微量白蛋白尿(microalbuminuria)是目前臨床上能最早診斷出慢性腎臟病的重要指標。
本研究為開發具抗體電活性探針的電化學免疫感測晶片。利用1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺/N-羥基琥珀醯亞胺(EDC/NHS)將二茂羧酸上的羧酸根活化,使其與人類血清白蛋白(HSA)抗體上的胺基交聯形成二茂鐵(ferrocene)與抗體的複合物,可透過傅立葉轉換中紅外線光譜儀(FTIR)及紫外線-可見光光譜(UV-vis)等技術分析二茂鐵與HSA抗體的交聯狀況。接著測試金奈米晶體能均勻沉積於網印電極表面上的最佳參數條件,使其能讓固定在電極上抗體量增加以提高靈敏度,可透過掃描式電子顯微鏡觀察電極表面的修飾狀況。最後將交聯二茂鐵的HSA抗體同時當作捕獲和訊號抗體,固定在沉積金奈米晶體後的電極上,完成晶片的備製。當免疫反應後,直接檢測二茂鐵的氧化電流訊號,以此推估HSA蛋白的濃度,經微分脈衝伏安法(differential pulse voltammetry,DPV)進行測量後,其微量白蛋白檢測濃度範圍為3-300 μg/mL,檢測極限為3 μg/mL。結果顯示本研究所開發之具抗體電活性探針的電化學免疫感測晶片針對為微量白蛋白尿具有良好的感測性能。
Chronic kidney disease (CKD) is recognized as a global health problem. Taiwan is the country with the highest incidence and prevalence rates of end stage renal disease. CKD is difficult to be diagnosed at an early stage which results in ineffective treatment and a need to rely on hemodialysis or kidney transplantation. Calorimetric urinary dipsticks are often used clinically which are semi-quantitative and can often result in inaccurate diagnostics. In addition, more accurate urine testing requires a well-equipped health examination center and laboratory which is not conducive to home testing. Therefore, we aim to develop a simple, user-friendly, non-invasive, quantitative and sensitive immunosensor which is convenient for point of care testing to achieve the goal of early detection and improved treatment. Microalbuminuria is currently the most widely used clinically viable indicator for early detection of chronic kidney disease.
In this study, we report the development of antibody-electroactive probe conjugate based electrochemical immunosensor for detection of microalbuminuria using differential pulse voltammetry (DPV). We use 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxy succinimide (EDC/NHS) cross-linker to activate the carboxylate on the ferrocenecarboxylic acid to cross-link it with the amine group on the human serum albumin (HSA) antibody to form the ferrocene/antibody complex. The cross-linking efficacy of ferrocene and HSA antibody was analyzed by Fourier transform mid-infrared spectrometer and ultraviolet-visible light spectroscopy. Next, we have optimized the electrodeposition parameters to ensure uniform gold nanoparticle modification on the screen-printed electrode surface which results in improved antibody immobilization and resulting sensitivity. The gold nanoparticle modified working electrode surface was characterized using a field emission scanning electron microscope. After electrodeposition of gold nanoparticles, the complex of ferrocene and HSA antibody was drop-casted on the electrode surface. Following immunoreaction, the oxidation peak current was directly detected in spiked PBS to estimate the concentration of HSA protein in the clinically relevant range of 3-300 μg/mL with a limit of detection of 3 μg/mL. The results show that the proposed electrochemical immunosensor utilizing antibody-electroactive probe shows potential for point of care testing of CKD and can be used for improved public healthcare monitoring.
論文審定書 i
摘要 ii
Abstract iii
目錄 v
圖次 vii
表次 x
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.2.1 慢性腎臟病 2
1.2.2 目前慢性腎臟病檢測的方法 5
1.2.3 臨床問題與研究需求 8
1.3 研究目的 9
第二章 文獻回顧 10
2.1 應用於檢測人血清白蛋白的生物感測器 11
2.1.1 質量檢測方法(quality detection method) 12
2.1.2 電化學法(electrochemical method) 13
2.1.3 光學方法(optical method) 15
2.2 電活性標記交聯物的電化學免疫感測器應用 17
2.2.1 抗體與電活性探針的交聯 19
2.2.2 基於抗體-電活性探針交聯物的夾心免疫感測器 20
2.2.3 基於抗體-電活性探針交聯物的直接訊號免疫感測器 21
2.2.4 基於多抗體-電活性探針交聯物的免疫感測器 22
2.3 電化學分析法 23
2.3.1 電化學阻抗頻譜(electrochemical impedance spectroscopy, EIS) 25
2.3.2 微分脈衝伏安法(differential pulse voltammetry, DPV) 28
第三章 材料與方法 30
3.1 實驗耗材 30
3.2 實驗設備 31
3.3 網版印刷碳電極(screen-printing carbon electrode) 31
3.4 抗體嫁接於二茂鐵 32
3.5 電極表面修飾 33
3.6 免疫晶片分析 34
第四章 結果與討論 35
4.1 不同電化學沉積時間對於金奈米晶體之影響 35
4.2 二茂鐵與HSA抗體的交聯結果分析 37
4.3 有無具有二茂鐵交聯的HSA抗體之影響 39
4.4 不同白蛋白濃度下免疫分析之結果 40
第五章 結論與未來展望 44
參考文獻 46
[1]World Health Organization. (2020). The top 10 causes of death. Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[2]Institute for Health Metrics and Evaluation (IHME). (2020). GBD Compare Data Visualization. Retrieved from http://vizhub.healthdata.org/gbd-compare
[3]Levey, A. S., & Coresh, J. . (2012). Chronic kidney disease. The lancet, 379, 165-180. doi:10.1016/S0140-6736(11)60178-5
[4]台灣腎病年報. (2014). 衛生福利部: 國家衛生研究院、台灣腎臟醫學會.
[5]Hwang, S. J., Tsai, J. C., & Chen, H. C. (2010). Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. Nephrology (Carlton, Vic.), 15, 3-9. doi:10.1111/j.1440-1797.2010.01304.x
[6]Lin, K. D., Hsu, C. C., Ou, H. Y., Wang, C. Y., Chin, M. C., & Shin, S. J. (2019). Diabetes-related kidney, eye, and foot disease in Taiwan: An analysis of nationwide data from 2005 to 2014. Journal of the Formosan Medical Association, 118, S103-S110. doi:10.1016/j.jfma.2019.07.027
[7]Kidney Disease: Improving Global Outcomes Diabetes Work, G. (2020). KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int, 98, S1-S115. doi:10.1016/j.kint.2020.06.019
[8]108年死因統計結果分析. (2019). 衛生福利部統計處.
[9]International Comparisons. (2020). In 2020 Annual Report: End Stage Renal Disease. US Renal Data System.
[10]2019年國人全民健康保險就醫疾病資訊. (2019). 台灣衛生署.
[11]Berglund, F., Killander, J., & Pompeius, R. (1975). Effect of trimethoprim-sulfamethoxazole on the renal excretion of creatinine in man. J Urol, 114, 802-808. doi:10.1016/s0022-5347(17)67149-0
[12]COHEN, J. J., HARRINGTON, J. T., KASSIRER, J. P., & MADIAS, N. E. (1990). Measurement of renal function in chronic renal disease. Kidney international, 38, 167-184. doi:10.1038/ki.1990.182
[13]Shemesh, O., Golbetz, H., Kriss, J. P., & Myers, B. D. . (1985). Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney international, 28, 830-838. doi:10.1038/ki.1985.205
[14]Hosten, A. O. (1990). BUN and creatinine: Clinical Methods: The History, Physical, Laboratory Examinations. 3rd edition.
[15]Delanaye, P., Cavalier, E., & Pottel, H. . (2017). Serum creatinine: not so simple! Nephron, 136, 302-308. doi:10.1159/000469669
[16]Cockcroft, D. W., & Gault, M. H. (1976). Prediction of creatinine clearance from serum creatinine. Nephron, 16, 31-41. doi:10.1159/000180580
[17]Glassock, R. J., & Winearls, C. (2008). An epidemic of chronic kidney disease: fact or fiction? Nephrology, dialysis, transplantation, 23, 1117-1121. doi:10.1093/ndt/gfn086
[18]Tonelli, M., Muntner, P., Lloyd, A., Manns, B. J., James, M. T., Klarenbach, S., Quinn, R. R., Wiebe, N., Hemmelgarn, B. R., & Alberta Kidney Disease Network (2011). Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Annals of internal medicine, 154, 12-21. doi:10.7326/0003-4819-154-1-201101040-00003
[19]Chuang, C. H., & Shaikh, M. . (2017). Label-free impedance biosensors for Point-of-Care diagnostics.
[20]張景裕, 張憲彰. (2006). 微奈米生物感測系統在生物醫學的應用. 科儀新知, 17-26. doi:10.29662/IT.200608.0002
[21]高士軒, 翁文慧. (2014). 臨床醫療生物感測發展及技術應用. 化工, 61, 70-78. doi:10.29803/ce.201410_61(5).0008
[22]Li, P., Wang, Y., Zhang, S., Xu, L., Wang, G., & Cui, J. (2018). An ultrasensitive rapid-response fluorescent probe for highly selective detection of HSA. Tetrahedron Letters, 59, 1390-1393. doi:10.1016/j.tetlet.2018.02.065
[23]Xu, J. F., Yang, Y. S., Jiang, A. Q., & Zhu, H. L. (2020). Detection Methods and Research Progress of Human Serum Albumin. Critical reviews in analytical chemistry, 1-21. doi:10.1080/10408347.2020.1789835
[24]Saber, R., Mutlu, S., & Pişkin, E. (2002). Glow-discharge treated piezoelectric quartz crystals as immunosensors for HSA detection. Biosensors & bioelectronics, 17, 727-734. doi:10.1016/s0956-5663(02)00058-1
[25]Mohamad, A., Rizwan, M., Keasberry, N. A., Nguyen, A. S., Lam, T. D., & Ahmed, M. U. (2020). Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosens Bioelectron, 155, 112108. doi:10.1016/j.bios.2020.112108
[26]Hu, Q., Bao, Y., Gan, S., Zhang, Y., Han, D., & Niu, L. (2020). Electrochemically controlled grafting of polymers for ultrasensitive electrochemical assay of trypsin activity. Biosens Bioelectron, 165, 112358. doi:10.1016/j.bios.2020.112358
[27]Tsai, J. Z., Chen, C. J., Settu, K., Lin, Y. F., Chen, C. L., & Liu, J. T. . (2016). Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosensors & bioelectronics, 77, 1175-1182. doi:10.1016/j.bios.2015.11.002
[28]Choosang, J., Thavarungkul, P., Kanatharana, P., & Numnuam, A. . (2020). AuNPs/PpPD/PEDOT: PSS-Fc modified screen-printed carbon electrode label-free immunosensor for sensitive and selective determination of human serum albumin. Microchemical Journal, 155, 104709. doi:10.1016/j.microc.2020.104709
[29]Haddouche, I., Cherbi, L., & Biswas, A. . (2017). Highly sensitive optical immunosensor for bacteria detection in water. Optoelectronics and Advanced Materials-Rapid Communications, 11, 46-50. doi:10.3917/dbu.cherb.2017.01
[30]Tang, M., Wu, Y., Deng, D., Wei, J., Zhang, J., Yang, D., & Li, G. (2018). Development of an optical fiber immunosensor for the rapid and sensitive detection of phthalate esters. Sensors and Actuators B: Chemical, 258, 304-312. doi:10.1016/j.snb.2017.11.120
[31]Yetisen, A. K., Moreddu, R., Seifi, S., Jiang, N., Vega, K., Dong, X., Dong, J., Butt, H., Jakobi, M., Elsner, M., & Koch, A. W. (2019). Dermal tattoo biosensors for colorimetric metabolite detection. Angewandte Chemie (International ed. in English), 131, 10616-10623. doi:10.1002/anie.201904416
[32]Hiraoka, R., Kuwahara, K., Wen, Y. C., Yen, T. H., Hiruta, Y., Cheng, C. M., & Citterio, D. . (2020). Based Device for Naked Eye Urinary Albumin/Creatinine Ratio Evaluation. ACS sensors, 5, 1110-1118. doi:10.1021/acssensors.0c00050
[33]Kondzior, M., & Grabowska, I. (2020). Antibody-Electroactive Probe Conjugates Based Electrochemical Immunosensors. Sensors, 20, 2014. doi:10.3390/s20072014
[34]Mahato, K., Kumar, S., Srivastava, A., Maurya, P. K., Singh, R., & Chandra, P. (2018). Electrochemical immunosensors: fundamentals and applications in clinical diagnostics. In Handbook of immunoassay technologies (pp. 359-414): Elsevier.
[35]Padeste, C., Grubelnik, A., & Tiefenauer, L. (2000). Ferrocene–avidin conjugates for bioelectrochemical applications. Biosensors & bioelectronics, 15, 431-438. doi:10.1016/s0956-5663(00)00106-8
[36]Padeste, C., Steiger, B., Grubelnik, A., & Tiefenauer, L. . (2004). Molecular assembly of redox-conductive ferrocene–streptavidin conjugates—towards bio-electrochemical devices. Biosensors & bioelectronics, 20, 545-552. doi:10.1016/j.bios.2004.03.004
[37]Xu, Q., Liu, Z., Fu, J., Zhao, W., Guo, Y., Sun, X., & Zhang, H. (2017). Ratiometric electrochemical aptasensor based on ferrocene and carbon nanofibers for highly specific detection of tetracycline residues. Scientific reports, 7, 1-10. doi:10.1038/s41598-017-15333-5
[38]Seiwert, B., & Karst, U. (2008). Ferrocene-based derivatization in analytical chemistry. Analytical and bioanalytical chemistry, 390, 181-200. doi:10.1007/s00216-007-1639-7
[39]Okochi, M., Ohta, H., Tanaka, T., & Matsunaga, T. . (2005). Electrochemical probe for on‐chip type flow immunoassay: Immunoglobulin G labeled with ferrocenecarboaldehyde. Biotechnology and bioengineering, 90, 14-19. doi:10.1002/bit.20313
[40]Nath, N., Godat, B., Zimprich, C., Dwight, S. J., Corona, C., McDougall, M., & Urh, M. . (2016). Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye. Journal of immunological methods, 431, 11-21. doi:10.1016/j.jim.2016.02.001
[41]Sharma, A., Rao, V. K., Kamboj, D. V., Gaur, R., Shaik, M., & Shrivastava, A. R. (2016). Enzyme free detection of staphylococcal enterotoxin B (SEB) using ferrocene carboxylic acid labeled monoclonal antibodies: An electrochemical approach. New Journal of Chemistry, 40, 8334-8341. doi:10.1039/C5NJ03460D
[42]Prabhulkar, S., Alwarappan, S., Liu, G., & Li, C. Z. (2009). Amperometric micro-immunosensor for the detection of tumor biomarker. Biosensors & bioelectronics, 24, 3524-3530. doi:10.1016/j.bios.2009.05.002
[43]Dou, Y. H., Haswell, S. J., Greenman, J., & Wadhawan, J. (2012). Voltammetric immunoassay for the detection of protein biomarkers. Electroanalysis, 24, 264-272. doi:10.1002/elan.201100676
[44]Pakchin, P. S., Nakhjavani, S. A., Saber, R., Ghanbari, H., & Omidi, Y. (2017). Recent advances in simultaneous electrochemical multi-analyte sensing platforms. TrAC Trends in Analytical Chemistry, 92, 32-41. doi:10.1016/j.trac.2017.04.010
[45]Wu, D., Guo, A., Guo, Z., Xie, L., Wei, Q., & Du, B. . (2014). Simultaneous electrochemical detection of cervical cancer markers using reduced graphene oxide-tetraethylene pentamine as electrode materials and distinguishable redox probes as labels. Biosensors & bioelectronics, 54, 634-639. doi:10.1016/j.bios.2013.11.042
[46]Watanabe, N. (2021). Basics for who are starting electrochemistry. Retrieved from https://www.als-japan.com/1968.html
[47]Kelly, R. G. (2003). Electrochemical thermodynamics and kinetics of relevance to corrosion. CORROSION TECHNOLOGY-NEW YORK AND BASEL-, 18, 9-54.
[48]Hernández, H. H., Reynoso, A. M. R., González, J. C. T., Morán, C. O. G., Hernández, J. G. M., Ruiz, A. M., ... & Cruz, R. O. (2020). Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. Electrochemical Impedance Spectroscopy. doi:10.5772/intechopen.94470
[49]Faria, R., Heneine, L. D., Matencio, T., & Messaddeq, Y. (2019). Faradaic and non-faradaic electrochemical impedance spectroscopy as transduction techniques for sensing applications. International Journal of Biosensors & Bioelectronics, 5, 29-31. doi:10.15406/ijbsbe.2019.05.00148
[50]Chang, B. Y., & Park, S. M. . (2010). Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry, 3, 207-229. doi:10.1146/annurev.anchem.012809.102211
[51]Drake, K. F., Van Duyne, R. P., & Bond, A. M. . (1978). Cyclic differential pulse voltammetry: A versatile instrumental approach using a computerized system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 89, 231-246. doi:10.1016/S0022-0728(78)80187-9
[52]Paschkewitz, T. (2020, 2020/4/24). Differential Pulse Voltammetry (DPV). Retrieved from https://pineresearch.com/shop/kb/software/methods-and-techniques/voltammetric-methods/differential-pulse-voltammetry-dpv/
[53]Thiyagarajan, N., Chang, J. L., Senthilkumar, K., & Zen, J. M. (2014). Disposable electrochemical sensors: A mini review. Electrochemistry communications, 38, 86-90. doi:10.1016/j.elecom.2013.11.016
[54]Thermofisher. Instructions EDC. Retrieved 20210114, from Thermofisher https://www.thermofisher.com/order/catalog/product/22980#/22980
[55]Dixit, C. K., Vashist, S. K., MacCraith, B. D., & O''Kennedy, R. (2011). Multisubstrate-compatible ELISA procedures for rapid and high-sensitivity immunoassays. Nat Protoc, 6, 439-445. doi:10.1038/nprot.2011.304
電子全文 電子全文(網際網路公開日期:20260923)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top