跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁家瑞
研究生(外文):Chia-Jui Liang
論文名稱:空時都普勒雷達系統之多人生理特徵偵測設計
論文名稱(外文):Space-Time Doppler Radar Design for Multi-person Vital Sign Detection
指導教授:王藏億
指導教授(外文):Wang , Tsang - Yi
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:63
中文關鍵詞:都普勒雷達非接觸式生理監測呼吸心跳頻率空時處理旋轉不變子空間方法
外文關鍵詞:Doppler radarNoninvasive physiological signal monitoringrespiration/heartbeat ratesSpace-time processingESPRIT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
非接觸式生物特徵監控可以在無接觸行為下,利用微波特性獲取生物特徵,為互聯網中重要應用技術之一。本論文將設計一套新穎無接觸式呼吸與心跳雷達偵測器。傳統單一天線之估測設計,能估測多人之心跳與呼吸頻率,但無法完整對應各人之生理特徵。於本論文設計中,我們利用多天線空時信號處理,有效估測多人間的心跳與呼吸頻率,並能標記相對應人之位置方向。相較於單一天線估測器,所提出之估測器非但能估測人所在所在位置方向,更能利用空間濾波器進一步精準估測心跳與呼吸頻率。由模擬結果得知,所提出之設計非但能標誌人之方向與相對應之生理特徵,並能在具相似頻率之多人環境下,準確估測頻率參數。
Noninvasive physiological signal monitoring can exploit the reflection of microwave propagation to catch the biometric characteristics without direct contact, thereby becoming a promising application of Internet-of-Things (IoT). In this thesis, we propose a novel Doppler radar system to detect the respiration and heartbeat rates of multiple users. Conventional single-antenna radar systems can estimate the rates of multi-user but cannot correctly map the estimated rates to the corresponding user. In the proposed design, we adopt the space-time signal processing technique to jointly estimate the respiration rates, heartbeat rates, and associated angle direction of multiple users. The estimated angle direction can not only help label the rates to the specific user but improves the estimation accuracy. Finally, the proposed design is verified by the computer simulations and shows that the rates can be accurately estimated even if multiple users possess similar respiration/heartbeat rates.
論文審定書……………………..............………………..i
誌謝………………………............…….....……………...ii
中文摘要……………………………….....……………...iii
英文摘要……………..…………..…………...……….....iv
目錄………………………..……..…………...………......v
圖次.………………..……………….……………...……..vi
表次 ……………..………………………..…………..….vii
第 1 章 導論……………………………....………………1
第 2 章 系統模型…………………………....……………3
第 2.1 節 雷達信號傳送模型 ……………….......………3
第 2.2 節 多人心跳呼吸反射信號模型………….......…5
第 3 章 空時督普勒雷達系統偵測設計……………......4
第 3.1 節 空時ESPRIT簡介……………………............…6
第 3.2 節 生理特徵訊號與方位角度設計…….......……8
第 3.3 節 運算複雜度分析……………..………….....…12
第 4 章 系統模擬及探討…………………………..……13
第 5 章 結論與未來展望………………………...……...52
參考文獻………………………………………………….53
[1]F. Wang, P. Juan, D. Chian and C. Wen, “Multiple range and vital sign detection based on single-conversion self-injection-locked hybrid mode radar with a novel frequency estimation algorithm,” IEEE Trans. Microwave Theory and Techniques, vol. 68, no. 5, pp. 1908-1920, May 2020.
[2]D. -M. Chian, C. -K. Wen, F. -K. Wang and K. -K. Wong, “Signal separation and tracking algorithm for multi-person vital signs by using doppler radar,” IEEE Trans. Biomedical Circuits and Systems, vol. 14, no. 6, pp. 1346-1361, Dec. 2020.
[3]C. Li, J. Ling, J. Li and J. Lin, “Accurate doppler radar noncontact vital sign detection using the RELAX Algorithm,” IEEE Trans. Instrumentation and Measurement, vol. 59, no. 3, pp. 687-695, Mar. 2010.
[4]S. Kim and K. Lee, “A low complexity based spectrum partitioning-ESPRIT for noncontact vital radar,” Elektronika ir Elektrotechnika, ISSN 1392-1215, vol. 23, No. 2, pp. 54-58, 2017.
[5]L. Sun, Y. Li, H. Hong, F. Xi, W. Cai, and X. Zhu, “Super-resolution spectral estimation in short-time non-contact vital sign measurement,” Review of Scientific Instruments, vol. 86, pp. 0447081-04470819, Apr. 2015.
[6]S. Kim, B. Kim, Y. Jin, and J. Lee, “Super-resolution-based estimation with wide array distance extrapolation for vital FMCW radar,” Journal of Electromagnetic and Science, vol. 21, no. 1, pp. 23-34, Jan. 2021.
[7]V. K. Nguyen, M. D. E. Turley, and G. A. Fabrizio, “A new data extrapolation approach based on spectral partitioning,” IEEE Signal Process. Lett., vol. 23, no. 4, pp. 454-458, Feb. 2016.
[8]S. Djukanovic and V. P. Bugarin, “Efficient and accurate detection and frequency estimation of multiple sinusoids,” IEEE Access, vol. 7, pp. 1118-1125, 2019.
[9]B. Kim, S. Kim, and J. Lee, “A novel DFT-based DOA estimation by a virtual array extension using simple multiplications for FMCW radar,” Sensors, vol. 18, no. 5, pp. 1560-1576, 2018.
[10]K. Wu, W. Fang and Y. Chen, “Joint carrier frequency offset and direction of arrival estimation via hierarchical ESPRIT for interleaved OFDMA/SDMA uplink systems,” 2010 IEEE 71st Vehicular Technology Conference, 2010, pp. 1-5.
[11]D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing, Artech House Publishers, 2005.
[12]H. L. Van Trees, Optimum Array Processing, Wiley-Interscience, Mar. 2002.
[13]R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984-995, Jul. 1989.
[14]S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[15]鍾明憲 (2021)。單天線連續波雷達系統之多目標生理特徵偵測研究。未出版之碩士論文,國立中山大學通訊工程研究所,高雄市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top