王郁芳、黃建中(2019)。國小六年級學童數感解題之錯誤類型分析。
International Journal of Science and Engineering, 9,59-82。
方文邦、劉曼麗(2013)。對國小四年級數學低成就學童在分數學習的迷思概念
錯誤類型與其成因之探討。科學教育月刊,358,20-35。
石函早、胡俊山(2007)。數學概念教學中的錯誤概念問題。中國雲南保山師專
學報,26,46-49。
李凱雯(2013)。國小六年級學童之比例問題解題策略分析(未出版之碩士論文)。國立臺南大學,臺南市。
李宜蓁(2020)。開放性評量融入五年級分數加減教學之研究(未出版之碩士論文),國立台臺中教育大學,臺中市。
林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。教育心理學
報,27,36-63。
林世華、盧雪梅、陳學志(2004)。國民中小學九年一貫課程學習成就評量指
標與方法手冊。臺北市:教育部。
林碧珍、蔡文煥(2005)。TIMSS 2003國小四年級數學新試題的開發及建構反
應題診斷性編碼系統的製定。科學教育月刊,280,51-62。
沈明勳、劉祥通(2002)。分析學童解比例問題文獻--國小數學課程與教學的建
議。科學教育研究與發展季刊,27,81-96。
胡永崇(1996)。後設認知策略教學對國小閱讀障礙學童閱讀理解成效之研究。屏
東:國立屏東師範學院。
胡詩菁、鍾靜(2015)。數學課室中應用建構反應題進行形成性評量之研究。
臺灣數學教師,36(2),26-48。
涂金堂(1999)。後設認知理論對數學解題教學的啟示。教育研究資訊,7(1),
122-137。
教育部(2003)。國民中小學九年一貫課程綱要數學學習領域。臺北市:教育部。
教育部(2018)。十二年國民基本教育課程綱要數學領域。臺北市:教育部。
教育部(2018)。十二年國民基本教育課程綱要:數學領域課程手冊。臺北市:教
育部。
陳密桃(1990)。國民中小學生的後設認知及其與閱讀理解之相關研究(未出版之
博士論文)。國立政治大學,臺北市。
陳淑華(2014)。國小六年級學生在百分率文字題的解題類型分析以結構式問題
為研究工具(未出版之碩士論文)。國立嘉義大學,嘉義縣。
黃志敘、楊德清(2007)。兒童分數迷思概念與解題策略之研究。科學教育研究
與發展季刊,47,63-88。
黃國禎、朱蕙君、王榕榆(2008)。以答題信心度為基礎之線上診斷評量系統。
師大學報:教育類,53,1-24。
黃昭智(2010)。探討三角形的全等錯誤類型之研究—以國中三年級學生為例
(未出版之碩士論文),國立台臺中教育大學,臺中市。
黃寶葵、劉曼麗(2012)。對國小六年級數學低成就學童在分數乘除法錯誤類型
的探討。科學教育月刊,335,39-52。
張春興(1991)。現代心理學。台北:東華書局。
張淑慧(2004)。建構性題目的編製。載於王文中、呂金燮、吳毓瑩、張郁雯、張
淑慧(合著), 教育測驗與評量: 教室學習觀點(201-220頁)。臺北市:五
南。
郭丁熒(1992)。追根究底談錯誤-有關學童錯誤的二十個問題。國教之友,
44,17-23。
葉建德、劉祥通(2005)。一位七年級學生的比率構念-從解速率問題表現的觀
點。科學教育月刊,279,2-20。
楊宗仁(1991)。後設認知的源起及其理論。資優教育季刊,38,16-25。
董秀蘭(2013)。社會學習領域公民科非選擇題評量基礎研究。教育部社會學習
領域課程與教學輔導群101年度專題研究成果報告,未出版。
董秀蘭(2016)。社會領域:一個培養現代公民素養與核心能力的關鍵領域。教育
脈動,5,1-12。
鄒松琴、鍾靜(2016)。形成性評量融入國小六年級建構導向數學教學之探討。科
學教育月刊,386,18-39。
臺北市政府教育局(2014)。學生數學解題思維探究-建構反應題解題分析(上)。
臺北市:教育局。
劉祥通(2007)。分數與比例問題解題分析-從數學提問教學的觀點。臺北:師大
書苑。
劉子鍵、林怡均(2011)。發展二階段診斷工具探討學生之統計迷思概念:以相關
為例。教育心理學報,42,379-400。
劉曼麗、侯淑芬(2007)。小數除法的學與教。科學教育月刊,314,27-38。
蔡依容(2020)。國小五年級學生在比率與百分率的迷思概念(未出版之碩士論文),國立臺中教育大學,臺中市。
蘇金豆、蔡明容(2014)。三階段化學平衡診斷評量工具之發展和效化。第三十屆
中華民國科學教育國際學術研討會論文彙編,255-259,台灣師大,台北
市。
蘇金豆(2015)。三階診斷工具的發展和應用-技職學童化學平衡迷思概念評
量。科學教育學刊,23,321-352。
龔心怡(2013)。十二年國民基本教育教學評量新趨勢:多元評量之應用。臺中
市教育電子報,26。取自 http://www.tc.edu.tw/epaper/index/view/ id/856
Akturk, A. O., & Sahin, I. (2011). Literature review on metacognition and its measurement. Procedia-Social and Behavioral Sciences, 15, 3731-3736.
Agustini, R. Y., Suryadi, D., & Jupri, A. (2017). Construction of open-ended
problems for assessing elementary student mathematical connection ability on
plane geometry. Journal of Physics: Conference Series, 895(1), 1-8.
Baker, L., & Brown, A. L. (1984). Metacognitive skills and reading. In P. D. Pearson
(Ed.), Handbook of Reading Research(pp.353-394). New York:Longman.
Babakhani, N. (2011). The effect of teaching the cognitive and meta-cognitive strategies (self-instruction procedure) on verbal math problem-solving performance of primary school students with verbal problem-solving difficulties. Procedia-Social and Behavioral Sciences, 15, 563-570.
Caleon, I., & Subramaniam, R. (2010). Development and application of a three-tier
diagnostic test to assess secondary students’ understanding of waves.
International Journal of Science Education, 32, 939-961
Çalisici, H. (2018). Middle school students' learning difficulties in the ratio-
proportion topic and a suggested solution:" envelope technique".
Universal Journal of Educational Research, 6, 1848-1855
Cetin-Dindar, A., & Geban, O. (2011). Development of a three-tier test to assess high
school students’ understanding of acids and bases. Procedia-Social and
Behavioral Sciences, 15, 600-604.
Costa, A. L. (1984). Mediating the metacognitive. Educational Leadership, 42, 57-
62
Cohen, S., Smith, G. A., Chechile, R., Burns, G., & Tasi, F. (1996). Identifying
impediments to learning probability and statistics from an assessment of
instructional software. Journal Educational and Behavioral Statistics, 21, 35-54.
Ellis, A. K., Denton, D. W., & Bond, J. B. (2014). An analysis of research on
metacognitive teaching strategies. Procedia-Social and Behavioral
Sciences, 116, 4015-4024.
Flavell, J. H. (1976). Metacognitive aspect of problem solving . In L. B.Resnick
(Ed. ), The Nature of Intelligence (pp. 231-235). Hillsdale, NJ:Erlbaum.
Griffard, P. B., & Wandersee, J. H. (2001). The two-tier instrument on
photosynthesis: What does it diagnose? International Journal of Science
Education, 23, 1039-1052.
Ghasempour, A. Z., Bakar, M. N., & Reza, G. (2013). Mathematical Problem Posing
and Metacognition: A Theoretical Framework. International Journal of
Pedagogical Innovations, 1, 63–68. https://doi.org/10.12785/ijpi/010201
Hawera, N., & Taylor, M. (2011). " Twenty percent free!" so how much does the
original bar weigh? Australian Primary Mathematics Classroom, 16(4), 3-7.
Hafizah, H., Aini, H., & Abdul, S. (2012) How to Contrust Open-Ended Questions
Procedia-Social and Behavioral Sciences, 60, 456-462
Hestenes, D., & Halloun, I. (1995). Interpreting the force concept inventory. Physics
Teacher,33, 502-506.
Hacker, D. J., Kiuhara, S. A., & Levin, J. R. (2019). A metacognitive intervention for
teaching fractions to students with or at-risk for learning disabilities in
mathematics. ZDM, 51, 601-612.
Jacobs, J. E., & Paris, S. G. (1987). Children’s metacognition about reading:Issues in
definition, measurement, and instruction. Educational Psychologist, 22, 255-278.
Klavir, R., & Hershkovitz, S. (2008). Teaching and evaluating ‘open-ended’
problems. International Journal for Mathematics Teaching and Learning, 20,
23-46.
Klausmeier, H. J., Ghatala, E. S., & Frayer, D. A. (1974). Conceptual learning and
development: A cognitive view. Academic Press.
Lamon, S. J. (1995). Ratio and proportion: Elementary didactical phenomenology. In
J. T. Sowder & B. P. Schappelle (Eds.), Providing a foundation for teaching
mathematics in the middle grades (167–198). Albany, NY: State University of
New York Press.
Lamon, S. J. (1999). Teaching fractions and ratios for understanding. Mahwah, NJ:
Lawrence Erlbaum Associates.
Lo, J. J., & Watanabe, T. (1997). Developing ratio and proportion schemes: A story of
a fifth grader. Journal for Research in Mathematics Education, 28, 216-236.
Lee, N. H., Yeo, D. J. S., & Hong, S. E. (2014). A metacognitive-based instruction for
Primary Four students to approach non-routine mathematical word
problems. ZDM, 46, 465-480.
Millhiser, William P. (2008). Open-Ended Question in OR/MS Education.
(http://blsciblogs.baruch.cuny.edu/millhiser/files/2009/03/openendedquestion s-
19-mar-091.pdf, diunduh pada 22 januari 2014).
Özcan, Z. Ç., & Eren Gümüş, A. (2019). A modeling study to explain mathematical
problem-solving performance through metacognition, self-efficacy, motivation,
and anxiety. Australian Journal of Education, 63, 116-134.
Parker, M., & Leinhardt, G. (1995). Percent: A privileged proportion. Review of
Educational Research, 65, 421-481.
Pesman, H., & Eryilmaz, A. (2010). Development of a three-tier test to assess
misconceptions about simple electric circuits. The Journal of Educational
Research, 103, 208–222.
Price, C. & van Jaarsveld, P., (2017). Using Open-response Tasks to Reveal the
Conceptual Understanding of Learners-Learners Teaching the Teacher what they
Know about Trigonometry. African Journal of Research in Mathematics, 21,
159–175.
Rosenzweig, C., Krawec, J., & Montague, M. (2011). Metacognitive strategy use of
eighth-grade students with and without learning disabilities during mathematical
problem solving: Think-aloud analysis. Journal of Learning Disabilities, 44, 508-
520.
Sternberg, R. J. (1984). Toward a triarchic theory of human intelligence.Behavioral
and Brain Sciences, 7, 269-316.
Sternberg, R. J. (1988). The triarchic mind: A new theory of human intelligence,
Viking Pengain. Inc.
Singh, P. (2014). Enriched assessment styles in mathematics. International Journal
for Cross-Disciplinary Subjects in Education, 5, 1804-1812.
Shepard, L. A. (2000) The role of assessment in a learning culture. Education
Researcher, 29(7), 4-14.
Tankersley, K. (2007). Tests that teach: Using standardized tests to improve
instruction Alexandria, VA: Association for Supervision and Curriculum Development.
Treagust, D. F. (1986). Evaluating students’ misconceptions by means of diagnostic
multiple-choice items. Research in Science Education, 16, 199-207.
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students'
misconception in science. International Journal of Science Education, 10,
159-169.
Treagust, D. F. (1995). Diagnostic assessment of students’ science knowledge. In S.
M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming
practice (pp. 327-346). Mahwah, NJ: Lawrence Erlbaum.
Tsai, C. C., & Chou, C. (2002). Diagnosing students’ alternative conceptions in
science. Journal of Computer Assisted Learning, 18, 157-165.
Van Galen, F., & Van Eerde, D. (2013). Solving problems with the percentage bar.
Journal on Mathematics Education, 4(1), 1-8.
Whitney, H. (1985). Taking responsibility in school mathematics education. The
Journal of Mathematical Behavior, 4, 219–235.
Wijaya, A. (2018). How do open-ended problems promote mathematical creativity? A reflection of bare mathematics problem and contextual problem. Journal of Physics: Conf. Series 983 (2018) 012114, International Conference on Mathematics, Science and Education 2017 (ICMSE2017).
Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science
education: Current and future directions. Studies in Science Education, 49,
121-169.