跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃韻文
研究生(外文):HUANG,YUN-WEN
論文名稱:低熱量低醣飲食及低熱量高醣飲食對跆拳道反應式技術表現與身體組成的影響
論文名稱(外文):THE EFFECTS OF LOW-CALORIE-LOW-CARBOHYDRATE AND LOW-CALORIE-HIGH-CARBOHYDRATE DIET ON BODY COMPOSITION AND REACTIVE SKILL PERFORMANCE IN TAEKWONDO ATHLETES
指導教授:張振崗張振崗引用關係
指導教授(外文):CHANG, CHEN-KANG
口試委員:張振崗巫錦霖、邱志暉徐瑨程一雄
口試委員(外文):CHANG, CHEN-KANGWU, CHING-LINCHIU, CHIh-HUIHSU, JEANCHENG I-SHIUNG
口試日期:2021-01-07
學位類別:碩士
校院名稱:國立臺灣體育運動大學
系所名稱:競技運動學系碩士班
學門:民生學門
學類:競技運動學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:92
中文關鍵詞:雙任務測驗前動作反應時間減重反應式專項技術測試等長大腿中段拉
外文關鍵詞:dual-task、、、,premotor reaction timeweight lossreactive skill testisometric mid-thigh pull
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
跆拳道為體重分級項目,部分選手採用急速減重,卻可能導致肌肉量流失、運動表現下降及認知功能減退等不良結果。本研究目的為探討低熱量低醣與低熱量高醣飲食對跆拳道運動員體重、身體組成、專項體能及反應式跆拳道專項技術測試的影響。以12名男性大學優秀跆拳道選手為對象,採交叉實驗設計,包含7天飲食介入及1天運動測試,共8天。低醣測試第一至七天每日攝取熱量15.8 kcal/kg,含醣類10%、蛋白質40-50%、脂肪40-50%%,高醣測試第一至七天每日攝取熱量15.8 kcal/kg,含醣類60-65%、蛋白質30%、脂肪5-10%。第七天下午過磅後,二次測試均攝取相同之恢復餐,熱量2974 kcal/kg,含醣類71%、蛋白質12%、脂肪17%;第八天運動測試前,二個測試均攝取相同之早餐,熱量6.2 kcal/kg,含醣類 1 g/kg、蛋白質0.24 g/kg、脂肪0.14 g/kg,於攝取恢復餐及第八天運動測試前填寫布魯奈爾情緒量表。第八天早餐後進行3場跆拳道模擬比賽,每場比賽間隔1小時;每場比賽包含3回合的腳踏車間歇性高強度運動,每回合2分鐘,包含4次間歇型運動(5秒全力衝刺及25秒休息之交替),回合間休息1分鐘,並於早餐前1小時及每場模擬比賽後各進行跆拳道反應式專項技術測試。第1天飲食介入前、第7天及第8天早餐前,共收集3次血液樣本,分析血漿葡萄糖、三酸甘油脂、尿素氮、酮體、甘油、游離脂肪酸、皮質醇、睪固酮、胰島素濃度,並以等長大腿中段拉測試發力率及最大肌力。結果顯示,7天低熱量低醣飲食介入後體重(減重前76.43 ±9.61 kg;減重後74.18±9.10 kg)、體脂率(減重前16.28±5.93%;減重後15.20 ±6.34 %)、脂肪重(減重前12.92± 5.73 kg;減重後11.74±5.78 kg)及去脂體重(減重前63.51±4.77 kg;減重後62.44±4.35kg)皆呈顯著下降。及高醣飲食介入後體重(減重前76.30±9.26 kg;減重後74.21±9.03kg)及體脂率(減重前16.63±5.72%;減重後15.63±5.21%)皆呈顯著下降,但下降幅度在二次測試間均無顯著差異;低醣及高醣飲食減重後模擬比賽體能表現、反應式專項技術前動作反應時間、雙任務的第二任務時間、發力率及最大肌力亦無顯著差異。低醣測試減重後酮體及尿素氮濃度顯著增加,高醣測試減重後血漿游離脂肪酸及酮體濃度顯著增加,但減重後血液各項生化值變化幅度在二測試間均無顯著差異;低醣減重後疲勞感覺顯著高於高醣測試。本研究顯示為期7天之低熱量低醣與低熱量高醣飲食對體重、體脂率、脂肪重、去脂體重的影響相似,且在減重後攝取足夠熱量及醣類的恢復餐,二種飲食方式對跆拳道選手專項反應式技術、體能與最大肌力等運動表現的效果相似,但低熱量低醣飲食可能造成較多的肌肉流失,並導致較高的疲勞感覺,顯示低熱量高醣飲食可能是較適合跆拳道選手的減重飲食策略。





Taekwondo is a weight-categorized sport. Many taekwondo athletes apply various rapid weight loss methods that can lead to muscle loss and impairments in physical and cognitive performance. The purpose of this study is to investigate the effects of short-term low-calorie-low carbohydrate and low-calorie-high-carbohydrate diet on body weight, body composition, and physical and cognitive performance in taekwondo athletes. Twelve elite male collegiate taekwondo athletes participated in this study. Each participant underwent low-calorie-low carbohydrate (LC) and low-calorie-high-carbohydrate (HC) trials in a cross-over design. Each trial lasted 8 days, including 7 days of dietary control, followed by 1 day of exercise test. From day 1 to 7, the LC trial consumed 15.8 kcal/kg/d, including carbohydrate 10%, protein 40-50%, fat 40-50%, while the HC trial consumed the same energy with carbohydrate 60-65%, protein 30%, fat 5-10%. After the weigh-in in the afternoon on day 7, both trials consumed the same recovery meal, consisting of 2974 kcal/kg with carbohydrate 71%, protein 12%, fat 17%. Before exercise test in the morning on day 8, both trials consumed the same breakfast, consisting of 6.2 kcal/kg with carbohydrate 1 g/kg, protein 0.24 g/kg, fat 0.14 g/kg. Three simulated taekwondo matches were held on day 8, with a 1-hr rest between each match. Each simulated match was consisted of 3 rounds of 2-min high-intensity intermittent exercise with a 1-min rest between rounds. Each round included 4 intermittent periods which were consisted of alternating 5 sec all-out sprint on a treadmill and 25 sec rest. The reactive taekwondo skill test was performed 1 hr before breakfast and after each simulated match. Blood samples were collected on day 1, 7 and 8. Plasma concentrations of glucose, triglyceride, urea nitrogen, ketone bodies, glycerol, non-esterified fatty acids, cortisol, testosterone, and insulin were analyzed. The isometric mid-thigh pull was used to measure rate of force development and peak force. After 7 days of energy restriction, the LC trial showed significantly decreases in body weight (before: 76.43 ±9.61 kg; after: 74.18± 9.10 kg), body fat (before: 16.28±5.93%; after: 15.20±6.34%), fat mass (before: 12.92± 5.73 kg; after: 11.74±5.78 kg), and lean body mass (before: 63.51±4.77 kg ; after: 62.44±4.35 kg). The HC trial showed significant decreases in body weight (before: 76.30±9.26 kg; after: 74.21±9.03 kg) and body fat (before: 16.63±5.72%; after: 15.63±5.21%). The magnitude of changes in body composition was similar in both trials. The LC and HC trials showed similar performance in total work completed in simulated matches, premotor reaction time and second task in the dual-task environment in the reactive taekwondo skill test, rate of force development and peak force. The LC trial showed significant increases in plasma concentrations of ketone bodies and urea nitrogen after the energy restriction. The HC trial showed significant increases in plasma concentrations of non-esterified fatty acids and ketone bodies. However, the magnitude of changes after the energy restriction was similar between LC and HC trials. The LC trial showed a significantly higher fatigue level after the energy restriction, compared to the HC trial. In conclusion, 7 days of low-calorie-low-carbohydrate and low-calorie-high-carbohydrate diet resulted in similar changes in body weight, body fat, fat mass, lean body mass. In addition, after consuming recovery diet with adequate energy and carbohydrate, both trials showed similar effects of reactive skill performance, physical capacity and peak force. However, the LC trial lost more lean body mass while experiencing higher sensation of fatigue. The results indicated that low-calorie-high-carbohydrate diet may be the better strategy for weight loss in taekwondo athletes.


目錄
摘要 I
Abstract III
謝誌 VI
目錄 VII
表目錄 IX
圖目錄 X
第壹章 緒論 2
第一節 研究背景 2
第二節 研究目的 3
第三節 研究假設 3
第四節 名詞操作性定義 4
第貳章 文獻探討 5
第一節 跆拳道運動 5
第二節 熱量限制與蛋白質對身體組成的影響 6
第三節 低醣飲食對於運動員身體組成的影響 8
第四節 低醣高脂飲食對運動表現的影響 9
第五節 反應時間與雙任務測驗 12
第六節 低醣飲食對肥胖者身體組成的影響 14
第七節 低醣飲食與肥胖相關疾病 15
第參章 研究方法 17
第一節 受試者 17
第二節 實驗設計與步驟 17
第三節 飲食控制 19
第四節 情緒量表問卷 20
第五節 反應式跆拳道專項技術測試 21
第六節 任務模式測驗 26
第七節 模擬跆拳道比賽 26
第八節 等長大腿中段拉測試 26
第九節 身體組成分析 27
第十節 血液及尿液生化值分析 28
第十一節 統計分析 28
第肆章 結果 30
第一節 受測者基本資料 30
第二節 身體組成分析 31
第三節 模擬跆拳道比賽 33
第四節 反應式跆拳道專項技術測試 40
第五節 等長大腿中段拉 47
第六節 血液生化值 48
第七節 情緒量表 52
第五章 討論 53
第一節 體重及身體組成 53
第二節 反應式跆拳道專項技術測試 55
第三節 體能 56
第四節 最大肌力與爆發力 57
第五節 兩種飲食對血液生化的影響 58
第六節 熱量限制對情緒之影響 60
第七節 恢復餐對運動表現之影響 60
第八節 研究限制 61
第九節 結論 62
參考文獻 70


表目錄
表一 跆拳道運動體重分級標準(公斤)6
表二 反應式跆拳道專項技術測試動作21
表三 受試者基本資料30
表四 身體組成分析討論33
表五 高醣測試與低醣測試減重前後及恢復後等長大腿中段拉發力率47
表六 血液分析討論51


圖目錄
圖一 實驗流程圖18
圖二 模擬跆拳道比賽及反應式技術測試流程圖19
圖三 A動作(握拳)22
圖四 B動作(握拳-旋踢)22
圖五 C動作(握拳-旋踢-空中兩腳)23
圖六 D、E、F動作(握拳-旋踢-空中兩腳-轉身後踢)23
圖七 前動作反應時間肌電圖訊號24
圖八 肌電片黏貼處:魚際肌24
圖九 假人規格25
圖十 訊號燈放置處25
圖十一 BOD POD28
圖十二 高醣測試(HC)與低醣測試(LC)模擬比賽每次運動之最大功率34
圖十三 高醣測試(HC)與低醣測試(LC)模擬比賽每回合4次運動之最大功率35
圖十四 高醣測試(HC)與低醣測試(LC)模擬比賽每場3回合運動之最大功率36
圖十五高醣測試(HC)與低醣測試(LC)模擬比賽每次運動之平均功率37
圖十六高醣測試(HC)與低醣測試(LC)模擬比賽每回合4次運動之平均功率38
圖十七高醣測試(HC)與低醣測試(LC)模擬比賽每場3回合運動之平均功率39
圖十八 高醣測試(HC)與低醣測試(LC)各時間點之A動作前動作反應時間40
圖十九 高醣測試(HC)與低醣測試(LC)各時間點之B動作前動作反應時間41
圖二十 高醣測試(HC)與低醣測試(LC)各時間點之C動作前動作反應時間42
圖二十一 高醣測試(HC)與低醣測試(LC)各時間點之D動作前動作反應時間43
圖二十二 高醣測試(HC)與低醣測試(LC)各時間點之E動作前動作反應時間44
圖二十三 高醣測試(HC)與低醣測試(LC)各時間點之F動作前動作反應時間45
圖二十四 高醣測試(HC)與低醣測試(LC)各時間點之E動作第二任務前動作反應時間46
圖二十五 情緒量表分數52



參考文獻
涂擇信,(2016)。以代謝體學探討優秀男性角力選手進行不同方式減重所引發之代謝變化. (未出版碩士論文), 國立臺灣體育運動大學,
詹庭傑. (2019). 合併補充支鏈胺基酸與瓜胺酸對下肢高強度阻力訓練後發力率的影響. (未出版碩士論文), 國立臺灣體育運動大學,
蔡葉榮, & 許志耀. (2002). 跆拳道踢擊動作之技術分析. 中華體育季刊, 16(2), 14-19.
衛生福利部統計處. (2013). 死因統計. https://dep.mohw.gov.tw/DOS/np-1775-113.html
Artioli, G. G., Iglesias, R. T., Franchini, E., Gualano, B., Kashiwagura, D. B., Solis, M. Y., . . . Lancha Junior, A. H. (2010). Rapid weight loss followed by recovery time does not affect judo-related performance. journal of sports sciences, 28(1), 21-32. doi:10.1080/02640410903428574
Blades, M., Fleming, S., & Costarelli, V. (2007). Nutrient intake and body composition in relation to making weight in young male Taekwondo players. Nutrition Food Science.
Bravata, D. M., Sanders, L., Huang, J., Krumholz, H. M., Olkin, I., Gardner, C. D., & Bravata, D. M. (2003). Efficacy and safety of low-carbohydrate diets: a systematic review. Jama, 289(14), 1837-1850.
Bridge, C. A., da Silva Santos, J. F., Chaabene, H., Pieter, W., & Franchini, E. (2014). Physical and physiological profiles of taekwondo athletes. Sports Medicine, 44(6), 713-733.
Brouns, F. (2018). Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable? European Journal of Nutrition, 57(4), 1301-1312. doi:10.1007/s00394-018-1636-y
Burke, L. M., Ross, M. L., Garvican-Lewis, L. A., Welvaert, M., Heikura, I. A., Forbes, S. G., . . . Hawley, J. A. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. Journal of Physiology, 595(9), 2785-2807. doi:10.1113/jp273230
Cengiz, A. (2015). Effects of self-selected dehydration and meaningful rehydration on anaerobic power and heart rate recovery of elite wrestlers. Journal of physical therapy science, 27(5), 1441-1444.
Chang, C. K., Borer, K., & Lin, P. J. (2017). Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance? Journal of Human Kinetics, 56, 81-92. doi:10.1515/hukin-2017-0025
Chen, C.-Y., Jing Dai, I., Chen, F., Chou, K.-M., & Chang, C.-K. (2015). Reliability and validity of a dual-task test for skill proficiency in roundhouse kicks in elite taekwondo athletes. Open Access Journal of Sports Medicine, 6, 181.
Chen, C. Y., Dai, J., Chen, I. F., Chou, K. M., & Chang, C. K. (2015). Reliability and validity of a dual-task test for skill proficiency in roundhouse kicks in elite taekwondo athletes. Open Access Journal of Sports Medicine, 6, 181-189. doi:10.2147/oajsm.S84671
Chen, I. F., Wu, H. J., Chen, C. Y., Chou, K. M., & Chang, C. K. (2016). Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: a randomized controlled trial. Journal of the International Society of Sport Science, 13, 28. doi:10.1186/s12970-016-0140-0
Choma, C. W., Sforzo, G. A., & Keller, B. A. (1998). Impact of rapid weight loss on cognitive function in collegiate wrestlers. Medicine Science In Sports Exercise, 30(5), 746-749.
Cipryan, L., Plews, D. J., Ferretti, A., Maffetone, P. B., & Laursen, P. B. (2018). Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses. Journal of Sport Science and Medcine, 17(2), 259-268.
Crossley, N. (2004). Fat is a sociological issue: Obesity rates in late modern, 'body-conscious' societies. Social Theory & Health, 2(3), 222-253.
da Silva Santos, J. F., Wilson, V. D., Herrera-Valenzuela, T., & Machado, F. S. M. (2020). Time-Motion Analysis and Physiological Responses to Taekwondo Combat in Juvenile and Adult Athletes: A Systematic Review. Strength Conditioning Journal, 42(2), 103-121.
Degoutte, F., Jouanel, P., Bègue, R., Colombier, M., Lac, G., Pequignot, J., & Filaire, E. (2006). Food restriction, performance, biochemical, psychological, and endocrine changes in judo athletes. International journal of sports medicine, 27(01), 9-18.
Durguerian, A., Bougard, C., Drogou, C., Sauvet, F., Chennaoui, M., & Filaire, E. (2016). Weight loss, performance and psychological related states in high-level weightlifters. International Journal of Sports Medicine, 37(03), 230-238.
Feinman, R. D., Pogozelski, W. K., Astrup, A., Bernstein, R. K., Fine, E. J., Westman, E. C., . . . Worm, N. (2015). Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition, 31(1), 1-13. doi:10.1016/j.nut.2014.06.011
Feinman, R. D., Pogozelski, W. K., Astrup, A., Bernstein, R. K., Fine, E. J., Westman, E. C., . . . Worm, N. (2019). Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition, 62, 213. doi:10.1016/j.nut.2018.12.002
Ferguson, L. M., Rossi, K. A., Ward, E., Jadwin, E., Miller, T. A., & Miller, W. C. (2009). Effects of caloric restriction and overnight fasting on cycling endurance performance. Journal of Strength and Conditioning Research, 23(2), 560-570. doi:10.1519/JSC.0b013e31818f058b
Gabbett, T. J., & Abernethy, B. (2012). Dual-task assessment of a sporting skill: influence of task complexity and relationship with competitive performances. Journal of sports sciences, 30(16), 1735-1745.
Haff, G. G., Ruben, R. P., Lider, J., Twine, C., & Cormie, P. (2015). A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. Journal of Strength and Conditioning Research, 29(2), 386-395. doi:10.1519/JSC.0000000000000705
Hall, C., & Lane, A. M. (2001). Effects of rapid weight loss on mood and performance among amateur boxers. British journal of sports medicine, 35(6), 390-395.
Hall, K. D., & Chung, S. T. (2018). Low-carbohydrate diets for the treatment of obesity and type 2 diabetes. Current Opinion Clinical Nutrition Metabolic Care, 21(4), 308-312. doi:10.1097/mco.0000000000000470
Hausen, M., Soares, P. P., Araújo, M. P., Porto, F., Franchini, E., Bridge, C. A., & Gurgel, J. (2017). Physiological responses and external validity of a new setting for taekwondo combat simulation. PLoS One, 12(2).
Hector, A. J., & Phillips, S. M. (2018). Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. International Journal of Sport Nutrition and Exercise Metabolic, 28(2), 170-177. doi:10.1123/ijsnem.2017-0273
Huovinen, H. T., Hulmi, J. J., Isolehto, J., Kyröläinen, H., Puurtinen, R., Karila, T., . . . Mero, A. A. (2015). Body composition and power performance improved after weight reduction in male athletes without hampering hormonal balance. The Journal of Strength
Conditioning Research, 29(1), 29-36.
James, L. P., Haff, G. G., Kelly, V. G., & Beckman, E. M. (2016). Towards a determination of the physiological characteristics distinguishing successful mixed martial arts athletes: a systematic review of combat sport literature. Sports Medicine, 46(10), 1525-1551.
Johnston, C. S., Tjonn, S. L., Swan, P. D., White, A., Hutchins, H., & Sears, B. (2006). Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. The American journal of clinical nutrition, 83(5), 1055-1061.
Kraemer, W. J., Fry, A. C., Rubin, M. R., Triplett-McBride, T., Gordon, S. E., Koziris, L. P., . . . Newton, R. U. (2001a). Physiological and performance responses to tournament wrestling. Medicine Science in Sports Exercise, 33(8), 1367-1378.
Kraemer, W. J., Fry, A. C., Rubin, M. R., Triplett-McBride, T., Gordon, S. E., Koziris, L. P., . . . Newton, R. U. (2001b). Physiological and performance responses to tournament wrestling. Medicine Science in Sports Exercise, 33(8), 1367-1378.
Krieger, J. W., Sitren, H. S., Daniels, M. J., & Langkamp-Henken, B. (2006). Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1. The American Journal of Clinical Nutrition, 83(2), 260-274. doi:10.1093/ajcn/83.2.260
Longland, T. M., Oikawa, S. Y., Mitchell, C. J., Devries, M. C., & Phillips, S. M. (2016). Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. The American Journal of Clinical Nutrition, 103(3), 738-746.
Marttinen, R. H., Judelson, D. A., Wiersma, L. D., & Coburn, J. W. (2011). Effects of self-selected mass loss on performance and mood in collegiate wrestlers. The Journal of Strength Conditioning Research, 25(4), 1010-1015.
McSwiney, F. T., Wardrop, B., Hyde, P. N., Lafountain, R. A., Volek, J. S., & Doyle, L. (2018). Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism, 81, 25-34. doi:10.1016/j.metabol.2017.10.010
Meng, Y., Bai, H., Wang, S., Li, Z., Wang, Q., & Chen, L. (2017). Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: a systematic review and meta-analysis of randomized controlled trials. Diabetes Research Clinical Practice, 131, 124-131.
Mettler, S., Mitchell, N., & Tipton, K. D. (2010). Increased protein intake reduces lean body mass loss during weight loss in athletes. Medicine Science in Sports Exercise, 42(2), 326-337.
Morales, J., Ubasart, C., Solana-Tramunt, M., Villarrasa-Sapiña, I., González, L.-M., Fukuda, D., & Franchini, E. (2018). Effects of rapid weight loss on balance and reaction time in elite judo athletes. International Journal of Sports Physiology Performance, 13(10), 1371-1377.
Moreno, B., Bellido, D., Sajoux, I., Goday, A., Saavedra, D., Crujeiras, A. B., & Casanueva, F. F. (2014). Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine, 47(3), 793-805. doi:10.1007/s12020-014-0192-3
Naude, C. E., Schoonees, A., Senekal, M., Young, T., Garner, P., & Volmink, J. (2014). Low carbohydrate versus isoenergetic balanced diets for reducing weight and cardiovascular risk: a systematic review and meta-analysis. PloS One, 9(7), e100652.
Noakes, T. D., & Windt, J. (2017). Evidence that supports the prescription of low-carbohydrate high-fat diets: a narrative review. British Journal of Sports Medecine, 51(2), 133-139. doi:10.1136/bjsports-2016-096491
Paoli, A., Bianco, A., & Grimaldi, K. A. (2015). The Ketogenic Diet and Sport: A Possible Marriage? Exercice and Sport Sciences Reviews, 43(3), 153-162. doi:10.1249/jes.0000000000000050
Paoli, A., Grimaldi, K., D’Agostino, D., Cenci, L., Moro, T., Bianco, A., & Palma, A. (2012). Ketogenic diet does not affect strength performance in elite artistic gymnasts. Journal of the International Society of Sports Nutrition, 9(1), 34.
Phillips, S. M., & Van Loon, L. J. (2011). Dietary protein for athletes: from requirements to optimum adaptation. Journal of Sports Sciences, 29(sup1), S29-S38.
Price, J., Gill, D. L., Etnier, J., & Kornatz, K. (2009). Free-throw shooting during dual-task performance: Implications for attentional demand and performance. Research Quarterly for Exercise
sports Med, 80(4), 718-726.
Rankin, J. W., Ocel, J. V., & Craft, L. L. (1996). Effect of weight loss and refeeding diet composition on anaerobic performance in wrestlers. Medicine Science in Sports Exercise, 28(10), 1292-1299.
Rasmussen, B. B., & Phillips, S. M. (2003). Contractile and nutritional regulation of human muscle growth. Exercise Sport Sciences Reviews, 31(3), 127-131.
Reale, R. (2018). Acute weight management in combat sports: pre-weight-in weight loss, post weight-in recovery and competition nutrition strategies. Sports. Sci. Exch, 29(183), 1-6.
Rhyu, H.-s., Cho, S.-Y., & Roh, H.-T. (2014). The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes. Journal of exercise rehabilitation, 10(6), 362.
Rhyu, H. S., & Cho, S. Y. (2014). The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of Taekwondo athletes. Journal of exercise rehabilitation, 10(5), 326-331. doi:10.12965/jer.140160
Santos, V. G., Franchini, E., & Lima-Silva, A. E. (2011). Relationship between attack and skipping in Taekwondo contests. J Strength Cond Res, 25(6), 1743-1751.
Sawyer, J. C., Wood, R. J., Davidson, P. W., Collins, S. M., Matthews, T. D., Gregory, S. M., & Paolone, V. J. (2013). Effects of a short-term carbohydrate-restricted diet on strength and power performance. The Journal of Strength Conditioning Research, 27(8), 2255-2262.
Schmidt, R., & Lee, T. (2011). Motor control and learning: a behavioral emphasis 5th ed-Champaign, IL: Human Kinetics. In: United States.
Sheppard, J. M., Chapman, D., & Taylor, K.-L. (2011). An evaluation of a strength qualities assessment method for the lower body. Strength Conditioning Journal, 19, 4-10.
Terry, P. C., Lane, A. M., & Fogarty, G. J. (2003). Construct validity of the POMS-A for use with adults. Psychology of Sport and Exercise, 4, 125-139.
Turton, J. L., Raab, R., & Rooney, K. B. (2018). Low-carbohydrate diets for type 1 diabetes mellitus: A systematic review. PLoS One, 13(3), e0194987. doi:10.1371/journal.pone.0194987
Urbain, P., Strom, L., Morawski, L., Wehrle, A., Deibert, P., & Bertz, H. (2017). Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. Nutrition and Metabolism 14, 17. doi:10.1186/s12986-017-0175-5
Volek, J. S., Freidenreich, D. J., Saenz, C., Kunces, L. J., Creighton, B. C., Bartley, J. M., . . . Phinney, S. D. (2016). Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, 65(3), 100-110. doi:10.1016/j.metabol.2015.10.028
Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L., & Brown, M. (2011). Health and economic burden of the projected obesity trends in the USA and the UK. Lancet, 378(9793), 815-825. doi:10.1016/s0140-6736(11)60814-3
Weiss, A. D. (1965). The locus of reaction time change with set, motivation and age. Journal of Gerontology, 20(1), 60-64.
White, A. M., Johnston, C. S., Swan, P. D., Tjonn, S. L., & Sears, B. (2007). Blood ketones are directly related to fatigue and perceived effort during exercise in overweight adults adhering to low-carbohydrate diets for weight loss: a pilot study. Journal of the American Dietetic Association, 107(10), 1792-1796. doi:10.1016/j.jada.2007.07.009
Williams, C., & Rollo, I. (2015). Carbohydrate Nutrition and Team Sport PerformanceCarbohydrate Nutrition and Team Sport Performance. Sports Medicine, 45 Suppl 1, S13-22. doi:10.1007/s40279-015-0399-3
Yancy Jr, W. S., Olsen, M. K., Guyton, J. R., Bakst, R. P., & Westman, E. C. (2004). A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Annals of Internal Medicine, 140(10), 769-777.
Yang, W. H., Heine, O., Pauly, S., Kim, P., Bloch, W., Mester, J., & Grau, M. (2015). Rapid rather than gradual weight reduction impairs hemorheological parameters of Taekwondo athletes through reduction in RBC-NOS activation. PloS One, 10(4).
Zinn, C., McPhee, J., Harris, N., Williden, M., Prendergast, K., & Schofield, G. (2017). A 12-week low-carbohydrate, high-fat diet improves metabolic health outcomes over a control diet in a randomised controlled trial with overweight defence force personnel. Applied Physiology, Nutrition, and Metabolism, 42(11), 1158-1164. doi:10.1139/apnm-2017-0260


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top